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Abstract. “Every natural number, with the exception of 0 and 1, can be written in a unique 

way as a linear combination of consecutive powers of 2, with the coefficients of the linear 

combination being -1 or +1”. From this theorem, four fundamental properties of odd numbers are 

implied: the conjugate of an odd number, the L/R symmetry, the transpose of an odd number and 

the octets of odd numbers. Using these properties we obtain a categorization of the composite 

odd numbers and a factorization algorithm.  
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1.  Introduction 

In this article, we start by proving the theorem: “Every odd number , with the exception of 1, 

can be uniquely written in the form 
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 is the integer part of 
ln

ln 2


 ” (theorem 2.1). It’s easy 

to show that a theorem of this kind doesn’t hold for any other natural number different than 2.  

    The main difference between our theorem and the known arithmetic systems (binary, decimal 

etc.) is that the coefficients of the linear combination can take the negative value. These negative 

values highlight two properties of odd numbers, the “conjugate” of an odd number (definition 

2.1) and the “L/R symmetry” (definition 3.1). 

    Another property of odd numbers is that of the “transpose” of an odd number (definition 4.1). 

The transpose of an odd number can be defined in any arithmetic system and its value depends 

on the system used. However, the main mathematical object to which we come to, “the odd 

number octet”, is defined from a combination of conjugates and transposes of odd numbers 

(equation (5.1)). Thus, the odd number octet emerges only by using theorem 2.1. Using these 

properties we obtain a categorization of the composite odd numbers and a factorization 

algorithm. 

2.  Odd numbers as linear combinations of consecutive powers of 2  

We prove the following theorem: 

Theorem 2.1. Every odd number  , with the exception of 1, can be uniquely written in the form 
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where 
ln

ln 2

 
 
 

 is the integer part of 
ln

ln 2


 . 

Proof. For 3  we have 
ln 3

1 0
ln 2

 
 

    
 

and from equation (2.1) we obtain 

1 03 2 2   . 

We now examine the case where * 1,2,3,...   . The lowest value that the odd number   

of equation (2.1) can obtain is 

  1 1 2 1

min 2 2 2 2 ... 2 1                

  1

min 2 1     .                                                                                                (2.2) 

The largest value that the odd number   of equation (2.1) can obtain is 

  1 1 2 1

max 2 2 2 2 ... 2 1                

  2

max 2 1     .         (2.3) 

Thus, for the odd numbers  , i    of equation (2.1) the following inequality holds 

 1 2

min max2 1 , 2 1i

            .                                                                (2.4) 

The number   , iN    of odd numbers in the closed interval 1 22 1,2 1       is 

  
   2 1

max min
2 1 2 1

, 1 1
2 2

iN

 

 

    
      

  , 2iN    .                                                                                                       (2.5) 

The integers , 0,1,2,..., 1i i    in equation (2.1) can only take two values, 1 1i i      , 

thus equation (2.1) gives exactly   2 , iN     odd numbers. Therefore, for every *   

equation (2.1) gives all odd numbers in the interval 1 22 ,2 



      . 

    From inequality (2.4) we obtain 

1 22 1 2 1       

1 1 2 22 2 1 2 1 2             

1 22 2      
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   1 ln 2 ln 2 ln 2       

from which we get 

ln ln
1 1

ln 2 ln 2


 
     

and finally 
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.                                                                                                              (2.6) 

For 1  we have 
ln1

1 1
ln 2
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We prove now that every odd number 1  can be uniquely written in the form of equation 

(2.1). We write the odd as 
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and 
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.                                                                                             (2.8) 

From equations (2.7), (2.8) we get 
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.                       (2.9) 

If, in equation (2.9), there are 0,1,2,..., 1i    such that i i   and let k be the smallest of 

them, dividing by 12k we get an odd number equal to an even number. So, it follows that

0,1,2,..., 1i i i      .  

In order to write an odd number 1,3   in the form of equation (2.1) we initially define the 
*   from equation (2.6). Then, we calculate the sum  

12 2   . 
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If 12 2      we add 12  , whereas if 12 2      then we subtract it. By repeating the 

process exactly   times we write the odd number   in the form of equation (2.1). The number 

  of steps needed in order to write the odd number   in the form of equation (2.1) is extremely 

low compared to the magnitude of the odd number  , as derived from inequality (2.4). 

Example 2.1. For the odd number 23   we obtain from equation (2.6) 

ln 23
1 3

ln 2
 

 
    

 
.  

Then, we have 

1 4 32 2 2 2 24 23        (thus 22  is subtracted) 

4 3 22 2 2 20 23     (thus 12  is added) 

4 3 2 12 2 2 2 22 23      (thus 02 1  is added) 

4 3 2 12 2 2 2 1 23     . 

Fermat numbers sF can be written directly in the form of equation (2.1), since they are of the 

form min , 

 2 2 2 1 2 2 2 3 1

min2 1 2 1 2 2 2 2 ... 2 1
s s s s ss

sF

s

            


.   (2.10) 

Mersenne numbers 
pM  can be written directly in the form of equation (2.1), since they are of the 

form max , 

  1 2 3 1

max2 1 2 2 2 2 ... 2 1p p p p

pM p

p prime

           


.               (2.11) 

We now give the following definition: 

Definition 2.1. We define as the conjugate of the odd 3 , 
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(2.12) 

the odd * , 
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(2.13) 

for which it is  
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0,1,2,..., 1k k k       .                   (2.14) 

For conjugate odds, the following corollary holds: 

Corollary 2.1. For the conjugate odds  , 3i     and  * * , i    the following hold: 

1.  
*

*  .          (2.15) 

2.
* 13 2    .         (2.16) 

3.  is divisible by 3  if and only if *  is divisible by 3 . 

4. Two conjugate odd numbers cannot have common factors greater than 3. 

5. Conjugates  and * are equidistant from the middle 3 2  of the interval 1 22 ,2 



      . 

Proof. 1. The 1 of the corollary is an immediate consequence of definition 4.1.  

2. From equations (2.12), (2.13) and (2.14) we get 

   * 1 12 2 2 2          

and equivalently 

* 13 2    . 

3. If the odd   is divisible by 3  then it is written in the form 3 ,x x odd   and from equation 

(4.17) we get * 13 3 2x      and equivalently  * 13 2 x    . Similarly we can prove the 

inverse. 

4. If 
*,xy xz    , x, y, z odd numbers, from equation (2.16) we have   13 2x y z     and 

consequently 3x  . 

5. From equation (2.16) we obtain 

*3 2 3 2       

*3 2 3 2      .  

    From corollary 2.1 we have that 3 is the only odd number which is equal to its conjugate; 
0 13 3 2 3 3     . For the 1   we define 

1 1  .                                                                                                                       (2.17) 

Also, from equation 

   * 13 2X X                                                                                              (2.18) 

it follows that, if the odds X  and X  , X even belong to the interval 1 22 ,2 



      , 

then they are conjugates 
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* *X X   .                                                                                                   (2.19) 

    It is easily proven that theorem (2.1) is also valid for even numbers that are not powers of 2. In 

order to write an even number E  that is not a power of 2 in the form of equation (2.1), initially it 

is consecutively divided by 2 and it takes of the form of equation  

*

2

, 1,

lE

odd l

 

    
.                                                                                               (2.20)  

Then, we write the odd number   in the form of equation (2.1).  

Example 2.2. By consecutively dividing the even number 368 by 2 we obtain  

4368 2 23E    .  

Then, we write the odd number   =23 in the form of equation (2.1),  

4 3 2 123 2 2 2 2 1      

and we get  

 4 4 3 2 1368 2 2 2 2 2 1        

8 7 6 5 4368 2 2 2 2 2     . 

This equation gives the unique way in which the even number 368 can be written in the form of 

equation (2.1). For even numbers the lowest power of two in equation (2.1) is different from 
01 2 .  

3.  The L/R symmetry 

We now give the following definition: 

Definition 3.1.1. The odd number   in the equation (2.1) has symmetry L  when there exists an 

index L so that 


1 2 1 0

1

... 1

1,2,3,..., 1

L

L L

L



   



 

 

     

 

.                                                                                   (3.1) 

2. The odd number   in the equation (2.1) has symmetry R  when there exists an index R so that 


1 2 1 0

1

... 1

1,2,3,..., 1

R

R R

R



   



 

 

     

 

.                                                                                   (3.2) 

Next, we have one example: 
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Example 3.1. The prime number 

Q=568630647535356955169033410940867804839360742060818433 is a factor of 4096

12 2 1F  

. From the equation (2.6) we have 1 178   , and then from equation 2.1 we have 

178 177 176 175 174 173 172 171 170 169 168 167 166

165 164 163 162 161 160 159 158 157 156 155 154 153 152

151 150 149 148 147 146 145 144 143 142 141 140 13

2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2

Q             

             

             9 138

137 136 135 134 133 132 131 130 129 128 127 126 125 124

123 122 121 120 119 118 117 116 115 114 113 112 111 110

109 108 107 106 105 104 103 102 101 100 99

2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2



             

             

           98 97 96 95

94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79

78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63

62 61 60 59 58 57 56 55 54 53 52 51 50 49

2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

   

               

               

              48 47

46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15

14 13 12 11 10 9 8 7 6 5 4 3 2 1

2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 1

 

               

               

              

 

So the factor 568630647535356955169033410940867804839360742060818433 of 12F has 

symmetry L (568630647535356955169033410940867804839360742060818433)=14. 

As a consequence of definition 3.1, for odd numbers of the form Q  is 0 1    and for odd 

numbers of the form D is 0 1   . Also, from equation (2.1) and definitions 3.1 it can be easily 

proved that the Q odds are written in the form 

12 1LQ K

K odd

  


                                                                                                             (3.3) 

and the D  odds in the form 

12 1RD K

K odd

  


.          (3.4) 

Proof. We prove equation (3.3) and (3.4) is proven similarly. From definition 3.1 we get 

1 1 2 1 1 2 2 1

1 2 12 2 2 2 ... 2 2 2 2 ... 2 2 1

ln
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ln 2

L L L L

LQ
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 1 1 2 1 1 2 2 1

1 2 12 2 2 2 ... 2 2 2 2 ... 2 2 1L L L L

LQ    

        

                

 1 1 2 1

1 2 12 2 2 2 ... 2 2 2 1L L L

LQ    

      

            

1 1 2 1

1 2 12 2 2 2 ... 2 1L

LQ    
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 1 1 2 3

1 2 12 2 2 2 2 ... 1L L L L L

LQ    

          

         

12 1LQ K   

1 2 3

1 2 12 2 2 2 ...L L L L

LK    

         

       .  

It follows from Lucas theorem for the Fermat numbers (see, [1,2]) that the factors of the Fermat 

numbers are of the form (3.3).Equations (3.3), (3.4) provides the simplest way for the 

determination of the symmetry of a number. We give two examples. 

Example 3.2. For odd number 18303 we have 

1

7

18303 1 2 9151

18303 1 2 143

  

  
. 

Therefore,  18303 7 1 6R    . Indeed, from equation (2.6) we get 13  and from equation 

(2.1) we obtain 

14 13 12 11 10 9 8 7 6 5 4 3 2 118303 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1               . 

Example 3.3. For the number C1133 which is composite factor of 12F  with 1133 digits, we have 

141133 1 2C K   . 

Therefore,  1133 14 1 13L C    . 

It is easy to prove the following corollary: 

Corollary 3.1.  

1. 1 2Q Q Q . 

2. 1 2D D Q . 

3. 1 1Q D D . 

4.        1 2 1 2 1L Q L Q L Q Q L Q   . 

5.        L Q R D R QD L Q   . 

6.        R D L Q R QD R D   . 

7.        1 2 1 2 1R D R D L D D R D   . 

8.          1 2 1 2 1 2Symmetry Symmetry Symmetry Symmetry Symmetry          . 

We give two examples: 

Example 3.4. L (641)=6< L (114689)=13 => L (641×114689)=6. 

Example 3.5. R (607)= 4< R (16633)=6 => L (607×16633)=4. 

We now prove the following corollary: 
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Corollary 3.2. Every composite number C  of the form 

12 1C    

has at least two factors the symmetries of which have equal values. 

Proof. Corollary 3.2 is a direct consequence of corollary 3.1.  

From definitions 2.1 and 3.1 it emerges that for every conjugate pair  ,   , one is of form Q  

and the other of form D . 

4.  Transpose of odd number 

We now give the following definition: 

Definition 4.1. 1. We write the odd D in the form of equation (2.1), 

1 1 2 1

1 2 12 2 2 2 ... 2 1

ln
1

ln 2

D

D

   

   



  

       

 
   

 

.      (4.1) 

We define as transpose  T D  of D  the odd that emerges by inverting the powers of 2 in 

equation (4.1) and multiplying the resulting number by 12  , 

 
1

1 1 11 2 1

1 1 2 1
1

1 1
... 1 2 2 3 2

2 2 2 2 2

k

k

k

T D


   

   

  



    

  


 
            
 

 .              (4.2) 

2. We write the odd Q  in the form of equation (2.1), 

1 1 2 1

1 2 12 2 2 2 ... 2 1

ln
1

ln 2

Q

Q

   

   



  

       

 
   

 

.       (4.3) 

We define as transpose  T Q  of Q  the opposite of the odd that emerges by inverting the powers 

of 2 in equation (4.3) and multiplying the resulting number by 12  , 

 
1

1 1 11 2 1

1 1 2 1
1

1 1
... 1 2 2 3 2

2 2 2 2 2

k

k

k

T Q


   

   

  



    

  


 
             

 
 .   (4.4) 

3. We set 

 1 1T  .           (4.5) 

4. From equations (4.2), (4.4), (4.5) we get the general equation 

 
1

1 1

0

1

2 3 2

ln
1

ln 2

k

k

k

T


  




  



 
      

 

 
   

 


.                              (4.6) 
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Algorithm for the calculation of the transpose. For the odd   we calculate 
ln

1
ln 2


 

   
 

 

from equation (2.6). Next, applying the algorithm of example 2.1 we write   in the form of 

equation (2.1), we calculate 1, 1,2,3,..., 1i i      and the transpose  T   of   from 

equation (4.6). 

We now prove three theorems about the transpose of an odd number: 

Theorem 4.1. 

1.   1 2 3, 2,T          .       (4.7) 

2. 

 

1

1

1

2
ln 1,2,3,..., ,

1 2
ln 2

1
1,2,3,..., ,

2

k kT D D

D k even

k odd





 









 




  
      

    
   

 


      (4.8) 
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2
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.      (4.9) 

Proof. 1. For 2 3   we get 

   1 2 2 1

1 2 2 1

2 3

2 1 2 2 2 2 ... 2 1 2

2 2 2 ... 2 1 Q



   

  

  

  

  

          

       

 

and from equation (4.4) we get   1T   . 

Now, let   1T   . The odd   is either of the form D  or of the form Q . We prove the theorem 

for Q  , and the proof is similar for D  . 

For Q   we get 

1 1 2 2 1

1 2 2 12 2 2 2 ... 2 2 1

ln
1

ln 2

n n n n

n nQ

n

     

          

 
   

 

                                             (4.10) 

and from equation (4.4) we get 
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  1 2 1

1 21 2 2 ... 2 2n n

nT   

         

so we get 

 
1 2 1

1 2

1 2 1 2 2

1 2

1 2 1 2 2 1 2 2 1

1 2

1

1 2 2 ... 2 2 1

1 2 2 ... 2 2 2 2 1

1 2 2 ... 2 2 2 2 2 2 2 ... 2 2 1

n n

n

n n n n

n

n n n n n n n

n

T

 

 

 





  



    



 

      

        

              

 

and taking into account that every odd   is written in a unique way in the form of equation (2.1) 

we get 

2 3 3 1... 1n           

and from equation (4.10) we get 

 

 

1 1 1

1 2 1

1

2

2 2 2 ... 2 1

2 2 2 2 ... 2 1 1

2 2 1 1

2 3

n n n

n n n

n

n

 

 





     

       

   

  

 

and setting 2n    we obtain 2 3  . 

2. We prove the equivalence (4.8), and (4.9) is similarly proven. We write the odd D  in the form 

of equation (2.1), 

1 1 2 1

1 2 12 2 2 2 ... 2 1

ln
1

ln 2

D

D

   

   



  

       

 
   

 

.     (4.11) 

From equations (4.11), (4.2) we get 

  2 3 1

1 2 21 2 2 2 ... 2 2T D  

    

        .     (4.12) 

We next get 

 
2 3 1 1 1 2 2 1

1 2 2 1 2 2 11 2 2 2 ... 2 2 2 2 2 2 ... 2 2 1

T D D

     

            

   

 

             
 

and taking into account that the odd D  is written in a unique way in the form of equation (2.1) 

we get equivalence (4.8).  

Theorem 4.2. 

1.     6T D T D  .         (4.13) 

2.     6T Q T Q   .        (4.14) 

Proof. We prove equation (4.13) and (4.14) is proven similarly. From equation (4.11) we get 
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1 1 2 1

1 2 12 2 2 2 ... 2 1D Q   

      

         .    (4.15) 

From equation (4.4) we get 

  2 3 1

1 2 11 2 2 2 ... 2 2T D  

    

         .     (4.16) 

From equation (4.12), (4.16) we obtain     6T D T D  .  

Theorem 4.3. For every odd , 
ln

1
ln 2


 

   
 

, 1 22 ,2 



       the following inequality 

holds 

  22T    .          (4.17) 

Proof. We prove inequality (4.17) for the D  odds and the proof is similar for the Q  odds. From 

equation (4.12) and taking into account that 1, 0,1,2,..., 1i i      we obtain 

 

 

2 3 1 2 1 2

1 2 2

2 2

1 2 2 2 ... 2 2 1 2 2 ... 2 2 2 1

2 1 2

T D

T D

    

 

 

     

 

 

              

  
.  

From inequality (4.17) it follows that if an odd   belongs to the interval 1 22 ,2 



      , its 

transpose  T   can be found in intervals ,n n    but cannot be found in intervals ,N N   . 

5.  The odd number octet 

We now give the following definitions: 

Definition 5.1.We define as the octet of odd number  the non ordered octet 

                 , , , , , , ,T T T T T T T T
       

        
 

.    (5.1) 

Definition 5.2. 1. We define as the 8
 transformation of the (5.1) octet, the octet that contains 

the conjugates of the (5.1) octet. 

2. We define as the 8T  transformation of the (5.1) octet, the octet that contains the transposes of 

the (5.1) octet. 

Definition 5.3. We define as symmetric every octet that remains unchanged under the 8T  

transformation. 

Properties of the symmetric octet. As a consequence of definition 5.3 and the theorems of the 

previous section, every symmetric octet has the following properties: 

1. It consists of pairs of conjugate odds (common property of all octets). 

2. It is unchanged under the 8
 transformation (common property of all octets). 

3. It is unchanged under the 8T  transformation (definition): for every odd   of the symmetric 

octet, it is   T T   . 
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4. It consists of pairs of odds that differ by 6 (consequence of theorem 4.2). 

5. It consists of 8 or 4 or 2 different odds. 

6. The numbers of the symmetric octet belong to the same interval 1 22 ,2 



      ,

ln
1

ln 2

k
 

   
 

, where , 1, 2,3,...,8k k   the octet numbers. 

7. The smallest odd m  of a symmetric octet is always of the form Q , m Q  and the largest M  

is its conjugate, M Q . 

8. An odd   can belong to exactly one symmetric octet (while every odd which belongs to a 

symmetric octet, also belongs to infinite non symmetric octets, as we shall see later). 

In order to determine the octet of an odd   we use the algorithm for the calculation of the 

transpose, and equation (2.17) for the calculation of the conjugate. We now give an example 

which also shows the ways in which we can write a symmetric octet. 

Example 5.1. From equation (5.1) we get the symmetric octet in which 889   belongs, 

(889, 529, 1007, 895, 647, 535, 1001, 641). 

In order to discern the pairs of transposes and of conjugates, we write the octet in the form 

889 529 1007 895

647 535 1001 641

T T

T T



 



  

  

. 

Because of equation (2.16)  


   two conjugates are always connected, in all symmetries, 

by the symbol 
 , 

  . With 
1 2

T   we denote that  1 2T   and 

 2 1T   . If  1 2T   and  2 1T    , we write 
1 2

T  . In our example, 

1 2

T   for all of the octet numbers, therefore, it is unchanged under the 8T  transformation 

and consequently it is symmetric (definition). The 8
 and 8T  transformations only change the 

relative position of the numbers within the symmetric octet. The octet symmetries are easily seen 

when we place the numbers on the corners of a regular octagon, 
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889 529

647 1007

535 895

1001 641

T

T

T T

 

 





.                              (5.2) 

A symmetric octet can be composed of 8 different numbers, like the one of the previous 

example, or of 4 different numbers or of 2 different numbers (with the exception of the 

degenerate octets  1,1,1,1,1,1,1,1  of 1and  3,3,3,3,3,3,3,3  of 3 ). From the definitions of the 

conjugate and the transpose, the following equations are easily proven 

1

1

1

1 1

2 1 2 1

2 7 2 7

2 1 2 7

2 7 2 7

2 1 2 1

T

T

T

 

 

 

 

 

 

 



 

  

  

  

  

  

 .          (5.3) 

Considering equations (5.3) we get the symmetric octets 

 1 2 1 1 2 2 1 22 1,2 7,2 7,2 7,2 1,2 1,2 1,2 7

3,

       

 

              

 
.     (5.4) 

The (5.4) symmetric octets consist of 4 different numbers. Fermat numbers for 1 2 ,S S   

and Mersenne numbers for 2 p prime    belong to the (5.4) symmetric octets. The 

symmetric octet  9,9,15,15,15,15,9,9  of conjugates    , 9,15    consists of 2 numbers. 

Definition 5.4. We define as non-symmetric or asymmetric every octet that contains a pair of 

conjugates  1 1,    for which 

1 2 2 3 1

1 4 4 5 1

T T

T T 

    

    
.         (5.5) 

Asymmetric octets as generators of symmetric octets. An asymmetric octet contains pairs of 

conjugates that belong in different intervals  . At the position of these pairs, “bifurcations” 

emerge outside the (5.1) octet. At each of these bifurcations, an asymmetric octet “produces” a 

symmetric one. 
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We now present one example of an asymmetric octet in which one can see the way in which we 

can write it so that the asymmetry is evident and so are the symmetric octet that it produces. 

Example 5.2. The conjugate pair  91,101  gives the asymmetric octet 

47

91 55 41 41

101 49 47 55

49

T T

T T

T

T



 



  

  

. 

The asymmetric octet has produces the symmetric octet 

47 55 41 41

49 49 47 55

T T

T T



 



  

  

 

which emerges by replacing the pair of conjugates  91,101  by the pair of conjugates  47, 49 . 

    We now prove the following theorem: 

Theorem 5.1. (Fundamental octet theorem) 

A. The octets of the numbers 

 

2

2 1

2 1

2 3 2 1

ln
1 3,

ln 2

D K

Q K

K odd





 

    

      

 
    

 

                                                                                       (5.6) 

are asymmetric. 

B. 

1. The asymmetric octets are given by the odds 

1

1

11 8 ,

13 8 ,

D m m

Q m m

  

  
                                                                                                     (5.7) 

except from the asymmetric octet  5,1,1,1,7,7,5,1 . 

2. The symmetric octets are given by the odds 

2

2

7 8 ,

9 8 ,

D m m

Q m m

  

  
.           (5.8) 
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Proof. A. From 2 of theorem 4.1 it follows that for the odds  , for which 0 1 1    , it holds 

that  T    , 

 0 1 1 T        .          (5.9) 

3 22 2 2 1 11D      and 
3 22 2 2 1 13Q       are the smallest odds for which it can be 

0 1 1    . Therefore, the theorem holds for 1 3   . 

We prove the theorem for D   and it is similarly proven for Q  . From equation (4.11) for

0 1 1     we get 

 

 

1 1 2 2

1 2 2

2 1 2 3 3

1 2 2

2 1 2 3 3

1 2 2

2 2 2 2 ... 2 2 1

2 2 2 2 2 ... 2 1

2 2 2 2 2 ... 1

D    

 

   

 

   

 

  

  

  

  

 

   

 

   

 

         

        

       

 

and setting 

1 2 3 3

1 2 22 2 2 2 ...K    

      

             (5.10) 

we get 22 1D K   . Considering equation (5.10) we calculate the conjugate of D  which is 

 2 12 3 2 1Q K        . 

B. Equations (5.6) give the consecutive pairs        11,13 , 19,21 , 27,29, ,D Q   , that is, 

equations (5.7). Taking into account the fourth property of the symmetric octets we conclude that 

the intermediate pairs of odds give the symmetric octets. These pairs are given by equations 

(5.8). Additionally, equations (5.7) give all odds that produce asymmetric octets (with the 

exception of the asymmetric octet  5,1,1,1,7,7,5,1 ) and the equations give all the odds that 

produce symmetric octets (otherwise the fourth property of the symmetric octets would not hold, 

which cannot be true due to theorem 4.2) 

    The octet 

 5,1,1,1,7,7,5,1          (5.11) 

of the conjugate pair    , 5,7    is the only asymmetric octet that does not belong to the 

(5.7) octets, since for this conjugate pair it is  

ln 5 ln 7
1 2 3

ln 2 ln 2


   
       

   
. 

The asymmetric octet (5.11) is given by the terms of the n  sequence of odds, 

13 2

1,2,3,...

n

n

n

  


.          (5.12) 

The (5.11) octet emerges from the terms of the n  sequence because of equation  
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   1

12 3 7

1,2,3,...

n

nT T

n

    


.                   (5.13) 

    The terms of the n  sequence are of the form D . From equation (4.13) we get 

    1 12 3 2 3 6n nT T


      

   1 22 3 2 3 6n nT T      

and with equation (4.7) we obtain 

 12 3 1 6nT      

 12 3 7nT     

which is equation (5.13).  

    For the odds Q , D  that belong to a symmetric octet we make the following conjecture: 

Conjecture 5.1. A. 1. For every odd Q  it holds that 

    2 3 3nT Q T Q

n

   

 
                  (5.14) 

     
*

2 3 3nT Q T Q

n

   

 

.                                                                                  (5.14a) 

2. For every odd D  it holds that 

    2 3 3nT D T D

n

   

 
                                                                                        (5.15) 

     
*

2 3 3nT D T D

n

   

 

.                                                                                  (5.15a) 

B. 1. The sequences  

   

   
*

2 3 3

2 3 3

n

n

n

n

Q Q

Q Q

n

    

    



                                                                                             (5.16) 

derive the same symmetric octet for each 
*n . 

2. The sequences 
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*

2 3 3

2 3 3

n

n

n

n

D D

Q D

n



    

   



                                                                                            (5.17) 

derive the same symmetric octet for each 
*n . 

    From conjecture 5.1 and the definition of the symmetric octet, the following corollary emerges 

directly: 

Corollary 5.1. 1. For every odd Q  that belongs to a symmetric octet the sequence  

   

   

2 3 3

2 3 3

n

n

n

n

a Q Q

A Q Q

n 

   

   



                                                                                             (5.18) 

gives (infinite) asymmetric octets that produce the symmetric octet to which Q  belongs. 

2. For every odd D  that belongs to a symmetric octet the sequence  

   

   

2 3 3

2 3 3

n

n

n

n

B D D

D D

n





   

   



                                                                                             (5.19) 

gives (infinite) asymmetric octets that produce the symmetric octet to which D  belongs. 

The  na Q sequence has exactly one term in every interval

1 2 ln
2 ,2 , , 1

ln 2

Q 



 
        

 
. 

The  nB D  sequence has exactly one term in every interval

1 2 ln
2 ,2 , , 1

ln 2

D 



 
        

 
. 

We give an example: 

Example 5.3. We pick a number from the symmetric octet (5.2), for example 647 D  and a 

random 20n  . From equation (5.19) we get    20

20 647 2 6 2675 8293 3 747 4B      . The odd 

675282947  gives the asymmetric octet 



 

19 
 

647

675282947 535 1001 641

935329789 529 1007 895

889

T T

T T

T

T



 



  

  

 

which produces the symmetric octet 

647 535 1001 641

889 529 1007 895

T T

T T



 



  

  

 

which is (5.2).   820 267526 8247 947B  belongs to the interval 29 30

28 2 ,2     . 

    29

21

21 1350565647 2 64 8 17 3 3 9B       also produces the (5.2) symmetric octet and 

belongs to the next interval 30 31

29 2 ,2     , 

647

535 1001 641

529 1007 895

889

1350565891

1870659581

T T

T T

T

T



 



  

  

. 

We now prove the following corollary: 

Corollary 5.2. 1. For every odd Q  belonging to a symmetric octet, it holds that 

      2 3 3nT T Q T T Q Q

n

    

 
.      (5.20) 

2. For every odd D  belonging to a symmetric octet, it holds that 

      2 3 3nT T D T T D D

n

    

 
.                (5.21) 

Proof. We prove equation (5.20) and the proof of (5.21) is similar. From definition 5.3 of the 

symmetric octet it follows that if Q  belongs to a symmetric octet, then  T Q  belongs to the 

same symmetric octet. Therefore, equation (5.14) also holds for  T Q , 
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      2 3 3nT T Q T T Q

n 

   

 

 

and taking into account that for the symmetric octet it is (definition)   T T Q Q  we get 

equation (5.20).  

Also, applying definition 5.1 for even numbers 2 , ,n n odd    we obtain the following 

corollary: 

Corollary 5.3. For every odd   it holds that 

   2

,

nT T

n odd

  

   
.                                                                                                     (5.22) 

Proof. We prove equation (5.22) for the D  odds and the proof is similar for the Q  odds.
1 1 2 1

1 2 12 2 2 2 ... 2 1

ln
1

ln 2

D

D

   

   



  

       

 
   

 

 

1 1 2 1

1 2 12 2 2 2 2 ... 2 2n n n n n n nD    

          

         

  11 2 1

1 1 2 1

1 1 1
2 ... 2

2 2 2 2 2 2

n n

n n n n n n
T D  

   

     

       

 
        
 

 

   11 2 1

1 1 2 1 0

1 1 1
2 ... 2

2 2 2 2 2 2

nT D T D 

   

    

  

 
         
 

.  

We give an example: 

Example 5.4. 
10 9 8 7 6 5 4 3 2 12021 2 2 2 2 2 2 2 2 2 2 1Q               

10 9 8 7 6 5 4 3 2 12 2 2 2 2 2 2 2 2 2 2 2n n n n n n n n n n n n

n

                    


 

  10

10 9 8 7 6 5 4 3 2 1

1 1 1 1 1 1 1 1 1 1 1
2 2

2 2 2 2 2 2 2 2 2 2 2

n n

n n n n n n n n n n n
T 

         

 
              

 
 

   10

10 9 8 7 6 5 4 3 2 1

1 1 1 1 1 1 1 1 1 1
2 1 2

2 2 2 2 2 2 2 2 2 2

nT T
 

                
 

. 

    We now prove the following corollary: 

Corollary 5.4. For every odd A that doesn't belong to a symmetric octet, it holds that 

  ,A T A        .                                                                                    (5.23) 

Proof. Corollary 5.4 is a direct consequence of theorem 4.3 and definition 5.4.  

    We complete section 5 with the following definition: 
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Definition 5.5. 1. We define as asymmetric numbers, the numbers that don’t belong to a 

symmetric octet (equations (5.6), (5.7))  

2. We define as symmetric numbers, the numbers that belong to a symmetric octet (equations 

(5.8). 

6.  The odd number quadruple 

From the definition of the symmetric octet (5.1) and theorem 4.2 we have that every symmetric 

octet consists of two ordered symmetric quadruple of the form 

   * *

1 1 2 2, 6, 6, , , ,Q Q Q Q q d q d   ,                                                                         (6.1) 

so 

 * * * *

1 1 1 1 2 2 2 2, 6, 6, , , 6, 6,Q Q Q Q Q Q Q Q    .                                                               (6.2) 

If 1 2Q Q then the symmetric octet consists of eight different numbers, while if 1 2Q Q then it 

consists of four different numbers. 

    From the theorem 4.2 and the definition 5.1 we have that every odd number   belonging to a 

symmetric octet it belongs to the quadruple 

        *, , ,T T T T
  

    
 

.                                                                         (6.3) 

If Q   doesn’t belong to a symmetric octet, then the quadruple in which it belongs is given by 

equation (6.1) in the form 

   * *

1 1 2 2, 6, 6, , , ,Q Q Q Q q d q d   .                                                                         (6.4) 

So, the equation (6.4) gives the quadruple in which every odd number   belongs. Moreover, the 

quadruple (6.4) is easily calculated from equations (2.6) and (2.16) which give the conjugate *  

of the odd  . 

    We now prove the following theorem: 

Theorem 6.1. 1. If the quadruple 

  

belongs to the interval   then the quadruple 

                                  (6.5) 

belongs to the interval  . 

2. If the quadruple 

  

 1 1 2 2, , ,q d q d



        1 1 2 12 3 3,2 3 3,2 3 3,2 3 3n n n nq d q d           

n 

 1 1 2 2, , ,q d q d
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belongs to the interval   then the quadruple 

                                  (6.6) 

belongs to the interval  . 

Proof.   That's the same quadruple which belongs to the interval ,  

 

and satisfies the equation (6.4).  

    If in equation (6.4) we have  then the quadruple consists of two different numbers. 

In addition, if we use the equation  we take the quadruple 

 

which consists of the pair 

    .                                                                           (6.7) 

7. Strictly decreasing sequences of symmetric quadruples 

We now prove the following theorem: 

Theorem 7.1. For every symmetric number   the number  

 , 4 8E  



  


                                                                                                  (7.1) 

is asymmetric. 

Proof. We prove the theorem for the 8 9Q m    odds and the proof is similar for the 

8 7D m    odds. For the numbers of form 8 9m    (see equations (5.8)) we have  

   9 8 , 9 8 4 8 8 13E m m m          .  

    By successive use of the asymmetric numbers (7.1) we get strictly decreasing (see corollary 

5.4) sequences of symmetric quadruples. We give an example: 

Example 7.1. For the symmetric number (see equation (5.4)) 322 1    and for 14562049   

in equation (7.1) we get the asymmetric number 

 32 322 1, 2 1 4 914562049 14562049 417847 08 09E        

which produces the symmetric quadruple  

 6700417,6700423,5882489,5882495 .  



        1 1 1 22 3 3,2 3 3,2 3 3,2 3 3n n n nd q d q           

n 

n 

       

   

1 1 1 2

1 ( ) 1

1 1 2 2

2 3 3 2 3 3 2 3 3 2 3 3

2 2 2 3 2 3 2

n n n n

n n n n

q d d q

q d q d    

              

        

* 6Q Q 
* 13 2 ,Q Q     

 1 1 1 1

1 1 2 23 2 3, 3 2 3, 3 2 3, 3 2 3q d q d   



              



 1 * 13 2 3, 3 2 3Q Q 
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8. An algorithm for factorization of the symmetric odd numbers 

Starting from a composite symmetric odd  we can determine the 

asymmetric odd (7.1) which derives a symmetric quadruple to which a factor of  belongs. For 

the execution of the algorithm, it is required the estimation of the intervals  

and  to which the factors  and  of the odd  belongs. From 

equations   

 ln ln ln ln        

and (2.1),  

ln
1

ln 2


 
   

 
, 

1

ln
1

ln 2




 
   

 
, 2

ln
1

ln 2




 
   

 
,  

we get the possible values of 1  and 2 . As a consequence of equation (2.1), the number of pairs 

 increases logarithmically with respect to the increase of . If we cannot estimate the 

intervals to which the factors of  belongs then we execute the algorithm for all intervals of the 

form  

12 ,2 , 1,2,3,..., 1k k

k k       .  

We present the four steps of the algorithm: 

A. For numbers of the form 8 9Q m   . 

Step 1. We estimate the intervals ,  to which the factors of 

belong.  

Step 2. From equation (7.1) and replacing 3Q  with K  in equation (5.14) we get  

4 8 2 3n K

K odd

   


 

7 8 2n K   .                                                                                                       (8.1) 

Step 3. In equation (8.1) we gives values . As we give these values to , the natural 

 in equation (8.1) changes. This change is periodic and we can determine the period for every 

value of the natural . We choose the values of  for which we have  and .  

Step 4. For ,  we calculate the values of  in equation (8.1). We get the odd 

numbers 

1 2K 



  


.                                                                                                                (8.2) 

For small values of  a factor of  belongs to the octet of . There exists a value of   for 

which K K    , since every odd symmetric numbers belongs to its octet.  

1 22 ,2       


1 1

1

1 2
2 ,2
 



     
2 2

2

1 2
2 ,2
 



         

 1 2,  



1 1

1

1
2 ,2
 



    
2 2

2

1
2 ,2
 



     

0,1,2,...  

n

n 
2n  1n 

1n  2n  K

  1
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B. For numbers of the form 8 7D m   . 

Step 1. We estimate the intervals ,  to which the factors of  

belong.  

Step 2. From equation (7.1) and replacing 3D  with K  in equation (5.14) we get   

4 8 2 3n K

K odd

   


 

1 8 2n K   .                                                                                                        (8.3) 

Step 3. In equation (8.3) we give values . As we give these values to  the natural  

in equation (8.3) changes. This change is periodic and we can determine the period for every 

value of the natural . We choose the values of  for which we have  and .  

Step 4. For ,  we calculate the values of  in equation (8.3). We get the odd 

numbers  

1 2K 



  


.                                                                                                                (8.4) 

For small values of  a factor of  belongs to the octet of . There exists a value of   for 

which K K    , since every odd symmetric numbers belongs to its octet. 

    We give two examples of application of the algorithm. In these examples we factorize small 

odd numbers in order to understand the algorithm.   

Example 8.1. For the symmetric number 
322 1 641 6700417Q      , 9641  and 

226700417 . Hence we have 1 9   and 2 22  . For 2 22n   , from equation (8.1) we get  

227 8 2 K    

32 222 1 7 8 2 K    . 

Giving values  we determine the values of  for which the power 2 222 2

  is 

periodically appeared in the right side of the equation . To determine 

the equations of such type is something simple (see example 8.3). So we get the equation  

 32 19 222 1 7 8 1 (2 1) 2 2

0,1,2,...

k K

k

      


.                                                                        (8.5) 

For 0,1,2,...k   we get 1023,1021,1019,...K  . For 8k   we get 1007K   which gives the 

octet to which 641 belongs (see equation (5.2). 

    For 191k   equation (8.5) gives  

 32 19 222 1 7 8 1 (2 191 1) 2 2 641         , 

641K  .  

1 1

1

1
2 ,2
 



    
2 2

2

1
2 ,2
 



     

0,1,2,...   n

n  1n  2n 

1n  2n  K

  1

0,1,2,...  
191 (2 1) 2 ,k k     
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Every odd symmetric numbers belongs to its octet.  

    Giving values  we determine the values of  for which the power 1 92 2

  is 

periodically appeared in the right side of the equation . So, we get the 

equation 

 32 7 92 1 7 8 65 2 2

0,1,2,...

k K

k

     


.                                                                                 (8.6) 

For 0,1,2,...k   we get 8388607 83886 .8, 05 838 6, .03,.K  . For 113767k   we get 

8161073K   which gives the octet to which 6700417 belongs,  

8161073 6700417 5882495 8161079

4421839 6700423 5882489 4421833

T T

T T



 



  

  

. 

    For 844095k   equation (8.6) gives  

 32 7 984409 72 1 7 8 65 2 2 6700415       , 

6700417K  .  

Example 8.2. For the symmetric number 1030087 641 1607D     ,  

9641  and 101607 . Hence we have 1 9   and 2 10  . For 1 9n   , from equation 

(8.4) we get  

91 8 2 K    

911 2030087 8 K   . 

Giving values  we determine the values of  for which the power 1 92 2

  is 

periodically appeared in the right side of the equation 
757 (2 1) 2k     . So, we get the 

equation 

  7 9

.

10300 1 8 57 2 1 2 2

0,1, .

87

2, .

k K

k

     


.                                                                   (8.7) 

For 0k   equation (8.7) gives  

  7 91030087 20111 8 57 2 0 1 2 2        , 

 2011K  . 

The odd 2011K   gives the asymmetric octet 

0,1,2,...  
765 2 ,k k    

0,1,2,...  
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1007

2011 895 641 1001

1061 889 647 535

529

T T

T T

T

T



 



  

  

 

which produces the symmetric octet 

1007 895 641 1001

529 889 647 535

T T

T T



 



  

  

 

to which 641 belongs.  

    For 342k   equation (8.7) gives  

  7 9 11 40300 1 8 57 2 3 2 1 2 2 687 4        , 

641K  .  

    Giving values  we determine the values of  for which the power 2 102 2

  is 

periodically appeared in the right side of the equation . So, we get the equation 

 8 101 8 121 2 2

0,1,2,...

1030087 k K

k

    


.                                                                            (8.8) 

For 0k   equation (8.8) gives  

 8 101030087 10051 8 121 0 2 2      , 

 1005K  .  

From equation (8.4) we get 

1 1005 2



  


 

and for 1   we get 1 1007   which gives the octet of 641.  

    For 0,1,2,...k   we get 1005,1003,1001,...K  . For 2k   we get 1001K   which gives the 

octet to which 641 belongs.  

Example 8.3. We calculate the   of equation (8.1) for the 276569 193 1433Q     , 

7193 , 81433 , 1 7  , 2 8  . For 1 7   we have  

77 8 2 K    

0,1,2,...  
8121 2k   
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722 6576 87 K  .                                                                                                    (8.9) 

We give values 0,1,2,3   and we get 

5

3

4

3 9

276576-8 0=2

276576-8 1=2

2

8643

34571

1576 76-8 2=2

27 3657 -

7285

456 8 3 2 6=

 

 

 

 

. 

The  power is periodically appeared for the odd values of , so we choose the even values: 

  78 2 2

0,1,2,...

276576 k K

k

 


.                                                                                             (8.10) 

We give values 0,1,2,3k   and we get 

5

4

6

4 3

276576-8 2 0=2

276576-8 2 1=2

276576-8 2 2

8643

1728

2

4=2

2 876 7576-8 2 3=

5

321

1 2

  

  

  

  

. 

The  power is periodically appeared for the odd values of , so we choose the even values: 

  78 2 2 2

0,1,2,...

276576 k K

k

   


 

  78 4 2

0,1,2,...

276576 k K

k

  


. 

We give values 0,1,2,3k   and we get 

5

6

5

6

8643

4321

8641

135

276576-8 4 0=2

276576-8 4 1=2

276576-8 4 2=2

276576-8 4 3=2

  

  

  

  

. 

The  power is periodically appeared for the even values of , so we choose the odd values: 

   7

.

2765 8 4 2 1 2

0,1,2

76

,..

k K

k

   


 

  78 4 8 2

0,1,2,...

276576 k K

k

  


. 

We give values 0,1,2,3k   and we get 

32 

42 k

52 k
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6

11

6

7 9

276576-8 4 8 0 =2

276576-8 4 8 1 =2

276576-8 4 8 2 =2

276576-8

4321

135

43

54 8

1

12

9

23 =

   

   

   

   

 

where the 72  power of 2 appears, 

  7 9276576-8 4 8 53 =2 21    .                                                                                 (8.11) 

We give additional values to k  and get  

  7 7276576-8 4 8 57 =2 21    .                                                                                 (8.12) 

From equations (8.11), (8.12) we get  

 5 7

.

27657 8 28 2 2

0,1, 2,..

6 k K

k

   


 

528 2

0,1,2,...

k

k

   


.  

    The sequence   has a set of properties that have not been investigated in detail. One of them 

is that in some cases the periodicity of powers of 2 is lost. We give one example.  

Example 8.4. For the symmetric number 

 11941 9 2Q     = 27 249173 913590 775394 528044 735747 064177, 

in the calculation of  , after 1+119=120 steps the periodicity of powers of 2 is lost: 

119

119

119

27 249173 913590 775394 528044 735747 063808 2   41

25 919945 917805 859521 624237 675466 719232 2   39

24 590717 922020 943648 720430 615186 374656 2   37

23 261489 926236 027775 816623 554906 030

 

 

 

119080 2   35 

.                             (8.13) 

The odd numbers 41, 39, 37, 35 in equation (8.13) are consecutive.  

    The algorithm can be executed for all intervals  

12 ,2 , 1,2,3,..., 1k k

k k       , 
ln

1
ln 2


 

   
 

. 

In this case, an open topic for algorithm improvement is the determination of the optimal value 

of n  in equations (8.1), (8.3).  

9. A categorization of the composite odd numbers  

From equations (5.7), (5.8) we get the following 10 categories for composite odd numbers: 
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  1 28 7 8 7 8 49Q m m                                                                                    (9.1) 

  1 28 7 8 9 8 63D m m                                                                                    (9.2) 

  1 28 7 8 11 8 77Q m m                                                                                   (9.3) 

  1 28 7 8 13 8 91D m m                                                                                   (9.4) 

  1 28 9 8 9 8 81Q m m                                                                                     (9.5) 

  1 28 9 8 11 8 99D m m                                                                                   (9.6) 

  1 28 9 8 13 8 117Q m m                                                                                 (9.7) 

  1 28 11 8 11 8 121Q m m                                                                                (9.8) 

  1 28 11 8 13 8 143D m m                                                                                (9.9) 

  1 28 13 8 13 8 169Q m m                                                                              (9.10) 

1 2, ,m m  . 

    As a consequence of equations  

81-49=8 4

99-91=8 1

117-77=8 5

121-49=8 9

121-81=8 5

143-63=8 10

169-49=8 15

169-81=8 11

169-121=8 6



















 

for every odd number for which we don’t know its factors, we get at least two possible forms 

(9.1)-(9.10) as product of two factors. We give two examples.  

Example 9.1. For the 

RSA120=227010481295437363334259960947493668895875336466084780038173258247009

162675779735389791151574049166747880487470296548479 

we have 

RSA120-63=8Φ 

RSA120-91=8Φ 

RSA120-143=8Φ. 

Therefore, it is either form (9.2), 
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  1 28 7 8 9D m m                                                                                                (9.11) 

or from (9.4), 

  1 28 7 8 13D m m                                                                                               (9.12) 

 or form (9.9), 

  1 28 11 8 13D m m   .                                                                                          (9.13) 

The factors of RSA120 are known and indeed are of the form (9.12). 

Example 9.2. The factors of  

RSA260=221128255295296664352810852550262309276120895024700153944137483191288

229414020019865127297265697465990859003300314000511707422045608592763579537571

859542988389587092292384910067030341246205457845664136645406842143612930176940

20846391065875914794251435144458199 

are not known. 

However, we have 

RSA260-63=8Φ 

RSA260-143=8Φ. 

Therefore, it is either form (9.2), 

  1 28 7 8 9D m m                                                                                                (9.14) 

 or form (9.9), 

  1 28 11 8 13D m m   .                                                                                          (9.15) 

    For every form  (9.1)-(9.10) we can develop an algorithm similar to this of section 8. 

There are five algorithms, one for each of the following subsets of equations (9.1) - (9.10): 

1. (9.1), (9.5) (the A of the algorithm of section 8). 

2. (9.2) (the B of the algorithm of section 8). 

3. (9.3), (9.7),  

3 8 2n K   .                                                                                                     (9.16) 

4. (9.4), (9.6),  

3 8 2n K   .                                                                                                      (9.17) 

5. (9.8), (9.9), (9.10).  

    The algorithm finds symmetric factors of  . Numbers (9.8), (9.9), (9.10) have no symmetric 

factors and therefore are not factorized by the algorithm. Factoring these numbers requires 

special study. Factors of the form 8 11m , 8 13m  of the odd  can be found via conjecture 5.1. 

We will return to this topic in next article.  
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10. Conclusion   

If we want to summarize this article in one sentence we would say that we study the symmetries 

of natural numbers which arise from theorem (2.1). These symmetries establish a new 

framework for the study of natural numbers which is entirely different from the context in which 

they have been studied so far.  
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