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Abstract. “Every natural number, with the exception of 0 and 1, can be written in a unique 

way as a linear combination of consecutive powers of 2, with the coefficients of the linear 

combination being -1 or +1” From this Theorem, four fundamental properties of odd numbers 

are implied: the conjugate of an odd number, the L/R symmetry, the transpose of an odd number 

and the octets of odd numbers. These concepts are used to obtain a classification of odd numbers 

and an algorithm for finding the factors of composite Fermat numbers.  

1.  Introduction 

In this article, we start by proving the Theorem: “Let   be an odd number other than 1, and 
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, 1, 0,1,2,..., 1i i     ” (Theorem 2.1). It’s 

easy to show that a Theorem of this kind doesn’t hold for any other natural number different than 

2.  

    The main difference between our Theorem and the known arithmetic systems (binary, decimal 

etc.) is that the coefficients of the linear combination can take the negative value. These negative 

values highlight two properties of odd numbers, the “conjugate” of an odd number (Definition 

2.1) and the “L/R symmetry” (Definition 3.1). 

    Another property of odd numbers is that of the “transpose” of an odd number (Definition 4.1). 

The transpose of an odd number can be defined in any arithmetic system and its value depends 

on the system used. However, the main mathematical object to which we come to, “the odd 

number octet”, is defined from a combination of conjugates and transposes of odd numbers 

(equation (5.1)). Thus, the odd number octet emerges only by using Theorem 2.1. Using these 

notions, we obtain a categorization of odd numbers and an algorithm for finding the factors of 

composite Fermat numbers.  

2.  Odd numbers as linear combinations of consecutive powers of 2  

We prove the following Theorem: 

Theorem 2.1. Let   be an odd number other than 1, and 
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, 1, 0,1,2,..., 1i i     . 

Proof. For 3  we have 
ln3

1 0
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 and from equation (2.1) we obtain 

1 03 2 2   . 

We now examine the case where * 1,2,3,...   . The lowest value that the odd number   

of equation (2.1) can obtain is                                                                                             

  1 1 2 1 1

min 2 2 2 2 ... 2 1 2 1                   .                                         (2.2) 

The largest value that the odd number   of equation (2.1) can obtain is 

  1 1 2 1 2

max 2 2 2 2 ... 2 1 2 1                   .                                        (2.3) 

Thus, for the odd numbers  , i    of equation (2.1) the following inequality holds 

 1 2

min max2 1 , 2 1i

            .                                                                (2.4) 

The number   , iN    of odd numbers in the closed interval 1 22 1,2 1       is 

  
   2 1

max min
2 1 2 1

, 1 1 2
2 2

iN

 

 

    
      .                                  (2.5) 

The integers , 0,1,2,..., 1i i    in equation (2.1) can only take two values, 1i   , thus 

equation (2.1) gives exactly   2 , iN     odd numbers. Therefore, for every *   

equation (2.1) gives all odd numbers in the interval 1 22 ,2 



      . 

    From inequality (2.4) we obtain 

1 22 1 2 1       

1 1 2 22 2 1 2 1 2             

1 22 2      

   1 ln 2 ln 2 ln 2       

from which we get 
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and finally 
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For 1  we have 
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We prove now that every odd number 1   can be uniquely written in the form of equation 

(2.1). We write the odd as 
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and 
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From equations (2.7), (2.8) we get 
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.                       (2.9) 

If, in equation (2.9), there are 0,1,2,..., 1i    such that i i   and let k be the smallest of 

them, dividing by 12k we get an odd number equal to an even number. So, it follows that

0,1,2,..., 1i i i      .  

In order to write an odd number 1,3   in the form of equation (2.1) we initially define the 
*   from equation (2.6). Then, we calculate the sum  

12 2   . 

If 12 2      we add 12  , whereas if 12 2      then we subtract it. By repeating the 

process exactly   times we write the odd number   in the form of equation (2.1). The number 

  of steps needed in order to write the odd number   in the form of equation (2.1) is extremely 

low compared to the magnitude of the odd number  , as derived from inequality (2.4). 

Example 2.1. For the odd number 23   we obtain from equation (2.6) 



 

4 
 

ln 23
1 3

ln 2
 

 
    

 
.  

Then, we have 

1 4 32 2 2 2 24 23        (thus 22  is subtracted) 

4 3 22 2 2 20 23     (thus 12  is added) 

4 3 2 12 2 2 2 22 23      (thus 02 1  is added) 

4 3 2 12 2 2 2 1 23     . 

Fermat numbers sF can be written directly in the form of equation (2.1), since they are of the 

form min , 

 2 2 2 1 2 2 2 3 1

min2 1 2 1 2 2 2 2 ... 2 1
s s s s ss

sF

s

            


.   (2.10) 

Mersenne numbers 
pM  can be written directly in the form of equation (2.1), since they are of 

the form max , 

  1 2 3 1

max2 1 2 2 2 2 ... 2 1p p p p

pM p

p prime

           


.               (2.11) 

We now give the following Definition: 

Definition 2.1.  Let   be an odd number greater than 1, and consider the representation of   

as described in Theorem 2.1. Then the conjugate *  of   is  
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for which it is  

0,1,2,..., 1k k k       .                   (2.13) 

For conjugate odds, the following Corollary holds:  

Corollary 2.1. For the conjugate odds  , 3i     and  * * , i    the following hold: 

1.  
*

*  .          (2.14) 

2.
* 13 2    .         (2.15) 

3.  is divisible by 3  if and only if *  is divisible by 3 . 

4. Two conjugate odd numbers cannot have common factors greater than 3. 
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5. Conjugates  and * are equidistant from the middle 3 2  of the interval 2 1 22 ,2 



      . 

Proof. 1. The 1 of the Corollary is an immediate consequence of Definition 4.1.  

2. From equations (2.1), (2.1) and (2.12) we get 

   * 1 12 2 2 2          

and equivalently 

* 13 2    . 

3. If the odd   is divisible by 3  then it is written in the form 3 ,x x odd   and from equation 

(2.15) we get * 13 3 2x      and equivalently  * 13 2 x    . Similarly we can prove the 

inverse. 

4. If 
*,xy xz    , x, y, z odd numbers, from equation (2.15) we have   13 2x y z     and 

consequently 3x  . 

5. From equation (2.15) we obtain 

*3 2 3 2       

*3 2 3 2      .  

    From Corollary 2.1 we have that 3 is the only odd number which is equal to its conjugate; 
0 13 3 2 3 3     . For the 1   we define 

1 1  .                                                                                                                       (2.16) 

Also, from equation 

   * 13 2X X                                                                                              (2.17) 

it follows that, if the odds X  and X  , X even belong to the interval 1 22 ,2 



      , 

then they are conjugates 

 
* *X X   .                                                                                                   (2.18) 

    It is easily proven that Theorem (2.1) is also valid for even numbers that are not powers of 2. 

In order to write an even number E  that is not a power of 2 in the form of equation (2.1), 

initially it is consecutively divided by 2 and it takes of the form of equation  

*

2

, 1,

lE
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.                                                                                               (2.19)  

Then, we write the odd number   in the form of equation (2.1).  

Example 2.2. By consecutively dividing the even number 368 by 2 we obtain  
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4368 2 23E    .  

Then, we write the odd number   =23 in the form of equation (2.1),  

4 3 2 123 2 2 2 2 1      

and we get  

 4 4 3 2 1 8 7 6 5 4368 2 2 2 2 2 1 2 2 2 2 2           . 

This equation gives the unique way in which the even number 368 can be written in the form of 

equation (2.1). For even numbers the lowest power of two in equation (2.1) is different from 
01 2 .  

3.  The L/R symmetry 

We now give the following Definition: 

Definition 3.1.1. The odd number   has Left-symmetry L  when there exists an index L  such 

that  


1 2 1 0
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... 1

1,2,3,..., 1
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L L

L



   



 

 

     

 

.                                                                                   (3.1) 

2. The odd number   has Right-symmetry R  when there exists an index R  such that  


1 2 1 0

1

... 1

1,2,3,..., 1

R

R R

R



   



 

 

     

 

.                                                                                   (3.2) 

Next, we have one example:  

Example 3.1. The prime number 

Q=568630647535356955169033410940867804839360742060818433 is a factor of 
4096

12 2 1F   . From the equation (2.6) we have 1 178   , and then from equation 2.1 we have 
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178 177 176 175 174 173 172 171 170 169 168 167 166

165 164 163 162 161 160 159 158 157 156 155 154 153 152

151 150 149 148 147 146 145 144 143 142 141 140 13

2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2

Q             

             

             9 138

137 136 135 134 133 132 131 130 129 128 127 126 125 124

123 122 121 120 119 118 117 116 115 114 113 112 111 110

109 108 107 106 105 104 103 102 101 100 99

2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2



             

             

           98 97 96 95

94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79

78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63

62 61 60 59 58 57 56 55 54 53 52 51 50 49

2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

   

               

               

              48 47

46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15

14 13 12 11 10 9 8 7 6 5 4 3 2 1

2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 1

 

               

               

              

 

So the factor 568630647535356955169033410940867804839360742060818433 of 12F has 

symmetry L (568630647535356955169033410940867804839360742060818433)=14. 

As a consequence of Definition 3.1, for odd numbers of the form Q  is 0 1    and for odd 

numbers of the form D is 0 1   . Also, from equation (2.1) and Definitions 3.1 it can be easily 

proved that the Q odds are written in the form 

12 1LQ K

K odd

  


                                                                                                             (3.3) 

and the D  odds in the form 

12 1RD K

K odd

  


.          (3.4) 

Proof. We prove equation (3.3) and (3.4) is proven similarly. From Definition 3.1 we get 

1 1 2 1 1 2 2 1

1 2 12 2 2 2 ... 2 2 2 2 ... 2 2 1
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 1 1 2 1 1 2 2 1

1 2 12 2 2 2 ... 2 2 2 2 ... 2 2 1L L L L

LQ    

        

                

 1 1 2 1

1 2 12 2 2 2 ... 2 2 2 1L L L

LQ    

      

            

1 1 2 1

1 2 12 2 2 2 ... 2 1L

LQ    

      

          

 1 1 2 3

1 2 12 2 2 2 2 ... 1L L L L L

LQ    

          

         

12 1LQ K   
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1 2 3

1 2 12 2 2 2 ...L L L L

LK    

         

       .  

It follows from Lucas Theorem for the Fermat numbers (see, [1,2]) that the factors of the Fermat 

numbers are of the form (3.3). Equations (3.3), (3.4) provides the simplest way for the 

determination of the symmetry of a number. An odd number with positive L-symmetry would 

necessarily have 0 R-symmetry and vice versa. We give two examples.  

Example 3.2. For odd number 18303 we have 

1

7

18303 1 2 9151

18303 1 2 143

  

  
. 

Therefore,  18303 0L   and  18303 7 1 6R    . Indeed, from equation (2.6) we get 13   

and from equation (2.1) we obtain 

14 13 12 11 10 9 8 7 6 5 4 3 2 118303 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1               . 

Example 3.3. For the number C1133 which is composite factor of 12F  with 1133 digits, we have 

141133 1 2C K   . 

Therefore,  1133 14 1 13L C    . 

It is easy to prove the following Corollary: 

Corollary 3.1.  

1. 1 2Q Q Q . 

2. 1 2D D Q . 

3. 1 1Q D D . 

4.        1 2 1 2 1L Q L Q L Q Q L Q   . 

5.        L Q R D R QD L Q   . 

6.        R D L Q R QD R D   . 

7.        1 2 1 2 1R D R D L D D R D   . 

8.          1 2 1 2 1 2Symmetry Symmetry Symmetry Symmetry Symmetry          . 

We give two examples: 

Example 3.4. L (641)=6< L (114689)=13 => L (641×114689)=6. 

Example 3.5. R (607)= 4< R (16633)=6 => L (607×16633)=4. 

We now prove the following Corollary: 

Corollary 3.2. Every composite number C  of the form 
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12 1C    

has at least two factors the symmetries of which have equal values. 

Proof. Corollary 3.2 is a direct consequence of Corollary 3.1.  

From Definitions 2.1 and 3.1 it emerges that for every conjugate pair  ,   , one is of form Q  

and the other of form D . 

4.  Transpose of odd number 

We now give the following Definition: 

Definition 4.1. 1. We write the odd D in the form of equation (2.1), 

1 1 2 1

1 2 12 2 2 2 ... 2 1
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.      (4.1) 

We define the transpose  T D  of D , 
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 .              (4.2) 

2. We write the odd Q  in the form of equation (2.1), 

1 1 2 1

1 2 12 2 2 2 ... 2 1
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We define as transpose  T Q  of Q , 
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 .   (4.4) 

3. We set 

 1 1T  .           (4.5) 

4. From equations (4.2), (4.4), (4.5) we get the general equation 

 
1

1 1

0

1

2 3 2

ln
1

ln 2

k

k

k

T


  




  



 
      

 

 
   

 


.                              (4.6) 

Algorithm for the calculation of the transpose. For the odd   we calculate 
ln

1
ln 2


 

   
 

 

from equation (2.6). Next, applying the algorithm of example 2.1 we write   in the form of 
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equation (2.1), we calculate 1, 1,2,3,..., 1i i      and the transpose  T   of   from 

equation (4.6). 

    We now prove five Theorems about the transpose of an odd number: 

Theorem 4.1. 

1.   1 2 3, 2,T          .       (4.7) 

2. 
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.      (4.9) 

Proof. 1. For 2 3   we get 

   1 2 2 1

1 2 2 1

2 3 2 1 2 2 2 2 ... 2 1 2

2 2 2 ... 2 1 Q

    

  

  

  

            

      
 

and from equation (4.4) we get   1T   . 

Now, let   1T   . The odd   is either of the form D  or of the form Q . We prove the Theorem 

for Q  , and the proof is similar for D  . 

For Q   we get 

1 1 2 2 1

1 2 2 12 2 2 2 ... 2 2 1

ln
1

ln 2

n n n n

n nQ

n

     

          

 
   

 

                                             (4.10) 

and from equation (4.4) we get 

  1 2 1

1 21 2 2 ... 2 2n n

nT   

         

so we get 
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and taking into account that every odd   is written in a unique way in the form of equation (2.1) 

we get 

2 3 3 1... 1n           

and from equation (4.10) we get 

 

 

1 1 1 1 2 1

1 2

2 2 2 ... 2 1 2 2 2 2 ... 2 1 1

2 2 1 1 2 3

n n n n n n

n n

   

 

            

    
 

and setting 2n    we obtain 2 3  . 

2. We prove the equivalence (4.8), and (4.9) is similarly proven. We write the odd D  in the form 

of equation (2.1), 

1 1 2 1

1 2 12 2 2 2 ... 2 1

ln
1

ln 2

D

D

   

   



  

       

 
   

 

.     (4.11) 

From equations (4.11), (4.2) we get 

  2 3 1

1 2 21 2 2 2 ... 2 2T D  

    

        .     (4.12) 

We next get 

 
2 3 1 1 1 2 2 1

1 2 2 1 2 2 11 2 2 2 ... 2 2 2 2 2 2 ... 2 2 1

T D D

     

            

   

 

             
 

and taking into account that the odd D  is written in a unique way in the form of equation (2.1) 

we get equivalence (4.8).  

Theorem 4.2. 1. For odd numbers of the form D , the equation holds 

     6T D T D  .         (4.13) 

2. For odd numbers of the form Q , the equation holds  

     6T Q T Q   .                    (4.14) 

Proof. We prove equation (4.13) and (4.14) is proven similarly. From equation (4.11) we get 

1 1 2 1

1 2 12 2 2 2 ... 2 1D Q   

      

         .    (4.15) 

From equation (4.4) we get 
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  2 3 1

1 2 11 2 2 2 ... 2 2T D  

    

         .     (4.16) 

From equation (4.12), (4.16) we obtain     6T D T D  .  

Theorem 4.3. For every odd  , 
ln

1
ln 2


 

   
 

, 1 22 ,2 



       the following inequality 

holds 

  22T    .          (4.17) 

Proof. We prove inequality (4.17) for the D  odds and the proof is similar for the Q  odds. From 

equation (4.12) and taking into account that 1, 0,1,2,..., 1i i      we obtain 

 

 

2 3 1 2 1 2

1 2 2

2 2

1 2 2 2 ... 2 2 1 2 2 ... 2 2 2 1

2 1 2

T D

T D

    

 

 

     

 

 

              

  
.  

From inequality (4.17) it follows that if an odd   belongs to the interval 1 22 ,2 



      , its 

transpose  T   can be found in intervals ,n n    but cannot be found in intervals ,N N   .  

Theorem 4.4. For the consecutive numbers 2D  , D  of the same interval  , the equation 

applies  

        22 2 2

ln ln
1

ln 2 ln 2

T D T D T Q T Q

D Q





     

   
     

   

.                                                             (4.18) 

Proof. The smallest odd number in the form of D  of the interval 
1 22 ,2 



       is 

1

min 2 3D    . Thus, the following equivalence holds:  2D D      ( 3D  ). The 

largest odd number in the form of Q  of the interval   is 
1

min 2 1Q    . Thus, the following 

equivalence holds:  2Q Q      ( 3Q  ). Then, the Theorem is a consequence of 

equations (4.1), (4.3) ( 2D Q  , 2Q D  ) and (4.2), (4.4).   

Theorem 4.5. 1. Let Q  be odd number belonging to the interval 1 2
2 ,2
 



 
     , then the 

following equivalence holds,  

 
 

 
* *

3 2 1
2

T
Q T Q

Q Q



     .                                                                        (4.19) 

2. Let D  be odd number belonging to the interval 1 2
2 ,2
 



 
     , then the following 

equivalence holds,  

 
 

 
* *

3 2 1
2

T
D T D

D D



     .                                                                        (4.20) 
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Proof. We prove 1 of the theorem and similarly the proof of 2 is done. Let Q  be odd number for 

which  T Q Q  holds. Taking into account equation (4.14) we have    * * *
6Q T Q Q T Q    

and for  T Q Q   we get  * * *
6Q T Q Q Q  . and with equation (2.15) we obtain 

 * * 1
63 2Q T Q

 
   and equivalently we get  

 
 

* *

3 2 1
2

Q T Q



   .  

    We now prove the converse. Let Q  be odd number for which  

 
 

* *

3 2 1
2

Q T Q



     

holds. Taking into account equation (4.14) we get  

 
 

*

3 2 1
2

6Q T Q 
  


   

and equivalently we get 

  1 *
3 2T Q Q

 
     

and with equation (2.15) we obtain  

 T Q Q .   

5.  The odd number octet 

We now give the following Definitions:  

Definition 5.1.We define as the octet of odd number  the non ordered octet 

                 , , , , , , ,T T T T T T T T
       

        
 

.    (5.1) 

Definition 5.2. 1. We define as the 8
 transformation of the (5.1) octet, the octet that contains 

the conjugates of the (5.1) octet. 

2. We define as the 8T  transformation of the (5.1) octet, the octet that contains the transposes of 

the (5.1) octet. 

Definition 5.3. We define as symmetric every octet that remains unchanged under the 8T  

transformation. 

Properties of the symmetric octet. As a consequence of Definition 5.3 and the Theorems of the 

previous section, every symmetric octet has the following properties: 

1. It consists of pairs of conjugate odds (common property of all octets). 

2. It is unchanged under the 8
 transformation (common property of all octets). 
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3. It is unchanged under the 8T  transformation (Definition): for every odd   of the symmetric 

octet, it is   T T   . 

4. It consists of pairs of odds that differ by 6 (consequence of Theorem 4.2). 

5. It consists of 8 or 4 or 2 different odds. 

6. The numbers of the symmetric octet belong to the same interval 1 22 ,2 



      ,

ln
1

ln 2

k
 

   
 

, where , 1, 2,3,...,8k k   the octet numbers. 

7. The smallest odd m  of a symmetric octet is always of the form Q , m Q  and the largest M  

is its conjugate, M Q . 

8. An odd   can belong to exactly one symmetric octet (while every odd which belongs to a 

symmetric octet, also belongs to infinite non symmetric octets, as we shall see later). 

In order to determine the octet of an odd   we use the algorithm for the calculation of the 

transpose, and equation (2.17) for the calculation of the conjugate. We now give an example 

which also shows the ways in which we can write a symmetric octet. 

Example 5.1. From equation (5.1) we get the symmetric octet in which 889   belongs, 

(889, 529, 1007, 895, 647, 535, 1001, 641). 

In order to discern the pairs of transposes and of conjugates, we write the octet in the form 

889 529 1007 895

647 535 1001 641

T T

T T



 



  

  

. 

Because of equation (2.16)  


   two conjugates are always connected, in all symmetries, 

by the symbol 
 , 

  . With 
1 2

T   we denote that  1 2T   and 

 2 1T   . If  1 2T   and  2 1T    , we write 
1 2

T  . In our example, 

1 2

T   for all of the octet numbers, therefore, it is unchanged under the 8T  transformation 

and consequently it is symmetric (Definition). The 8
 and 8T  transformations only change the 

relative position of the numbers within the symmetric octet. The octet symmetries are easily seen 

when we place the numbers on the corners of a regular octagon, 
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889 529

647 1007

535 895

1001 641

T

T

T T

 

 





.                              (5.2) 

A symmetric octet can be composed of 8 different numbers, like the one of the previous 

example, or of 4 different numbers or of 2 different numbers (with the exception of the 

degenerate octets  1,1,1,1,1,1,1,1  of 1and  3,3,3,3,3,3,3,3  of 3 ). From the Definitions of the 

conjugate and the transpose, the following equations are easily proven 

1

1

1

1 1

2 1 2 1

2 7 2 7

2 1 2 7

2 7 2 7

2 1 2 1

T

T

T

 

 

 

 

 

 

 



 

  

  

  

  

  

 .          (5.3) 

Considering equations (5.3) we get the symmetric octets 

 1 2 1 1 2 2 1 22 1,2 7,2 7,2 7,2 1,2 1,2 1,2 7

3,

       

 

              

 
.     (5.4) 

The (5.4) symmetric octets consist of 4 different numbers. Fermat numbers for 1 2 ,S S   

and Mersenne numbers for 2 p prime    belong to the (5.4) symmetric octets. The 

symmetric octet  9,9,15,15,15,15,9,9  of conjugates    , 9,15    consists of 2 numbers. 

Definition 5.4. We define as non-symmetric or asymmetric every octet that contains a pair of 

conjugates  1 1,    for which 

1 2 2 3 1

1 4 4 5 1

T T

T T

and

and 

    

    
.         (5.5) 

Asymmetric octets as generators of symmetric octets. If an odd number   belongs to a 

symmetric octet, then its conjugate *  and its inverse     belong to the octet. Also, all the 

numbers in the symmetric octet belong to the same interval  . The asymmetric octets result 

from a pair of conjugates  *,   belonging to an interval   and their transposes 



 

16 
 

    *,T T   in another interval ,    . The octet of the pair     *,T T   is 

symmetric and we say that it is produced from the initial asymmetric octet. 

We now present one example of an asymmetric octet in which one can see the way in which we 

can write it so that the asymmetry is evident and so are the symmetric octet that it produces.  

Example 5.2. The conjugate pair  91,101  gives the asymmetric octet  

47

91 55 41 41

101 49 47 55

49

T T

T T

T

T



 



  

  

. 

The asymmetric octet has produces the symmetric octet 

47 55 41 41

49 49 47 55

T T

T T



 



  

  

 

which emerges by replacing the pair of conjugates  91,101  by the pair of conjugates  47,49 . 

    We now prove the following Theorem: 

Theorem 5.1. (Fundamental octet Theorem) 

A. The octets of the numbers 

 

2

2 1

2 1

2 3 2 1

ln
1 3,

ln 2

D K

Q K

K odd





 

    

      

 
    

 

                                                                                       (5.6) 

are asymmetric. 

B. 

1. The asymmetric octets are given by the odds 

1

1

11 8 ,

13 8 ,

D m m

Q m m

  

  
                                                                                                     (5.7) 

except from the asymmetric octet  5,1,1,1,7,7,5,1 . 

2. The symmetric octets are given by the odds 
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2

2

7 8 ,

9 8 ,

D m m

Q m m

  

  
.           (5.8) 

Proof. A. From 2 of Theorem 4.1 it follows that for the odds  , for which 0 1 1    , it holds 

that  T    , 

 0 1 1 T        .          (5.9) 

3 22 2 2 1 11D      and 
3 22 2 2 1 13Q       are the smallest odds for which it can be 

0 1 1    . Therefore, the Theorem holds for 1 3   . 

We prove the Theorem for D   and it is similarly proven for Q  . From equation (4.11) for

0 1 1     we get 

 

 

1 1 2 2

1 2 2

2 1 2 3 3

1 2 2

2 1 2 3 3

1 2 2

2 2 2 2 ... 2 2 1

2 2 2 2 2 ... 2 1

2 2 2 2 2 ... 1

D    

 

   

 

   

 

  

  

  

  

 

   

 

   

 

         

        

       

 

and setting 

1 2 3 3

1 2 22 2 2 2 ...K    

      

             (5.10) 

we get 22 1D K   . Considering equation (5.10) we calculate the conjugate of D  which is 

 2 12 3 2 1Q K        . 

B. Equations (5.6) give the consecutive pairs        11,13 , 19,21 , 27,29, ,D Q   , that is, 

equations (5.7). Taking into account the fourth property of the symmetric octets we conclude that 

the intermediate pairs of odds give the symmetric octets. These pairs are given by equations 

(5.8). Additionally, equations (5.7) give all odds that produce asymmetric octets (with the 

exception of the asymmetric octet  5,1,1,1,7,7,5,1 ) and the equations give all the odds that 

produce symmetric octets (otherwise the fourth property of the symmetric octets would not hold, 

which cannot be true due to Theorem 4.2) 

    The octet 

 5,1,1,1,7,7,5,1          (5.11) 

of the conjugate pair    , 5,7    is the only asymmetric octet that does not belong to the 

(5.7) octets, since for this conjugate pair it is  

ln5 ln 7
1 2 3

ln 2 ln 2


   
       

   
. 

The asymmetric octet (5.11) is given by the terms of the n  sequence of odds, 
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13 2

1,2,3,...

n

n

n

  


.          (5.12) 

The (5.11) octet emerges from the terms of the n  sequence because of equation  

   1

12 3 7

1,2,3,...

n

nT T

n

    


.                   (5.13) 

    The terms of the n  sequence are of the form D . From equation (4.13) we get 

    1 12 3 2 3 6n nT T


      

   1 22 3 2 3 6n nT T      

and with equation (4.7) we obtain 

 12 3 1 6nT      

 12 3 7nT     

which is equation (5.13).  

    For the odds Q , D  that belong to a symmetric octet we make the following Conjecture: 

Conjecture 5.1. A. 1. For every odd Q  it holds that 

    2 3 3nT Q T Q

n

   

 
                  (5.14) 

     
*

2 3 3nT Q T Q

n

   

 

.                                                                                  (5.14a) 

2. For every odd D  it holds that 

    2 3 3nT D T D

n

   

 
                                                                                        (5.15) 

     
*

2 3 3nT D T D

n

   

 

.                                                                                  (5.15a) 

B. 1. The sequences  

   

   
*

2 3 3

2 3 3

n

n

n

n

Q Q

Q Q

n

    

    



                                                                                             (5.16) 

derive the same symmetric octet for each 
*n . 



 

19 
 

2. The sequences 

   

   
*

2 3 3

2 3 3

n

n

n

n

D D

Q D

n



    

   



                                                                                            (5.17) 

derive the same symmetric octet for each 
*n . 

    From Conjecture 5.1 and the Definition of the symmetric octet, the following Corollary 

emerges directly: 

Corollary 5.1. 1. For every odd Q  that belongs to a symmetric octet the sequence  

   

   

2 3 3

2 3 3

n

n

n

n

a Q Q

A Q Q

n 

   

   



                                                                                             (5.18) 

gives (infinite) asymmetric octets that produce the symmetric octet to which Q  belongs. 

2. For every odd D  that belongs to a symmetric octet the sequence  

   

   

2 3 3

2 3 3

n

n

n

n

B D D

D D

n





   

   



                                                                                             (5.19) 

gives (infinite) asymmetric octets that produce the symmetric octet to which D  belongs. 

The  na Q sequence has exactly one term in every interval

1 2 ln
2 ,2 , , 1

ln 2

Q 



 
        

 
. 

The  nB D  sequence has exactly one term in every interval

1 2 ln
2 ,2 , , 1

ln 2

D 



 
        

 
. 

We give an example: 

Example 5.3. We pick a number from the symmetric octet (5.2), for example 647 D  and a 

random 20n  . From equation (5.19) we get    20

20 647 2 6 2675 8293 3 747 4B      . The odd 

675282947  gives the asymmetric octet 
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647

675282947 535 1001 641

935329789 529 1007 895

889

T T

T T

T

T



 



  

  

 

which produces the symmetric octet 

647 535 1001 641

889 529 1007 895

T T

T T



 



  

  

 

which is (5.2).   820 267526 8247 947B   belongs to the interval 29 30

28 2 ,2     . 

    29

21

21 1350565647 2 64 8 17 3 3 9B       also produces the (5.2) symmetric octet and 

belongs to the next interval 30 31

29 2 ,2     , 

647

535 1001 641

529 1007 895

889

1350565891

1870659581

T T

T T

T

T



 



  

  

. 

We now prove the following Corollary: 

Corollary 5.2. 1. For every odd Q  belonging to a symmetric octet, it holds that 

      2 3 3nT T Q T T Q Q

n

    

 
.      (5.20) 

2. For every odd D  belonging to a symmetric octet, it holds that 

      2 3 3nT T D T T D D

n

    

 
.                (5.21) 

Proof. We prove equation (5.20) and the proof of (5.21) is similar. From Definition 5.3 of the 

symmetric octet it follows that if Q  belongs to a symmetric octet, then  T Q  belongs to the 

same symmetric octet. Therefore, equation (5.14) also holds for  T Q , 
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      2 3 3nT T Q T T Q

n 

   

 

 

and taking into account that for the symmetric octet it is (Definition)   T T Q Q  we get 

equation (5.20).  

Also, applying Definition 5.1 for even numbers 2 , ,n n odd    we obtain the following 

Corollary: 

Corollary 5.3. For every odd   it holds that 

   2

,

nT T

n odd

  

   
.                                                                                                     (5.22) 

Proof. We prove equation (5.22) for the D  odds and the proof is similar for the Q  odds.
1 1 2 1

1 2 12 2 2 2 ... 2 1

ln
1

ln 2

D

D

   

   



  

       

 
   

 

 

1 1 2 1

1 2 12 2 2 2 2 ... 2 2n n n n n n nD    

          

         

 

 

11 2 1

1 1 2 1

11 2 1

1 1 2 1 0

1 1 1
2 ... 2

2 2 2 2 2 2

1 1 1
... 2

2 2 2 2 2 2

n n

n n n n n n
T D

T D

 

   

 

   

  

  

  

       

 

  

 
        
 

 
         
 

.  

We give an example: 

Example 5.4. 
10 9 8 7 6 5 4 3 2 12021 2 2 2 2 2 2 2 2 2 2 1Q               

10 9 8 7 6 5 4 3 2 12 2 2 2 2 2 2 2 2 2 2 2n n n n n n n n n n n n

n

                    


 

 

 

10

10 9 8 7 6 5 4 3 2 1

10

10 9 8 7 6 5 4 3 2 1

1 1 1 1 1 1 1 1 1 1 1
2 2

2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1
1 2

2 2 2 2 2 2 2 2 2 2

n n

n n n n n n n n n n n
T

T



         

 
              

 

 
               

 

. 

    We now prove the following Corollary: 

Corollary 5.4. For every odd A that doesn't belong to a symmetric octet, it holds that 

  ,A T A        .                                                                                    (5.23) 

Proof. Corollary 5.4 is a direct consequence of Theorem 4.3 and Definition 5.4.  

    We complete section 5 with the following Definition: 
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Definition 5.5. (Categorization of odd numbers) 1. We define as asymmetric numbers, the 

numbers that don’t belong to a symmetric octet (equations (5.7))  

2. We define as symmetric numbers, the numbers that belong to a symmetric octet (equations 

(5.8)). 

6.  An algorithm for finding the factors of Fermat numbers  

Available factorization tests fail in the case of Fermat numbers. So, the factors Q  of Fermat 

numbers 2
2 1

S

S
F   , S  , are calculated through equation  

2 1
n

Q K   ,                                                                                                                   (6.1) 

where K  is an odd number and n  is a integer, 2n S   [2-5]. The algorithm we present in this 

section finds the factors Q  with less tests than required through this equation.  

    There exists a sequence of odd numbers of the form Q  for which  T Q Q  and  * *
T Q Q . 

Fermat numbers and their factors belong to this sequence. Starting from this fact, we get an 

algorithm for calculating factors of composite Fermat numbers. The following proposition holds 

for the factors of Fermat numbers.  

Proposition 6.1. If a Fermat number factor belongs to the interval 1 22 ,2N N

N

      , then it has 

either form  

22
2 1 3 2 2

n nN
Q 


                                                                                                  (6.2) 

or form  

 2 2
2 1 2 2

N n n

l
Q l

 
     .                                                                                                 (6.3) 

Considering that Q  belongs to interval N , we get the possible values of   and l ,  

1, 0,1,2,..., 2 1N nl    .                                                                                                  (6.4) 

From equations (6.4) we get the following inequality,  

1N n  .                                                                                                                        (6.5) 

    Changing the value of K  in equation (6.1) by 2K   the value of Q  changes by 
12nQ  . 

Changing the value of   by 1   or l  by 1l   in equations (6.2), (6.3) the value of Q  

changes by 
22nQ 

 . Therefore equations (6.2), (6.3) give the possible factors of a Fermat 

number with half the number of tests given by equation (6.1).  

7. Conclusion   

If we want to summarize this article in one sentence we would say that we study the symmetries 

of natural numbers which arise from Theorem (2.1). These symmetries establish a new 

framework for the study of natural numbers which is entirely different from the context in which 

they have been studied so far.  
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