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Abstract. In this paper we introduce and develop the notion of universe,

induced communities and cells with their corresponding spots. We study the

concept of the density, the mass of communities, the concentration of spots in
a typical cell, connectedness and the rotation of communities. In any case we

establish the connection that exist among these notions. We also formulate

the celebrated union-close set conjecture in the language of density of spots
and the mass of a typical community.

1. Introduction and motivation

The union-closed set conjecture - roughly speaking - is the assertion that in any
collection =U of subsets of a set U closed under union, it is possible to find an
element of U that lives in as many sets in the collection =U. The conjecture was
first formulated in 1979 by Peter Frankl, in the equivalent form

Conjecture 1.1. For any intersection-closed family of sets containing more than
one set, there exists an element that lives in at most half of the sets in the family.

It is easy to see that the above conjecture is equivalent to the conjecture:

Conjecture 1.2 (Union-closed set conjecture). For any union-closed family of sets
containing more that one set, there exist an element that lives in at least half of the
sets in the family.

The union-closed set conjecture remains open despite considerable efforts by
many authors and several papers just devoted to study the problem. Regardless,
the substantial progress with inputs and tools brought to bear are noteworthy. In
fact the conjecture is proven for a few special cases. The conjecture is known to
hold for families of at most forty-six sets [4]. It is also known to hold for families
whose union has at most eleven elements [1]. It is also known to hold for families
whose smallest set has only one or two elements [2]. The conjecture (see [3]) is also
known to hold for family with ( 1

2 − ε)2
n subsets of n elements for some ε > 0.

The union-closed set conjecture also has several analogous versions and establishing
the truth in those variant would imply the truth of the conjecture. The conjecture
has a lattice-theoretic twist, which appeared in [5] with only special cases resolved.
A well-known graph-theoretic version can also be found in [6]. Any of these variants
could yet be a good terrain for the resolution of this simple-sounding conjecture
and an appeal to any will certainly depend on that which seems amenable with the
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tools available.
In this paper, we construct a new terrain within which the union-close set conjecture
and its variants could easily be studied. This domain could even provide the leeway
to obtain other results along these lines. As such we introduce the language of
density of spots in a cell, the mass of induced communities and concentration of
spots within communities and establish some subtle connections. It turns out the
union-close set conjecture can be stated in the language of density of spots in a cell
and the mass of a typical community in the following manner:

Conjecture 1.3. Let U be a finite universe with an induced communityMU. Then
there exist some spot ai ∈ U such that

DMU(ai) ≥
1

2
.

Conjecture 1.4 (Union-close set conjecture). Let U be a finite universe such |U| =
n with an induced community MU. Then we have

M(MU)

n
≥ (1 + o(1))

1

2
.

2. The notion of universe, community and cells

In this section we introduce the notion of cells, community and their correspond-
ing universe. We study some elementary properties of this notion.

Definition 2.1. Let U be a set and consider the collection

M :=

n⋃
i=1

{Ai| Ai ∪ Aj ⊆ U, i 6= j} .

Then we say the collection M is a community induced by set U if and only if for
any Ai,Aj ∈ M then Ai ∪ Aj ∈ M. We call U the universe of the community.
We call each Aj in the community a cell and each a ∈ Aj a spot in the cell. We
say a cell Ai in the community admits an embedding in the community if there
exists another different cell Aj in the same community such that Aj ⊂ Ai.

Proposition 2.2. Let U be a universe with |U| = n and MU be a community
induced by the universe. Then we have

|MU| ≤ 2n.

Proof. Let U= be the power set induced by the universe U. It is easy to see that
U= is the largest community induced by the universe with size

|U=| = 2n

so that |MU| ≤ 2n. �

Proposition 2.3. The communities induced by a finite universe are totally or-
dered.

Proof. Let U be a universe with |U| = n and letMiU andMjU be any two of distinct
communities induced by the universe. Then it follows that the communities must
differ by at least one cell so that without loss of generality with |MjU | ≤ |MiU | we
can write

|MjU | ≤ |MiU | < |MiU ∪MjU |.
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We claim that the collectionMiU∪MjU is also a community. Let us pick arbitrarily
two cells A1,A2 ∈MiU∪MjU . We consider three sub-cases: The case A1,A2 ∈MiU

so that A1 ∪ A2 ∈MiU since MiU is a community.
For the case A1,A2 ∈ MjU it must certainly be that A1 ∪ A2 ∈ MjU since MjU is
also a community. For the last case, where A1 ∈MiU and A2 ∈MjU then

A1 ∪ A2 ∈MiU ∪MjU .

By choosing a community MkU 6= MiU ∪MjU with k 6= i, j and |MkU | < |MiU ∪
MjU ∪MkU | we obtain a five-term inequality by inserting |MkU | into the a priori
chain. Repeating the argument in this manner establishes the claim. �

3. Density of spots in a cell

In this section we introduce the notion of density of spots contained within a
cell. We launch the following languages.

Definition 3.1. Let U be a finite universe with |U| = n and ai ∈ U. Let MU be
the community induced by the universe U. Then we denote the density of the spot
ai in cells in the community MU with

DMU(ai) = lim
n−→∞

# {A ∈MU| ai ∈ A}
|MU|

.

Equivalently we can write

# {A ∈MU| ai ∈ A}
|MU|

∼ DMU(ai)

or with the use of the little oh notation

# {A ∈MU| ai ∈ A}
|MU|

= (1 + o(1))DMU(ai).

Remark 3.2. Next we investigate some properties of the notion of density of spots
in a cell. The following properties will be useful in the sequel.

Proposition 3.3. Let U be a finite universe with |U| = n and ai ∈ U. Let MU
and NU be any two communities induced by the universe U. Then the following
properties hold

(i) DMU∪NU(ai) ≤ DMU(ai) +DNU(ai).

(ii) DMU(ai) ≤ 1−DMc
U
(ai), where Mc

U denotes the complement of the collec-
tion MU in the power set U= induced by the universe U.
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Proof. For (i) we notice that by appealing to Definition 3.1, we can write

DMU∪NU(ai) = lim
n−→∞

# {A ∈MU ∪NU| ai ∈ A}
|MU ∪NU|

= lim
n−→∞

# {A ∈MU| ai ∈ A}
|MU ∪NU|

+ lim
n−→∞

# {A ∈ NU| ai ∈ A}
|MU ∪NU|

− lim
n−→∞

# {A ∈MU ∩NU| ai ∈ A}
|MU ∪NU|

≤ lim
n−→∞

# {A ∈MU| ai ∈ A}
|MU ∪NU|

+ lim
n−→∞

# {A ∈ NU| ai ∈ A}
|MU ∪NU|

≤ lim
n−→∞

# {A ∈MU| ai ∈ A}
|MU|

+ lim
n−→∞

# {A ∈ NU| ai ∈ A}
|NU|

= DMU(ai) +DNU(ai).

For (ii) it follows similarly that

DU=(ai) = lim
n−→∞

# {A ∈ U=| ai ∈ A}
|U=|

= lim
n−→∞

# {A ∈MU ∪Mc
U| ai ∈ A}

|MU ∪Mc
U|

= DMU(ai) +DMc
U
(ai)

by leveraging the property (i) and noting that MU ∩Mc
U = ∅. By observing that

lim
n−→∞

# {A ∈ U=| ai ∈ A}
|U=|

≤ 1

the second part also follows. �

It turns out that the union close set conjecture can pretty much be stated in the
language of density in the following manner.

Conjecture 3.4 (Union-close set conjecture). Let U be a finite universe with an
induced community MU. Then there exist some spot ai ∈ U such that

DMU(ai) ≥
1

2
.

4. The mass of a community

In this section we introduce and study the notion of mass of a community. We
launch formally the following language.

Definition 4.1. Let U be a universe and MU be a community induced by the
universe. Then by the mass of the community, denoted M(MU), we mean the
quantity

M(MU) =
∑
j≥1

# {A ∈MU| aj ∈ A}
|MU|

.
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For any finite universe U with |U| = n, we can write by appealing to the notion
of density of spots

M(MU) =

n∑
j=1

# {A ∈MU| aj ∈ A}
|MU|

∼
n∑

j=1

DMU(aj).

It follows from this relation that we can in some way recover the mass of a typical
community by asymptotically averaging density of each spot in the same universe
within cells in the community. More formally we obtain the proposition

Proposition 4.2. Let U be a finite universe such |U| = n with an induced commu-
nity MU. Then we have

M(MU) ∼
n∑

j=1

DMU(aj).

Theorem 4.3. Let U be a finite universe such |U| = n with an induced community
MU. If DMU(aj) ≥ δ for each 1 ≤ j ≤ n for some δ > 0, then

M(MU) ≥ (1 + o(1))δn.

Proof. Appealing to Proposition 4.2 we can write

M(MU) = (1 + o(1))

n∑
j=1

DMU(aj)

so that under the requirement DMU(aj) ≥ δ for each 1 ≤ j ≤ n for some δ > 0,
then

M(MU) = (1 + o(1))

n∑
j=1

DMU(aj)

≥ (1 + o(1))δn.

�

It follow from Theorem 4.3, we can interpret the average mass as the average
density of spots originating from a finite universe U with |U| = n. That is to say,
If DMU(aj) ≥ δ for each 1 ≤ j ≤ n for some δ > 0 then we can write

M(MU)

n
≥ (1 + o(1))δ. (4.1)

Conversely, it will essentially follow that in any finite universe U with |U| = n
and an induced community MU tied with (4.1) there must exists at least one spot
ak ∈ U such that

DMU(ak) ≥ δ.

Thus the union close set conjecture can also be stated in the language of the mass
of a community as follows



6 T. AGAMA

Conjecture 4.4 (Union-close set conjecture). Let U be a finite universe such |U| =
n with an induced community MU. Then we have

M(MU)

n
≥ (1 + o(1))

1

2
.

Proposition 4.5. Let U be a finite universe with all of its induced communities
{MiU}li=1. Then we have

M(∪li=1MiU) ≤
l∑

i=1

M(MiU) +
∑
j≥1

l∑
k=2

k∑
i=1

(−1)k+1 #
{
A ∈ ∩ki=1MiU | aj ∈ A

}
| ∪ls=1MsU |

.

Proof. Since the universe U is finite, it follows that the mass M(∪li=1MiU) exists
and is finite. Let us now compute the mass

M(∪li=1MiU) =
∑
j≥1

#
{
A ∈ ∪li=1MiU | aj ∈ A

}
| ∪ls=1MiU |

.

It follows that we can write by an application of the inclusion-exclusion principle

∑
j≥1

#
{
A ∈ ∪li=1MiU | aj ∈ A

}
| ∪ls=1MsU |

=
∑
j≥1

l∑
i=1

# {A ∈MiU | aj ∈ A}
| ∪ls=1MsU |

+
∑
j≥1

l∑
k=2

k∑
i=1

(−1)k+1 #
{
A ∈ ∩ki=1MiU | aj ∈ A

}
| ∪ls=1MsU |

≤
∑
j≥1

l∑
i=1

# {A ∈MiU | aj ∈ A}
|MiU |

+
∑
j≥1

l∑
k=2

k∑
i=1

(−1)k+1 #
{
A ∈ ∩ki=1MiU | aj ∈ A

}
| ∪ls=1MsU |

=

l∑
i=1

M(MiU) +
∑
j≥1

l∑
k=2

k∑
i=1

(−1)k+1 #
{
A ∈ ∩ki=1MiU | aj ∈ A

}
| ∪ls=1MsU |

thereby ending the proof. �

5. The concentration of spots in a community

In this section we introduce the notion of concentration of spots in a commu-
nity. We launch the following language.

Definition 5.1. Let U be a finite universe and {MjU}kj=1 be all communities
induced by the universe. Then by the concentration of spots a in the community,
denoted CU(a), we mean the quantity

CU(a) =

k∑
j=1

# {A ∈MjU | a ∈ A}
|MjU |

.
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Similarly by appealing to the notion of density of spots in cells within a commu-
nity, we can write the concentration of spots in a finite universe as

CU(a) =

k∑
j=1

# {A ∈MjU | a ∈ A}
|MjU |

∼
k∑

j=1

DMjU
(a)

so that the concentration of a fixed spot in induced communities is essentially
asymptotically averaging the density over each induced community by the finite
universe. In this framework we can write

Proposition 5.2. Let U be a finite universe and {MjU}kj=1 be all communities
induced by the universe. Then we have

CU(a) ∼
k∑

j=1

DMjU
(a).

Let U be a finite universe with |U| = n and all induced communities {MjU}kj=1.
Then we can write∑

1≤s≤n

CU(as) =
∑

1≤s≤n

k∑
j=1

# {A ∈MjU | as ∈ A}
|MjU |

so that by interchanging the order of summation we can write∑
1≤s≤n

CU(as) =

k∑
j=1

∑
1≤s≤n

# {A ∈MjU | as ∈ A}
|MjU |

=

k∑
j=1

M(MjU)

so that the process of averaging the concentration of all spots originating from a
common universe is the same as averaging the mass over all induced communities
of a finite universe. In other words, we can essentially cover the total mass of
all induced communities of a finite universe with total concentration of all spots
originating from a same universe.

Proposition 5.3. Let U be a finite universe with |U| = n and all induced commu-
nities {MjU}kj=1. Then we have∑

1≤s≤n

CU(as) =

k∑
j=1

M(MjU).

Proposition 5.4. Let U be a finite universe with |U| = n and all induced commu-
nities {MjU}kj=1. Then we have∑

1≤s≤n

k∑
j=1

DMjU
(as) ∼

k∑
j=1

M(MjU).

Proof. The result follows by appealing to Proposition 5.2 and Proposition 5.3. �
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Remark 5.5. In the sequel we state an inequality that relates the mass of a typical
community with the concentration of spots originating from the underlying finite
universe. This inequality is paramount to our investigations and will be exploited
in our further studies along these lines.

Theorem 5.6 (The mass-concentration inequality). Let U be a finite universe such
that |U| = n with all of its induced communities {MiU}li=1. Then we have

M(∪li=1MiU) ≤
∑

1≤s≤n

CU(as) +
∑
j≥1

l∑
k=2

k∑
i=1

(−1)k+1 #
{
A ∈ ∩ki=1MiU | aj ∈ A

}
| ∪ls=1MsU |

.

Proof. The inequality is easily established by appealing to Proposition 5.3 and
Proposition 4.5. �

6. Connected and disconnected cells and communities

In this section we introduce and study the notion of connectedness and dis-
connectedness of cells and their associated communities induced by a typical
universe. We launch the following languages.

Definition 6.1. Let U be a universe with the set of all induced communities
{MiU}∞i=1. Let A,B ∈ MiU for i ≥ 1 be any two cells of the community. Then we
say A and B are connected if A∩B 6= ∅. Similarly, we say two arbitrary communities
MiU and MjU are connected if MiU ∩MjU 6= {∅} and there exists some cell A 6= ∅
such that A ∈MiU ∩MjU .

Remark 6.2. Next we relate the notion of density of spots originating from a fi-
nite universe to the notion of connectedness of cells in a typical community. The
connection works pretty well in one direction but fails unfortunately in the other.
Indeed passing from the notion of density of spots to the notion of connectedness
is fairly easy but the converse would require additional conditions to hold.

Proposition 6.3. Let U be a finite universe such that |U| = n with an induced
community MU. If there exists at least a spot ai ∈ U such that DMU(ai) ≥ δ for
some δ > 0, then the community MU contains at least two connected cells.

Proof. Let us suppose there exists at least a spot ai ∈ U such that DMU(ai) ≥ δ
for some δ > 0. Let us suppose to the contrary the community MU contains no
connected cells. Then it follows that for any spot aj ∈ U then

# {A ∈MU| aj ∈ A} = 1

so that for the spot ai ∈ U, we have

DMU(ai) = lim
n−→∞

# {A ∈MU| ai ∈ A}
|MU|

.

= lim
n−→∞

1

|MU|
= 0.

This contradicts the minimality of the density of the spot ai. �
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7. Rotation of cells in a community

In this section we introduce and develop the notion of rotation of cells in a
typical community. We launch the following languages.

Definition 7.1. Let U be a universe with induced communities {MiU}i≥1. By the
rotation of communities we mean the map

$ :MkU −→MjU

so that for any cell A ∈MkU then there exist some cell B ∈MjU such that

$(A) = B.

We say the community MkU is a stable community under the rotation if MkU =
MjU .

Proposition 7.2. Let U be a universe with induced communities {MiU}i≥1. If the
communities MkU and MjU are stable under the rotation $, then MkU ∪MjU is
also stable under the rotation $.

Proof. Under the assumption that the communitiesMkU andMjU are stable under
the rotation $, it follows that $ : MkU −→ MkU and $ : MjU −→ MjU . First
let A ∈ $[MkU ] ∪$[MjU ]. Without loss of generality let us suppose A ∈ $[MkU ],
then it follows that there exists some cell B ∈ MkU such that $(B) = A. Under
the cover MkU ⊂MkU ∪MjU , it must be that $(B) ∈ $[MkU ∪MjU ] so that we

$[MkU ] ∪$[MjU ] ⊆ $[MkU ∪MjU ].

Also let A ∈ $[MkU ∪MjU ] then there must exists some cell B ∈MkU ∪MjU such
that $(B) = A. Without loss of generality let us assume that B ∈ MkU , then it
must be that $(B) ∈ $[MkU ] ⊆ $[MkU ] ∪$[MjU ] so that

$[MkU ∪MjU ] ⊆ $[MkU ] ∪$[MjU ].

The upshot is the equality

$[MkU ∪MjU ] = $[MkU ] ∪$[MjU ]

=MkU ∪MjU

thereby establishing the claim. �
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