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Abstract

This paper proposed proof of Goldbach Conjecture by using a function such that the numbers
occurences of conjecture solution in any even numbers can be estimated. The function sketches
after Eratoshenes Sieve under modulo term such that the function fulled prime condition in
closed intervals.
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Preface

Goldbach conjecture was the oldest open problem in mathematics. The problem stated in two
parts one for any odd numbers and one for any even numbers. The conjecture for any odd numbers
already been solved in 2013. As the other parts, had not been solved, even when I wrote this paper
in the end of March 2021.

The parts that had not been solved stated that every even number can be stated as the sum of two
primes. Its hard to proof because the solution of each even number rarely unique. Even more, the
solution seem came in random pattern which correspond to randomness of primes itself as leftover
in multiplication group.

The possibilities to proof the conjecture lies in generalization of conjecture such that the generaliza-
tion model can sum up the conjecture thoroughly. In other hands, the summation/ generalization
must approachable to at least one proof method that publicly accepted by mathematics people. In
mathematics, the proof can be done by using direct proof, indirect proof, induction, and counter
argument. Every each of them correspond to specific approach that may be different for each other
method’s.
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1 Initial Study

Every even numbers, was a product of some natural integers with 2. So every even number can be
stated as 2m for every m ∈ N. Let k ∈ [ 0,m) ⊆ N such that 2m = (m+ k) + (m− k). As to made
m± k (both m+ k and m− k) as the solution to Golbach Conjecture (GC) both of m± k must be
primes.

One way to show that both m± k was prime, is to show that every m± k must not be divisible to
any number between [2,m−k) for m−k and any integers [2,m+k) for m+k. But, as Eratosthenes
sieve implemented, the numbers of integers can be reduced to some prime set. The prime set filled
with every prime that had value less than

√
2m. In term of modulo, the statement m±k was prime

would satisfied:
(m± k) mod xi 6≡ 0, ∀xi ∈ Xm (1)

for m ∈ Z+, k ∈ [ 0,m ) ⊆ Z and xi ∈ Xm := {xi primes less than
√

2m} i = 0, 1, 2 where p0 = 2;
p1 = 3; p3 = 5 and so on.
.

Given theorem below:

Theorem 1. for any given a, b, k ∈ N such that a mod b ≡ c for c ∈ N, then (a+ k) mod b ≡ c+ k

Then, based of the theorem 1, congruation (1) can be simplified as:

|m mod x| 6≡ k, ∀xi ∈ Xm (2)

for Xm := {xi|x primes less than
√

2m}.

Notice that although by definition, (2) show the criterion of prime, there were cases, when k = m−1
would made m− k not divisible by Xm and m + k seem to be the same. It would made m± k full
filled condition (2). But, as 1 (one) was not prime (any more) then it wasn’t a solution for GC. As
implication, k must be restrict to

[
0 , m− 2

]
instead, rather than [ 0 ,m ).

As the other cases, when m − k = xi ∈ X it may made m ± k pairs as primes and made it into
solutions of GC. But as definition any of k = m−xi won’t satisfied condition (2). As the possibilities
that k = m− xi may exists as primes, it would sum the condition (2) that restrict on

[
0 , m− 2

]
be the lower bound of the numbers solution that should exists for GC in every m.

Let |mmodxi| represent as both of ”mmodxi” and ”(xi−m) modxi” for any xi ∈ Xm. Let f(m, i)
was numbers of solution that |mmodxi| would had. As the function f(m, i) can be summarized,
the summarized, f(m, i) would suffice function below:

f(m, i) =

{
1 for |mmodxi| ≡ 0 or xi = 2
2 for |mmodxi| 6≡ 0 and xi 6= 2

Let y(i,m) ∈
[

0 , m− 2 ] ⊆ N such that |y(i,m) modxi| ≡ |mmodxi|. Let Y (i,m) be the set that
contains every y(i,m). We can deduce that the number of element in Y (i,m) (stated as n(Y (i,m)))
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suffice criterion below:

n(Y (i,m)) ≤
⌈
f(m, i) · (m− 1)

xi

⌉
(3)

As we deduce that m− 1 = n(Y (i,m) ) + n(Y c(i,m) ), we can approximate n(Y c(i,m) ), and it’s
value would satisfied:

n(Y c(i,m)) ≥ (m− 1)− n(Y (i,m) )

≥ (m− 1)−
⌈
f(m, i) · (m− 1)

2 · xi

⌉
≥

⌊
(m− 1)·

(
1− f(m, i)

xi

)⌋
(4)

Let Xm such that Xm := {p1, p2, ..., pk} which pk ≤
√

(2m), but pk+1 ≥
√

2m. Let
⋃
Y (i,m) be

the union of Y (i,m), Notice that:

k⋃
i=0

Y (i,m) = Y (0,m)
⋃(

Y (1,m)
⋂

Y c(0,m)

)⋃
...
⋃(

Y (k,m)
k−1⋂
i=0

Y c(i,m)

)

As we construct
⋃
Y (i,m), for all i ≤ k ∈ N. Its obvious that every y(i,m) ∈ Y (i,m) didn’t

suffice conditions (2). In contrast, all of its complement’s would suffice (2) and would be included
as solution of GC. Let K(i,m) =

⋂
Y c(i,m), by definitions, K(i,m) only contains k such that

|m mod xi| 6≡ |k modxi|, ∀xi ∈ Xm. based on (4) and (5), we can construct n(K(i,m) ) =
n
( ⋂

Y c(i,m)
)
. Therefore:

n
(
K(i,m)

)
≥

⌊⌊⌊
(m− 1) · x0 − f(m, 0)

x0

⌋
· x1 − f(m, 1)

x1

⌋
· ...
⌋
· xk − f(m, k)

xk

⌋
≥

(((
m− 1

2
· x0 − f(m, 0)

x0

)
· x1 − f(m, 1)

x1

)
· ...
)
· xk − f(m, k)

xk

)
≥ m− 1

2

k∏
i=0

xi − f(m, i)

xi
(5)

Let g(m) := m−1
4

∏k
i=1

xi−2
xi

. Since f(m, i) ≤ 2, we conclude that g(m) was the lower bound of

n(K(i,m) ) for any m ∈ N. Notice that, for any m1,2 ∈ N such that m2 > m1, ratio g(m2)
g(m1)

, would
follows two criterion:

1. case for m1 + 1 = m2 where Xm1 = Xm2 = {x0, x1, ..., xk}.

g(m2)

g(m1)
≥

m2−1
4

∏k
i=1

xi−2
xi

m1−1
4

∏k
i=1

xi−2
xi

≥ m1

m1 − 1

≥ 1 (6)
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2. case for m1 =
x2
k+1
2 and m2 =

x2
k+1+1

2
such that X(k1−1) = Xk1 − {xk} and X(k2−1) = Xk2 − {xk+1}

g(m2)

g(m1)
≥

m2−1
4

∏k+1
i=1

xi−2
xi

m1−1
4

∏k
i=1

xi−2
xi

≥
x2
k+1−1

8 · xk+1−2
xk+1

·
∏k

i=1
xi−2
xi

x2
k−1

8 ·
∏k

i=1
xi−2
xi

≥
(x2k+1 − 1) · xk+1−2

xk+1

x2k − 1

Since minimum gap of two prime with index k ≥ 2 was two, then xk+1 ≥ xk + 2. Therefore:

g(m2)

g(m1)
≥ (xk + 2)2 − 1

x2k − 1
· xk
xk + 2

≥
x3k + 4x2k − 3xk

x3k + 2x2k − xk − 2

(7)

Notice that 4x2k + 3xk > 2x2k − xk − 2 for every k ∈ N and (7) was well defined in N. As

implication, case for m1 =
x2
k+1
2 and m2 =

x2
k+1+1

2 gave results g(m2)
g(m1)

≥ 1.

Since both cases that shown in (6) and (7) gave results that g(m2)
g(m1)

≥ 1. It easily shown that

g(m) ≥ 1 for every m ∈ [ 45 , 61 ]. As 61 =
x2
5+1
2 was the lower bound of

x2
i+1
2 for i ≥ 5 ∈ N, we can

conclude that g(m) ≥ 1 for every m ∈ [ 45 , ∞ ).

2 Proof

Let h(m) be a function that mapped every m ≥ 2 ∈ N to total numbers of k ∈ [ 0 , m − 2 ] such
that both m ± k was primes. Notice that sum of (m + k) + (m − k) = 2m construct every even
numbers that greater than 2 as m ∈ N went up. Its obvious that h(m) mapped m to the numbers
of solutions that Goldbach Conjecture had described for 2m.

Exists lower bound function

g(m) :=
m− 1

4
·

k∏
i=1

xi − 2

xi

for xi ∈ Xm := {xi primes, xi ≤
√

2m } such that h(m) ≥ g(m) for every m ∈ N.

Since g(m) ≥ 1 for m ∈ [ 45 , ∞ ), then h(m) would satisfied h(m) ≥ 1 for every m ∈ [ 45 , ∞ ) as
well. As its already known that h(m) ≥ 1 for every m ∈ [ 2 , 44 ], then it’s obvious that h(m) ≥ 1
for every m ∈ [ 2 , ∞ ).
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As every m had m ± k that were primes, and sum of (m + k) + (m − k) = 2m construct every
even numbers that greater than 2, then its true that every even number that greater than 2 can be
represent as sum of two primes. (Q.E.D)

Figure 1: h(m)(green) bounded by g(m) (red) for m ∈ [ 2, 105 ]
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