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ABSTRACT 

 

This paper presents new algorithms for Field of Vision (FOV) computation which improve on existing work 

at high resolutions. FOV refers to the set of locations that are visible from a specific position in a scene of 
a computer game. 

 

We review existing algorithms for FOV computation, describe their limitations, and present new 

algorithms which aim to address these limitations. We first present an algorithm which makes use of 

spatial data structures in a way which is new for FOV calculation. We then present a novel technique 

which updates a previously calculated FOV, rather than re-calculating an FOV from scratch. 

 

We compare our algorithms to existing FOV algorithms and show they provide substantial improvements 

to running time. Our algorithms provide the largest improvement over existing FOV algorithms at 

highresolutions, thus allowing the possibility of the creation of high resolution FOV-based video games. 
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1. INTRODUCTION 
 

A Field of Vision (FOV) is the set of locations that are visible from a specific position in a scene 

of a computer game. FOV is calculated over a two-dimensional finite grid which is referred to as 
the FOV grid. An FOV grid partitions a game’s environment into rectangular cells. If a cell 

within this grid contains an object which is vision-blocking (such as a wall, a tree, etc.) then that 

entire cell is vision-blocking. Video games use an FOV grid as it allows them to consider the 
visibility of a whole region at once, which is significantly less computationally expensive than 

considering the visibility of every point in the environment. Because of this, an FOV grid can be 

constructed at a different resolution than the resolution at which a game will be displayed. 

 
One of the cells of the FOV grid is specified as the source of vision and is referred to as the FOV 

source cell. An FOV algorithm must determine which cells are visible from the source and which 

cells are not visible based on the cells that are vision-blocking; the resulting grid with cells set to 
visible or non-visible is called the FOV. 

 

Figure 1 shows an FOV for a scene of Crypt of the Necrodancer by Brace Yourself Games. The 
game environment is shown on the left with the FOV grid superimposed in purple. The yellow 

brick walls block vision from the character located near the bottom left corner. In this example 

each FOV grid cell is a 48*48 pixel region of the game’s display. A data representation of this 

scene is shown on the right. The FOV source cell is marked with an S, vision-blocking cells are 
yellow, visible cells are in light brown, and non-visible cells are darkened. 
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Figure 1. FOV in a game with simple 2D graphics. Left image taken from Crypt of the Necrodancer, by 

Brace Yourself Games. Right image shows a data representation of the FOV. 

 

Calculating an FOV is useful for computer games with a top-down perspective. In these games 
the player views the game world from above and thus sees much more of the game world than an 

individual character inside the game. Top-down games may make use of FOV to provide accurate 

visibility information to computer-controlled game actors, so that they may then make decisions 
based on what they can see. Top-down games may also use FOV to convey to a player which 

areas of the world their character cannot see by visually darkening them. This visual effect is 

referred to as a fog of war. 
 

FOV is used by a number of popular computer games, such as League of Legends [1, 2] and 

Defense of the Ancients 2 [3]. The time needed to compute an FOV must be considered when 

designing games with complex environments, and both of the above games calculate FOV at 

reduced resolutions in order to improve performance. 
 

Games are expected to render their scenes many times per second in order to give the impression 

of smooth motion. These rendered scenes are then displayed as frames on a computer screen. 

Most computer displays support a maximum of 60 frames per second (one new frame roughly 
every 17ms), but in newer displays this number has increased to up to 240 frames per second 

(one new frame roughly every 4ms). The faster and more consistently a game is able to render its 

scenes the smoother the display of the game will be for the user. A game might not need to 
calculate the FOV every time a scene is rendered, but it must be able to calculate it fast enough 

such that rendering is not delayed. Games also have many different processes that must share 

system resources. Because of these conditions, an FOV algorithm must complete extremely 
quickly so as not to delay rendering or starve other processes of system resources. We show that 

existing FOV algorithms do not scale well with grid size and have inadequate performance as a 

result. 
 

1.1. Existing FOV Algorithms and Related Work 
 

All existing FOV algorithms make use of rays cast from the FOV source. One such algorithm is 
Mass Ray FOV, which casts a ray from the center of the FOV source cell to the center of each 

cell in the FOV grid, and if that ray does not intersect any vision-blocking cells then that ray’s 

destination cell is marked as visible. Mass ray FOV has very poor performance because it casts as 

many rays are there are cells in the grid. Another algorithm based on direct ray casting is 
Perimeter Ray FOV. This algorithm casts a ray to the center of every cell on the perimeter of the 

grid and for each ray it sets to visible all cells that the ray touches before the ray finds a vision-

blocking cell. While Perimeter Ray FOV does cast fewer rays than Mass Ray FOV, all algorithms 
which directly cast rays to specific grid cells may cast more rays than necessary because they cast 

a fixed number of rays regardless of the terrain. 
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More intelligent FOV algorithms selectively cast visibility rays to the corners of vision blocking 
cells and use these rays to determine the boundaries of the visible space. Recursive 

Shadowcasting by Björn Bergström [4] is the most popular publicly available algorithm which is 

based on this selective ray casting approach. Recursive Shadowcasting starts by initializing all 

grid cells to not visible. It then splits the FOV grid into eight octants centered on the FOV source 
and traverses the cells within each octant as shown in Figure 2. This traversal occurs within each 

octant by rows or columns in ascending order of distance from the FOV source. As a cell is 

traversed, its visibility status is set to visible. However, when a vision-blocking cell is 
encountered, an octant is split into two smaller sub-octants which are bounded by rays cast from 

the FOV source to the corners of the vision-blocking cell. The cell traversals are then continued 

within each sub-octant. 
 

(a) (b) (c) (d)

S

S S S

 
 

Figure 2. (a) An FOV grid split into octants with row/column traversal shown. (b) Traversal of an octant 

until vision-blocking cells are encountered. (c) Traversal of a sub-octant after the traversal is split by the 

vision-blocking cells. (d) The resulting FOV. 
 

Permissive FOV by Jonathon Duerig [5] is another popular FOV algorithm which selectively 

casts rays. Recursive Shadowcasting and Permissive FOV are efficient at low grid sizes but 
become slow as grid size increases because they perform a relatively large number of operations 

per-cell. It is important to note that FOV grids can consist of tens of thousands of cells. For an 

algorithm to improve on the performance of selective ray casting, it must determine cell visibility 
and set cell visibility statuses in a more efficient manner. 
 

There are some problems in computer games that involve determining visibility information, like 

determining how light and shadow interact with the objects in a scene, and how to ensure that 

parts of objects which are not visible are not rendered. Techniques that have been designed to 
address these problems, such as shadow mapping [6], shadow volumes [7], real-time ray tracing 

[8], z-buffering[9], the painter’s algorithm [10], frustrum culling [11], and portal-based occlusion 

culling [12] cannot be used to calculate an FOV. 
 

The rest of the paper is organized in the following manner. In Section 2 we propose a new FOV 
algorithm named Rectangle-Based FOV, which represents vision-blocking cells in a very 

compact and efficient way by using rectangles. In Section 3 we propose a second new algorithm 

named FOV Update, which adjusts a previously calculated FOV instead of calculating an FOV 
from scratch. In Section 4 we compare both of these algorithms to Recursive Shadowcasting (as 

it is known to have the best performance among existing FOV algorithms [13, 14]) and 

determined that our algorithms offer superior performance to Recursive Shadowcasting when the 
grid size becomes large. In Section 5 we summarize our results and make recommendations to 

implementors who may wish to use our algorithms. 
 

2. RECTANGLE-BASED FIELD OF VISION 
 

2.1. Representing Vision-Blocking Cells with Rectangles 
 

In computer games the FOV usually needs to be calculated every time the FOV source moves, 
however the game environment changes rather infrequently. Because of this, it is possible to pre-
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process the environment and represent the vision blocking cells in a compact and efficient 
manner using rectangles. This efficient representation can then be used for many FOV 

calculations, and only needs to be updated if the game environment changes. The performance of 

an FOV algorithm which uses such a compact representation of vision-blocking cells is less 

dependent on the size of the FOV grid than selective ray casting algorithms. 
 

We use rectangles to represent groups of vision-blocking cells, this allows us to compactly 

represent the vision-blocking terrain in a game environment. The rectangle-based representation 
of vision-blocking cells is created with the following process. Adjacent vision blocking cells are 

first grouped together into rectilinear regions. These rectilinear regions are then split into a 

minimal number of rectangles using the algorithm in [15]. The rectangles which represent vision-
blocking cells on a grid are stored in a quadtree [16] which allows us to rapidly access them, 

instead of having to search for them within the grid. Quadtrees are simple to build and update, 

which is important if the game environment does change. 

 
A quadtree stores rectangles by hierarchically dividing the FOV grid into successively smaller 

quadrants. The root node of the quadtree represents the entire FOV grid. Each internal node has 

exactly four children, each representing one quadrant of the space represented by their parent. 
When the region that a node represents contains fewer than a predefined number N of rectangles, 

that node is made into a leaf and it stores all rectangles that intersect the region that it represents 

(see Figure 3). Note that a rectangle may be stored in multiple leaf nodes. 
 

e f

R2 h g

a b

c
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root

a b c d

e f g h

R2

 
 

Figure 3. (a) A grid containing two rectangles R1 and R2. (b) The quadtree that represents this grid, with N 

= 1. (c) The region represented by each leaf node of the quadtree. 

 

We consider a cell to be visible if any point within that cell can be seen from the FOV source. We 
use this definition of visibility as it is the most commonly used in computer games, and it 

matches the definition of visibility used by Recursive Shadowcasting. However, our algorithm 

can be adapted to use other definitions of visibility as well, such as a cell being visible only if its 
center can be seen by the FOV source. 

 

When determining what areas of the FOV grid are occluded behind a rectangle, we use two of the 
rectangle’s four vertices, and refer to these as a rectangle’s relevant points for determining 

visibility. The relevant points are always the two vertices of the rectangle which are farthest apart 

from each other among the vertices which are visible to the FOV source when considering that 

rectangle in isolation (see Figure 4). 
 

We cast a ray from each relevant point in the opposite direction of the FOV source. The area 

between the rectangle and these two rays contains the area occluded behind that rectangle. Note 
that this area does not include the rays themselves, as they are considered to be visible from the 

FOV source. A cell is occluded by a rectangle if it is entirely within the area (see Figure 4). 
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Figure 4. (a) A rectangle with its four vertices highlighted. (b) The two relevant points and casted rays for 

this rectangle. (c) The cells occluded by the rectangle are darkened. 

 

2.2. Calculating an FOV Using Rectangles 
 

We process each rectangle as specified below in order to assign visibility statuses to the cells of 

the FOV grid. However, first we note that we cannot process each rectangle in isolation. If two 

rectangles R1 and R2 have (part of) a common side, there might be some cells which are not 
visible from the FOV source but which are not fully contained in the occluded region of either 

rectangle. If R1 and R2 are processed independently then these cells might be incorrectly labelled 

as visible. Figure 5 gives an example of this: Cells i and ii are not fully occluded by either 
rectangle R1 or R2 but they are not visible to the FOV source. Note that i and ii are not 

considered to be occluded by R1 because one of the rays cast from R1 touches the corners of i 

and ii. Figure 5(a) and (b) show the individually occluded regions for R1 and R2 respectively, 

and Figure 5(c) shows how these combined occluded areas do not result in a correct FOV. 
 

ii ii ii ii
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Figure 5. (a) The region occluded by R1. (b) The region occluded by R2. (c) cells i and ii are incorrectly 

labelled as visible. (d) Correct labelling of the cells. 
 

We address this issue by slightly increasing the size of one of the two adjacent rectangles, as this 

will ensure that all cells are correctly set to not visible. For each relevant point P of R1, we check 

if P also belongs to another rectangle. This check can be efficiently performed using the quadtree: 
We recursively traverse the nodes of the quadtree which represent regions containing P until we 

reach a leaf node. Upon reaching a leaf node we check all rectangles stored in it (except R1) to 

see if any of them contains P. If some rectangle R2 contains P, we check if R2 occludes P. If P is 
not occluded, we extend the size of R1 by one row or column so that it overlaps with R2. In the 

example in Figure 5(d), R1 is extended by one column to the right into R2, so the rectangles now 

overlap at cell x. This results in cells i and ii being correctly set to not visible as the extended R1 

occludes them. 
 

After rectangles have been extended (if needed), the visibility statuses of the grid cells are 

assigned: Initially each cell is assigned a status of visible; then we process the rectangles one by 

one. For each row of the FOV grid that is within the occluded region of a rectangle the algorithm 
calculates the leftmost and rightmost cells which are fully within the occluded region; the 

algorithm then traverses the row from this leftmost cell to the rightmost cell, setting every cell 

traversed to not visible. Once this process is repeated for every rectangle, every grid cell that is 
occluded by a rectangle will have its visibility status set to not visible. 
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2.3. Optimizations to Rectangle-Based FOV 
 

The algorithm described in Section 2.2 will correctly calculate an FOV but it may perform 

redundant work. In this section we describe two performance optimizations that reduce the 
amount of work performed by the algorithm. Firstly, when the rectangle being processed is 

partially or totally occluded behind other rectangles, the regions that these rectangles occlude 

overlap. As we set the cell visibility statuses within these occluded regions, some cells might be 
set to not visible multiple times. We address this by reducing the size of the rectangle we are 

processing such that it is no longer occluded by other rectangles. 

 

If we process rectangles in an order such that a rectangle is processed after any rectangles which 
occlude it, then when processing a rectangle we could use any visibility information that has 

already been completed to determine whether a rectangle is (partially) occluded. We can traverse 

the quadtree to efficiently arrange the rectangles so that many of them are processed after any 
rectangles that (partially) occlude them, as we explain below. 

 

We define the distance between the FOV source and a rectangular region of the FOV grid as the 
distance between the FOV source and the closest point within that region. Starting from the root, 

we recursively process the children of each internal node of the quadtree in order from closest to 

furthest distance from the regions represented by the child nodes to the FOV source. For a leaf 

node we process its rectangles in order from closest to furthest from the FOV source. Since a 
rectangle can be stored in more than one node, we only process a rectangle the first time it is 

encountered. Note that our ordering does not guarantee that a rectangle will always be processed 

after rectangles which occlude it, but for many rectangles this will be the case. 
 

Because we determine the entire area occluded by a rectangle at once, we can take advantage of 

spatial locality in order to set visibility statuses efficiently. Spatial locality refers to a property of 
computer memory where accessing data sequentially is substantially faster than accessing it in a 

random order. Memory has this property due to the nature of the CPU cache, which stores 

recently accessed data and the data which is adjacent to it. By accessing data in a sequential 

manner, we take advantage of the cache storing adjacent data, and so are able to access data from 
the cache instead of main memory and we can set cell visibility statuses quickly. 

 

2.4. The Rectangle-Based FOV Algorithm 
 

First the vision-blocking terrain must be converted to a quadtree of rectangles. The steps for this 

process are summarized in pseudocode below: 
 

Algorithm: Vision-Blocking Cells to Rectangles(G, N) 

Input:  FOV grid G, integer N specifying the maximum number or rectangles in a leaf node. 
Result: The root of a quadtree which contains the vision-blocking rectangles of G. 

Let L be an empty list of rectangles. 

for each rectilinear region E of vision-blocking cells in G: 

Dissect E into rectangles (as described in Section 2.1) and add those rectangles to L. 
Let Q be the root of a quadtree representing the entire grid G. 

for each rectangle R in L: 

Add R to every leaf node of the quadtree representing a region that intersects R. 
while there is a leaf node P which has more than N rectangles: 

Convert P into an internal node with 4 children, each representing one quadrant of P. 

Move each rectangle r in P into every one of P’s children which intersect r. 
return Q 
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Once the quadtree has been constructed and all cells of the grid have been initialized as visible, 
the rectangle-based FOV algorithm is used to compute the FOV from a given source cell. The 

steps of the Rectangle-Based FOV algorithm are summarized in pseudocode below: 

 

Algorithm: Rectangle-Based FOV(n, S, G) 
Input:Quadtree node n, FOV source cell S, FOV grid G. 

When first called: n will be the root node of the quadtree and all cells in G are set to visible. 

Result: Cells in G which are not visible from S are set to not visible. 
if n is a leaf node then: 

for each rectangle R in n, from closest to farthest from S: 

if R has not already been processed then 
Extend or shrink R if needed, as described in Sections 2.2 and 2.3.  

Let E be the region occluded behind R. 

for each row X of the grid G that intersects E: 

Set to not visible the cells in X contained in E, from left to right. 
Mark R as processed 

else: 

for each child node C of n, from closest to farthest from S: 
Rectangle-Based FOV(C, S, G) 

 

3. UPDATING AN EXISTING FIELD OF VISION 
 

All FOV algorithms we have discussed so far calculate the FOV from scratch and require the 
cells of the FOV grid to be initialized as either all non-visible or all visible. This initialization 

significantly affects performance at large grid sizes. Additionally, these FOV algorithms 

completely discard the previously calculated FOV when they reset the visibility information 
stored in the grid cells. 

 

Our second new FOV algorithm uses the previously calculated FOV rather than discarding it. 
This improves performance as this algorithm does not need to clear the grid and so it will need to 

assign fewer cell visibility statuses. Updating an FOV is possible because an FOV often needs to 

be re-calculated when the FOV source moves to an adjacent grid cell. Hence, it is likely that most 

FOV grid cells will have the same visibility status in both FOV calculations. Therefore, we may 
be able to compute the new FOV more efficiently if we update a previously calculated FOV 

instead of calculating it from scratch. 

 

3.1. Cones of Changing Visibility 
 

Updating a previously calculated FOV is conceptually more complex than calculating an FOV 
from scratch. When updating an FOV two FOV sources must be considered: S1, the source for 

which the FOV was previously calculated, and S2, the new source for which the FOV is being 

updated. Each vision-blocking rectangle has two relevant points when considering S1, and two 
relevant points when considering S2. A ray is cast from each relevant point in the opposite 

direction of each FOV source. A ray is considered to be visible from the FOV source from which 

it is cast. The four rays cast from a rectangle are grouped to form two ray pairs such that: 

 

· Each pair is made of one ray directed away from S1 and one ray directed away from S2. 

· Two of the rays in a pair share a relevant point and the other two rays either share a 
relevant point or lie on a common side of the rectangle. 
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The area between two rays in a pair, and possibly the common side of the rectangle containing 
their relevant points, is called a cone (see Figure 6(c)). When considered in isolation, a cone 

contains space which is occluded behind its rectangle from either S1 or S2, but not both. The two 

cones cast from a rectangle represent space where the visibility status may change when updating 

the FOV. The point within a cone that is closest to both S1 and S2 is called the origin of the cone. 
Figure 6 gives an example of how cones are created. From the preceding discussion we obtain the 

following observations. 

 
Proposition 1: The set of cones cast from all rectangles represent the only space where the 

visibility status may change when the FOV sources moves from S1 to S2. 
 

S2 S1 S2 S1 S2 S1

C2 C1

r2 r1

(a) (b) (c)  
 

Figure 6. (a) Rays and cell visibility for S1. (b) Rays and cell visibility for S2. (c) The rays pairs forming 

two cones C1 and C2, with their origin points marked with a circle. The rays forming C1 are cast from the 

same point, while the rays forming C2 are cast from different points. 

 

When considering a cone in isolation and the rectangle from which that cone is cast, one ray will 

always be adjacent to space which is visible to both FOV sources. This ray is called an outer ray, 

while the other is referred to as a cone’s inner ray. For example, in Figure 6(c), the two rays r1 

and r2 which are further away from the rectangle are the outer rays, and the two other rays are the 
inner rays. The outer ray of a cone is the only part of it which is visible to both FOV sources, this 

property will be used in Section 3.2. 

 
We classify cones into three categories based on the visibility of their origins. If the origin of a 

cone is visible to both S1 and S2, that cone is fully visible. If the origin of a cone is visible from 

S1 or S2, but not both, that cone is said to be transitioning visible. If the origin of a cone is 
neither visible from S1 nor from S2, that cone is said to be not visible. See Figure 7. 

 

S1 S2 S1 S2 S1 S2

R2 R2

(a) (b) (c)

R1 R1 R1

R2R2

 
 

Figure 7. (a) A fully visible cone. (b) A transitioning visible cone. (c) A not visible cone. 

 

3.2. Inverting Cones to Update Cell Visibility 
 

Note that from here onward we assume that the FOV source always moves from its current 
location to an adjacent cell of the grid, i.e. S1 and S2 are assumed to be at the centers of grid cells 

which share a side. This restriction means that the FOV source cannot move through or around a 

vision blocking rectangle in a single FOV update. The less common computer game scenario of 

the FOV source moving to a non-adjacent grid cell can be addressed by performing several FOV 
updates in which the FOV source moves to adjacent cells, or by re-calculating the FOV from 

scratch if the FOV source moves a large distance. 
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Inverting a cone C means to invert the visibility status of all grid cells which intersect C, but do 
not intersect C’s outer ray. Recall that we define a cell as visible to an FOV source if any part of 

it is visible, even the very edges. This definition is consistent with the definition of visibility used 

by Recursive Shadowcasting and Rectangle FOV. Figure 8 shows an example of cells whose 

visibility status change when a cone is inverted. 
 

S1 S2 S1 S2 S1 S2

C

ii ii ii

i i i

(a) (b) (c)

R1 R1 R1

 
 

Figure 8. (a) Cells not visible from S1 are darkened. (b) Cells not visible from S2 are darkened.(c) The 
visibility status of the cells highlighted in white is changed when cone C is inverted. Note that cell i just 

touches the inner ray of C, so its visibility status changes as it is visible only from S2. Cell ii just touches 

the outer ray of C, and so it can be seen by both sources. 

 

We present a series of lemmas below, which will allow us to show that to update the FOV we 

only need to invert all fully visible cones. 
 

Lemma 1: If the origin of a cone C2 is within another cone C1, then C2 is entirely within C1. 
 

Proof: Each cone is made from one ray directed away from S1 and one ray directed away from 

S2. Note that if one of the rays forming C2 is collinear with a ray of C1 (i.e. they both lie on the 
same straight line) then that ray of C2 is completely contained within C1. Thus, we assume that 

the rays forming C2 are not collinear with the rays forming C1, and so to prove the lemma we 

only need to show that the rays that form C2 do not cross the rays that form C1, as otherwise part 
of C2 would be outside of C1. 
 

Since rays which are cast from the same FOV source only intersect at the FOV source, we need 

only consider potential intersections between rays cast from different FOV sources. Since the 
origin of C2 is inside of C1, the straight line L1 that passes through S1 and the origin of C2 will 

intersect the straight line L2 that passes through S2 and the origin of C1 at either the origin of C2 

(if C2 is in L2) or at a point outside of C2. The same is true for the intersection of the line that 

passes through S1 and the origin of C1 and the straight line that passes through S2 and the origin 
of C2. Therefore, no part of C2 can be outside of C1.   

 

Lemma 2: Any part of a non-visible cone C that is visible to S1 or S2 must be contained within 
another cone. 

 

Proof: Consider a rectangle R that occludes the origin O of C from either S1 or S2. R defines two 
cones, and the region between the outer rays r1, r2 of these cones and R is either visible to neither 

FOV source, or is within one of the cones cast from R; O must be within this region. We consider 

two cases: 

 
1.  If O is within one of the cones cast from R, then by Lemma 1 C must be within that cone. 

2.  If O is not in any cone cast from R, then R must occlude O from both FOV sources. Let the 

outer ray r2 be directed away from S2. Note that r2 is on the same side of C as the ray of C 
directed away from S2, and similarly for S1 and r1. Using an argument similar to that used 
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in the proof of Lemma 1 we can show that the rays of C cannot cross r1 or r2, and so any 
part of C that is visible to S1 or S2 must be contained within the cones cast from R.  

 

Theorem 1: The FOV can be correctly updated when the FOV source moves from S1 to S2 by 

only addressing cells which intersect the fully visible cones. 
 

Proof: In order to correctly update the FOV, we must invert the visibility status of all cells whose 

visibility changes when the FOV source moves from S1 to S2. By Proposition 1 the cones contain 
all regions whose visibility changes when the FOV source moves, so all cells which change their 

visibility status must be within a cone. We show below that all cells which need to change their 

visibility status are within the fully visible cones.  
 

Let T be the set of all cones. We define the following partial order ≥ for the cones: 

 

· C1 ≥ C2 if the origin of cone C1 is inside cone C2. 

· C1 ≥ C2 if C1 is a non-visible cone and C2 is cast from a rectangle R that occludes the 

origin of C1 from S1 and S2. 
 

It is not hard to see that the relationship ≥ defines a valid partial order for the cones. We sort T in 

a manner consistent with the partial order ≥ so that if cone Ci appears before cone Cj in T then it 
cannot be that Cj ≥ Ci. We consider the cones of T one by one in this order and remove from T 

those cones that do not need to be inverted to correctly update the FOV: 

 
1.  Let the next cone C from T be transitioning visible. A transitioning visible cone has an 

origin which is visible from only one FOV source. Therefore, by the definition of cones the 

origin of C must be within another cone C2, and so by Lemma 1 cone C must be entirely 

contained within C2. Hence, we can remove C from T because the cells contained within C 
will have their visibility updated when C2 is inverted. Note that since C ≥ C2, cone C2 is 

still in T. 

 
2.  Let the next cone C from T be non-visible. The area of C which is visible to neither source 

does not change its visibility status when the FOV source moves, and so it should be 

ignored. By Lemma 2 the area of C which is visible to any source must be contained within 

other cones, and so the visibility status of all cells in this region will be updated when those 
cones are inverted. Note that Lemma 2 considers two cases: 

 

· When the origin of C is inside another cone C2. 

· When the origin of C is occluded from S1 and S2 by some rectangle R, and any area 

of C visible to at least one source is contained in some cone C2 cast from R. 
 

In both cases C ≥ C2. Therefore, all cells within C either will not change their visibility status, or 

their visibility status will be updated when inverting a cone C2 which intersects C, and so we can 
remove C from T. Note that since C ≥ C2, cone C2 is still in T. After processing the cones as 

described above, T will only contain fully visible cones. Thus, correctly updating the visibility 

status of all cells within fully visible cones will correctly update the FOV. 
  

3.3. Handling Intersections of Rectangles and Fully Visible Cones 
 

Consider a fully visible cone C and the rectangle R from which it is cast. When considering C 

and R in isolation, the outer ray of C is visible to S1 and S2, and the rest of C is only visible to 
one of the FOV sources. However, in an environment with many rectangles, some rectangles may 
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intersect C, causing some parts of C to be visible to neither FOV source. If any rectangle Ri 
intersects C, then C is shrunk as described below, such that we remove from it any regions 

occluded from both FOV sources by Ri. 

 

Before it is shrunk, a fully visible cone C is a region C′ which is bounded by an outer ray, an 
inner ray, and possibly a side of R. We call this region C′ the expanded cone of C. Note that if C 

is not shrunk then C = C′, otherwise C is contained in C′. 
 

Shrinking C is accomplished by shortening the existing rays of C′ and/or by adding new rays. 
There are three cases of intersection to consider between C and a single rectangle Ri: 
 

· If Ri intersects both rays of C′, then both rays of C′ are shortened so that they end as they 

intersect Ri. C is bounded by these new shorter rays, Ri, and possibly a side of R. 

· If Ri intersects only one ray r1 of C′, then r1 is shortened so that it ends where it intersects 

Ri. A new ray r2 is then added to C, which is directed away from the same FOV source as 
the inner ray of C′; r2 is cast from the relevant point of Ri which is inside of C′. C is then 

bounded by the shortened ray r1, the other ray of C′, Ri, r2, and possibly a side of R. 

· If Ri does not intersect either ray of C′, then Ri is completely within C′ and it effectively 

splits C′ in a manner which is similar to Recursive Shadowcasting. This requires adding 
two rays to C; one ray is cast from each relevant point of Ri with respect to the FOV source 

from which the inner ray of C′ is cast, and both rays are directed away from that FOV 

source. In this case C is bounded by the rays of C′, Ri, the two rays cast from Ri, and 
possibly a side of R. 

 

Note that for the purposes of cone shrinking, a ray of C is considered to intersect Ri even if it is 

colinear to a side of Ri, or it if contains one of Ri’s vertices. 
 

If multiple rectangles intersect C′, the cone is shrunk using the same process described above, 

considering the intersecting rectangles in increasing order of distance from the FOV sources. 

Figure 9 gives an example of a cone intersecting multiple rectangles. Rectangle R5 intersects two 

rays as in the first case, rectangles R3 and R4 intersect one ray as in the second case, and 
rectangle R2 intersects neither rays as in the third case. 
 

An important note to keep in mind is that if any rectangle intersects the outer ray of C′, then the 

outer ray is shortened as explained above. Even after being shrunk, the outer ray remains the only 
part of C which is potentially visible to both FOV sources. 

 

S1 R1

S2 R2

r1 R3

R4
R5

 
 

Figure 9. An example of a cone C intersecting multiple rectangles. The solid line and colored regions 

represent C, while the dotted lines represent the rays of the expanded cone C′. Note that the outer ray r1 is 

shortened due to intersection with R3. All rays except for r1 are cast from S2. 

 

When a cone C, the rectangle R from which C is cast, and all rectangles intersecting C are 

considered in isolation, each cell intersecting C but not intersecting its outer ray is visible to only 

one FOV source, while a cell intersecting the outer ray of C is visible to S1 and S2. However, 

additional rectangles not intersecting C may occlude parts of C from S1 or S2; these occluded 
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parts then must be within the intersection of C and other cones. Hence, from the above discussion 
we derive the following observation. 

 

Proposition 2: Each cell g which intersects a fully visible cone C but not its outer ray is either: 

 

· Visible to only one FOV source. 

· Not visible to either source. In this case g intersects the intersection of C with another fully 
visible cone C1, but g does not intersect the outer ray of C1. 

 

Each cell g intersecting the outer ray of a fully visible cone C is either: 
 

· Visible to both FOV sources. 

· Visible to only one source. In this case g intersects the intersection of C with another fully 

visibly cone C1, but g does not intersect the outer ray of C1. 

 
Lemma 3: If the outer ray of a cone C is cast from an FOV source S, no part of C, except possibly 

its outer ray, is visible from S. 

 

Proof: Without loss of generality, let S be S1. Let R be the rectangle from which C was cast. To 
show that no part of C other than possibly its outer ray is visible from S1, we show that the inner 

ray r1 of the expanded cone C′ of C does not cross the inner ray r2 of the other expanded cone 

cast from R (see Figure 10). We consider two cases: 
 

P1 r2 S1 P1 r2

S1 P2 R r1 S2 P2 R

S2 C′ r1

(a) (b)

C′

 
 

Figure 10. Examples for the two cases covered by Lemma 3. 

 

1.  The two relevant points P1, P2 of R with respect to S1 are adjacent vertices of R. Note that 
in this case the straight line passing through S1 and S2 must be parallel to the side of R 

containing P1 and P2. Since the minimum size of a side of R is the size of a square of the 

FOV grid, the distance between P1 and P2 is at least equal to the distance between S1 and 
S2. Therefore, r1 and r2 are either parallel or they diverge, and so they cannot cross (see 

Figure 10(a)).  

 
2.  P1 and P2 are not adjacent vertices of R (see Figure 10(b)). Consider a straight line L 

passing through P1 which is parallel to the straight line though S1 and S2. The distance 

between r1 and r2 measured along L is at least equal to the distance between S1 and S2. 

Therefore, by the above argument rays r1 and r2 cannot cross.    
 

We define the inner intersection of two intersecting cones as the intersection of the two cones 

excluding their outer rays. 
 

Lemma 4: The grid cells completely contained within the inner intersection of two fully visible 

cones C1 and C2 do not change visibility status when the FOV source moves from S1 to S2. 
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Proof: Let C1′ and C2′ be the expanded cones of C1 and C2 respectively. We consider three cases 
of intersection between C1′ and C2′, based on whether the intersection is bounded by two outer 

rays, two inner rays, or one of each. We show that the last two cases are not possible. 
 

1. If the intersection of C1′ and C2′ is bounded by two outer rays, then one ray must be cast from 
S1 and the other must be cast from S2. Let C1′ be the cone with the outer ray cast from S1 and let 

C2′ be the cone with the outer ray cast from S2. By Lemma 3, the inner intersection of C1′ and 

C2′ is not visible to S1 or S2. Therefore, any cell completely contained in the inner intersection of 

C1 and C2 will remain non-visible when the FOV source moves from S1 to S2. 
 

2. If the intersection of C1′ and C2′ is bounded by two inner rays, then one ray must be cast from 

S1 and the other must be cast from S2. Let the inner ray of C2′ be cast from S1 and the inner ray 

of C1′ be cast from S2. Then, by Lemma 3 the only part of C1′ that might be visible from S1 is its 
outer ray. Similarly, the outer ray of C2′ is the only part of C2′ that might be visible from S2. The 

inner intersection of C1′ and C2′ contains their inner rays, and so they would not be visible to 

either FOV source. But this is a contradiction because by definition a ray is visible from the 
source from which it was cast. 
 

3. If the intersection of C1′ and C2′ is bounded by an inner and an outer ray, then C1′ and C2′ 

cannot be cast from the same rectangle R. This is because if C1′ and C2′ were cast from R then 

the inner ray of C1′ and the outer ray of C2′ must be cast from the same FOV source and so they 
cannot intersect. Similarly, the outer ray of C1′ and the inner ray of C2′ must also be cast from 

the same FOV source and so they cannot intersect. 
 

S1 R1 C1 r3

S2 O1 r1 R2 C1′

O2 C2′ r2

 
 

Figure 11. An example of how cone shrinking prevents inner and outer rays from intersecting.C1′ and C2′ 
intersect, but C1 and C2′ do not. Both C1 and C1′ are labelled. C1 is bounded by the solid rays, while C1′ 

is additionally bounded by the dotted ray. 

 

Let C1′ be cast from a rectangle R1 and C2′ be cast from a rectangle R2. Since C1 and C2 (and 

therefore C1′ and C2′) are fully visible cones, the origin of one cone cannot be inside of the other. 
So, the only way in which the inner ray r2 of C2′ intersects the outer ray r1 of C1′ is if these rays 

are cast from different sources, and so the cones must be positioned as shown in Figure 11, or in a 

rotated or mirrored version of the figure. Without loss of generality, we assume the sources and 

rectangles are positioned and oriented as in Figure 11. The reasoning below can be rotated or 
mirrored to apply to any possible orientation of S1, S2, R1, and R2. 
 

First, we show that the outer ray r1 of C1′ must intersect R2. Note that if r1 does not intersect R2 

then r1 must lie either above R2 or below R2. Ray r1 cannot lie below R2 as then it would not 
intersect the inner ray r2 of C2′. Similarly, r1 cannot lie above R2 as then the minimum distance 

between any point in r1 and any point in r2 would be larger than the size d of a square of the 

FOV grid; since the distance between S1 and S2 is d then rays r1 and r2 would diverge.  
 

Consider the ray r3 cast from R2 away from S2 (See Figure 11). Ray r3 originates from one 
relevant point of R2 with respect to S2, while r2 originates from the other relevant point of R2 

with respect to S2. As these rays are both cast away from S2, they cannot intersect.  
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Corollary 1: Three or more fully visible cones cannot have a non-empty inner intersection. 
 

Proof: Let C1, C2, C3 be three intersecting fully visible cones. Without loss of generality let the 

outer ray of C2 be cast from S1 and the outer rays of C2 and C3 be cast from S2. Then, by 

Lemma 4 the intersection of C2 and C3 is bounded by their outer rays. However, these outer rays 
are colinear because both are cast from S2, and so the inner intersection of C2 and C3 (and thus 

the inner intersection of C1, C2, C3) is empty.   

    

Theorem 2: Inverting all fully visible cones in any order will correctly update the FOV when the 
FOV source moves from S1 to S2.  
 

Proof: By Theorem 1 and Proposition 1 the only cells that change visibility when the FOV source 

moves are those cells that intersect fully visible cones. Let g be a cell that intersects a fully visible 
cone. We consider several cases: 
 

1. If g intersects only one fully visible cone Ci then there are two possibilities: 
 

· Cell g does not intersect the outer ray of Ci. By Proposition 2, g is visible to at most one 
FOV source. If g is visible to only one FOV source then by the definition of cone 

inversion, inverting Ci will correctly change g’s visibility status. If g is not visible to any 

FOV source then by Proposition 2 g is in the intersection of Ci and another fully visible 

cone, but this contradicts the assumption that g intersects only one cone. 

· Cell g intersects the outer ray of Ci. By Proposition 2 g is visible to at least one FOV 
source. If g is visible to both FOV sources, then inverting Ci will correctly leave g’s visible 

status unchanged. If g is visible to only one FOV source then by Proposition 2 g is in the 

intersection of Ci and another fully visible cone, but this contradicts the assumption that g 
intersects only one cone. 

 

2. If g intersects n ≥ 2 fully visible cones, then there are several possibilities: 

 

· Cell g intersects fewer than n-2 outer rays and n ≥ 3. Then g is completely within the inner 
intersection of at least 3 fully visible cones, Which is not possible by Corollary 1. 

· Cell g intersects n-2 outer rays. Then g must be within the inner intersection of two fully 

visible cones Ci and Cj, so it intersects both cones but does not intersect either of their 

outer rays. By Lemma 4 g’s visibility status must not change, as g is not visible from S1 or 

from S2. Note that if both Ci and Cj are inverted independently, cell g will have its 
visibility status changed twice, which will result in it correctly being unchanged. The 

inversion of all other fully visible cones that g intersects will not further change the 

visibility status of g. 

· Cell g intersects n-1 outer rays. Then g must be completely within a fully visible cone Ci 
and thus its visibility status is correctly changed when Ci is inverted. By Proposition 2, g is 

visible from only one FOV source, as it is within Ci and intersects the outer rays of all 

other cones it intersects. Observe that inverting the other cones that g intersects does not 
change its visibility status as g intersects their outer rays. 

· Cell g intersects n outer rays. If at least one of these outer rays was cast from each source, 

then g is visible from both FOV sources and so inverting the n cones intersecting g will 

correctly leave the visibility status of g unchanged. On the other hand, if all these outer rays 

are cast from the same source, say S1, then g must also be visible from S2, as otherwise 
there must be a rectangle occluding g from S2 and thus g must be inside another cone, 

contradicting the assumption that g intersects n cones. 
 

Therefore, inverting all fully visible cones independently will correctly update the FOV.  
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We can efficiently identify the visibility status of the origins of cones by ordering the cones such 
that a fully visible cone always precedes all transitioning visible cones which are inside of it. The 

quadtree which stores the vision-blocking rectangles can be used to efficiently create the above 

ordering using a process similar to how rectangles were ordered in Section 2.2. By inverting the 

cones in this order, we ensure that any fully visible cone will be inverted before considering any 
transitioning visible cones within it. 
 

3.4. Inverting Fully Visible Cones 
 

After ordering the cones as described above, we invert the first fully visible cone in the 

order.Consider a cone C and the line b that bisects it. If the slope of b is between -π/4 and π/4, or 
between 3π/4 and 5π/4, then C is said to be primarily horizontal. Otherwise C is said to be 

primarily vertical. To invert a fully visible cone C, we invert the visibility status of the cells 

which intersect it, except for those cells which intersect its outer ray. If C is primarily horizontal 

we invert the visibility of each column of grid cells intersecting the cone, one at a time from 
closest to furthest to the cone’s origin. If C is primarily vertical, then we process the cells by 

rows. We process cells in this order to ensure that if a given cell is part of a vision blocking 

rectangle R, it will be processed before any of the cells in further rows or columns which may be 
occluded by R. Below we explain how to process columns of cells of a primarily horizontal cone; 

a similar process can be used to process rows of cells of a primarily vertical cone.  
 

When processing a column of cells within a cone C, we invert all cells of that column which 

intersect C, except for any cells which intersect C’s outer ray. After the visibility status for all 

cells in a column have been inverted, we check if any rectangle R intersects C at that column, as 
then R would occlude cells in further columns. If an intersection is found, the cone C is shrunk as 

described in Section 3.3. 
 

S1 R1

S2 R2

r1 R3

R4
R5

 

 
 

Figure 12: An example of cell visibility inversion for the primarily horizontal cone shown in Figure 9. 

Cells which have their visibility status inverted (highlighted in white), are all cells which intersect the cone 

but do not intersect the outer ray r1. Note that the cells within R2, R4, and R5 have their visibility status 

inverted. 

 

Note that while checking for intersection between a rectangle R and a cone C, we can also 

quickly identify any cones which are inside of C by storing the vertices of R which are inside of 

C in a hash table H. If any of those vertices are later found to be the origin of a cone, we know 

that such a cone must be inside of C and therefore it must be transitioning visible. 
 

After completing the first cone inversion as described above, we iterate over the remaining cones 

in the aforementioned order. If the origin of a cone is in the hash table H, we know that such a 
cone is transitioning visible and hence we discard it. If the origin of a cone is not in H, we check 

if that cone is fully visible or not visible. If the cone is fully visible it is inverted as described 

above, otherwise it is skipped. 
 

3.5. The FOV Update Algorithm 
 

The steps of the FOV Update algorithm are summarized in pseudocode below. We assume that 
an FOV has already been calculated and a quadtree of rectangles has been created: 
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Algorithm: FOV Update (S1, S2, G, Q) 
Input: Grid cells S1 & S2, grid G containing FOV from S1, quadtree Q of rectangles 

Result: The grid G will contain the FOV from S2 

Let T be the set of all cones cast from the rectangles in Q and H be an empty hash table. 

for each cone C in T, sorted as described at the end of Section 3.3: 
if C’s origin is not in H then: 

if the line traced from C’s origin to S1 does not intersect any rectangles in Q then: 

Invert the cells of G within C as described in Section 3.4. 
Store in H the relevant points of the rectangles in L that are inside of C. 

 

4. EXPERIMENTAL EVALUATION 
 

We present an experimental evaluation of Recursive Shadowcasting, Rectangle-Based FOV, and 

FOV Update. All tests were run a computer with an Intel Xeon E5-2683 processor and 24 

gigabytes of system memory. Our algorithm implementations were written in C++, compiled 
using GCC 8.3.1, and run under Linux Kernel 5.6.8. 
 

Environment 1: A fixed indoors environment made of 160 rectangles, with 36 square rooms 

connected by 74 corridors. This environment is constructed such that there is never an alignment 

of corridors which would allow the FOV source to see across many rooms. This is an enclosed 
environment where many cells and rectangles/cones will be occluded. 
 

Environment 2: A randomized environment where 200 rectangles of random sizes are placed at 

random positions on the FOV grid. This simulates a less “structured” environment, such as a 

forest. Each rectangle has a uniformly distributed random width and height between one and six 
cells. The position of each rectangle is chosen uniformly at random from all locations that do not 

intersect another rectangle. 
 

Environment 3: A randomized environment where 200 rectangles of random sizes are densely 

grouped around the center of the FOV grid and fewer rectangles appear further from the center. 
This simulates a more organized environment, such as a town. Each rectangle has a uniformly 

distributed random width and height between one and six cells. The position of each rectangle is 

chosen using a random distribution which results in more positions near the center of the grid. 
 

Environment 4: A fixed environment which uses 300 rectangles to emulate the visibility grid 
used in League of Legends [1]. This tests the FOV algorithms using an environment taken from 

an existing game that includes a mixture of enclosed spaces and large open pathways. 
 

For the four above environments (shown in Figure 13) we tested the algorithms with 25 randomly 
generated paths of 100 cells each. Each path was constructed by randomly selecting a non-vision 

blocking starting cell and a random direction. The starting cell and selected direction define a ray. 

Cells which intersect this ray were added to the path in ascending order of distance from the 

starting cell. If the next cell to add to the path belongs to a vision-blocking rectangle, a new 
random direction was generated and further cells were added to the path using that new direction. 

This continued until the path contained 100 cells. 
 

The FOV was calculated for each cell along the path in the order in which the cells appear in the 

path. We used paths in these test environments to mimic scenarios arising in computer games, 
where the FOV source moves through the grid following a game character. In the case of FOV 

Update, for each path we first computed an initial FOV using the Rectangle-Based FOV 

algorithm, and then measured the running time of updating the FOV for every position of the 

FOV source along the path. Each test environment uses a fixed number of rectangles; as the grid 
size increases the sizes of the rectangles is increased by the same proportion. 
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Figure 13. Environments 1, 2, 3, and 4 on a grid of size 128*128. 

 

Table 1. Running times for Environment 1. 

Smallest mean running times and smallest standard deviations are highlighted in blue. 
 

 Shadow Rectangle Update 

Grid Size Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

128*128 6.5 μs 1 μs 205 μs 20 μs 170 μs 24 μs 

256*256 21 μs 3 μs 259 μs 26 μs 174 μs 25 μs 

512*512 80 μs 14 μs 401 μs 39 μs 188 μs 27 μs 

1024*1024 290 μs 43 μs 774 μs 68 μs 204 μs 46 μs 

2048*2048 1,342 μs 278 μs 2,001 μs 163 μs 249 μs 77 μs 

4096*4096 6,665 μs 1473 μs 10,269 μs 765 μs 356 μs 140 μs 

 

Environment 1 is designed to have a relatively low number of visible cells from any FOV source 

position. The low number of visible cells is an advantage for Recursive Shadowcasting and a 

disadvantage for Rectangle FOV. Rectangle FOV is only about 50% slower that Recursive 
Shadowcasting at large grid sizes, despite having to assign many more cell visibility statuses, as 

Rectangle FOV starts with all cells set to visible. This shows that when compared to Recursive 

Shadowcasting, Rectangle FOV’s more efficient method of cell assignment makes a very 
significant difference to running time, even in environments where Rectangle FOV has to assign 

many more cell visibility statuses than Recursive Shadowcasting. 
 

The low number of visible cells in this environment is also an advantage to FOV Update, as it 

results in a high number of non-visible cones and a low number of cells which change visibility 
status as the FOV source moves. Because of this, FOV Update is faster than Rectangle FOV and 

it is up to 20 times faster than Recursive Shadowcasting at large grid sizes. FOV update’s running 

time is not strongly affected by grid size in this case due to the low number of cell visibility 
assignments that it needs to make. 
 

The running times for Environment 1 have the lowest standard deviations of Environments 1-4. 

This is expected as Environment 1 has a low variance in the number of cells visible from any 

point, as the shape of the environment ensures that only one room can be fully visible regardless 
of where the FOV source is positioned. Because of this, the running times of the algorithms are 

not as strongly affected by the position of the FOV source. 

Table 2. Running times for Environment 2. 
 

 Shadow Rectangle Update 

Grid Size Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

128*128 17 μs 6.5 μs 300 μs 49 μs 468 μs 137 μs 

256*256 54 μs 16 μs 358 μs 52 μs 504 μs 135 μs 

512*512 201 μs 53 μs 494 μs 77 μs 595 μs 152 μs 

1024*1024 777 μs 289 μs 943 μs 172 μs 763 μs 243 μs 

2048*2048 3,898 μs 1,747 μs 2,176 μs 277 μs 1,073 μs 366 μs 

4096*4096 19,345 μs 8,426 μs 7,347 μs 1,059 μs 1,863 μs 821 μs 
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Recursive Shadowcasting has larger running times in Environment 2 when compared to 
Environment 1, as Environment 2 has many more visible cells. Due to this increased running 

time, it is slower than Rectangle FOV when grid size is large. When comparing Rectangle FOV’s 

running times between Environments 1 and 2 the running times for Environment 2 are slower at 

most grid sizes, but are faster at grid size 4096*4096. At lower grid sizes Rectangle FOV’s 
running time is primarily determined by the number of rectangles, and so its running time is 

slower than in Environment 1 as more rectangles are present in Environment 2. At 4096*4096 

Rectangle FOV’s running time is primarily determined by its efficiency of assigning cell 
visibility statuses, and so it is faster than in Environment 5 as fewer cell visibility statuses need to 

be assigned in Environment 2. 
 

Many more cells may change visibility status in Environment 2 than in Environment 1 when the 
FOV source moves, and so FOV Update’s running time is more significantly affected by grid size 

than in the previous environment. FOV Update is much faster than the other two algorithms as 

grid size becomes large, as it changes the visibility status of fewer cells. 
 

Table 3. Running times for Environment 3. 

 

 Shadow Rectangle Update 

Grid Size Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

128*128 25 μs 9.7 μs 272 μs 35 μs 471 μs 138 μs 

256*256 83 μs 35 μs 314 μs 43 μs 466 μs 142 μs 

512*512 343 μs 169 μs 431 μs 64 μs 489 μs 146 μs 

1024*1024 2,132 μs 809 μs 832 μs 117 μs 676 μs 173 μs 

2048*2048 11,529 μs 5,592 μs 2,072 μs 226 μs 969 μs 269 μs 

4096*4096 46,203 μs 25,962 μs 6,710 μs 1,007 μs 1,331 μs 539 μs 

 

The running times of Recursive Shadowcasting are much higher for Environment 3 than for 

Environment 2 because the clustering of the vision blocking rectangles results in a high number 

of visible cells when the FOV source is not in the center of the grid, which causes Recursive 
Shadowcasting to calculate the visibility status of many cells. This also explains the high standard 

deviation of Recursive Shadowcasting, as visibility is low if the FOV is near the center of the 

grid, and high otherwise. FOV Update’s faster running times here than in Environment 2 are due 

to the clustering increasing the number of rectangles that occlude each other. This reduces the 
number of cones that the algorithm needs to process. 

 

Table 4. Running times for Environment 4. 
 

 Shadow Rectangle Update 

Grid Size Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

128*128 13 μs 6.5 μs 403 μs 57 μs 558 μs 220 μs 

256*256 46 μs 24 μs 482 μs 78 μs 566 μs 223 μs 

512*512 163 μs 75 μs 656 μs 100 μs 590 μs 219 μs 

1024*1024 844 μs 468 μs 1,173 μs 210 μs 687 μs 328 μs 

2048*2048 4,157 μs 2,780 μs 2,643 μs 472 μs 802 μs 432 μs 

4096*4096 22,007 μs 13,698 μs 8,692 μs 1,724 μs 1,247 μs 765 μs 

 

Despite Environment 4 being more “enclosed” than Environments 2 and 3, Recursive 

Shadowcasting performs poorly here. Because the large open pathways in this environment can 

result in a high number of visible cells. Recursive Shadowcasting’s running time is primarily 
determined by the number of visible cells. This also explains the high standard deviation of 

Recursive Shadowcasting, as if the FOV source is not in a pathway, but in one of the four clusters 

of rectangles, then there will be relatively few visible cells. Both Rectangle FOV and FOV update 
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perform similarly to Environment 3 here. This makes sense as Environment 4 also involves many 
clustered rectangles which may occlude each other. 
 

5. CONCLUSION 
 

In this paper we presented two new algorithms for calculating Field of Vision over 2D grids, with 

the goal of making FOV calculation feasible at high grid sizes. Rectangle FOV accomplishes this 
by representing vision-blocking terrain in a compact and efficient manner. FOV Update uses this 

compact representation and a previously calculated FOV to calculate a new FOV with a minimal 

number of cell visibility status assignments. We then compared these algorithms to Recursive 

Shadowcasting, the previously fastest FOV algorithm. From this experimental evaluation, we 
made the following observations: 
 

Our algorithms address the deficiencies of Resursive Shadowcasting when many cells are visible; 

however, our algorithms have limitations of their own when few cells are visible or when an FOV 
has not yet been calculated. When calculating an FOV from scratch, Recursive Shadowcasting 

performs best at low grid sizes and enclosed environments, while Rectangle FOV performs best 

at high grid sizes. Our FOV update algorithm is superior to the other two algorithms at medium 
and high grid sizes, but an FOV must be calculated first. Because of this, there is no universal 

best FOV algorithm. 
 

Based on our experimental results, we recommend the use of a combination of algorithms if 
fastest computation of the FOV is desired: 
 

• An FOV should be updated using FOV Update when grid size is above 512*512. At lower 

grid sizes, or when FOV needs to be calculated from scratch, one of the below algorithms 
should be used. 

• An FOV should be calculated with Recursive Shadowcasting when grid size is 512*512 or 

lower, or when the environment is very “enclosed” (e.g. Environment 1). 

• An FOV should be calculated with Rectangle FOV when grid size is above 512*512 and 
the current environment is not very “enclosed” (e.g. Environments 2-4). 

 

However, not all implementors will care about minimizing average running time and would 

perhaps prefer to minimize the chance that FOV calculation takes long enough to be problematic. 
Recall that, as discussed at the end of Section 1.1, computer games generally compute a new 

display frame roughly every 17ms, though this time can be as low as 4ms on a modern display. 

FOV does not need to be calculated for every frame, but its computation must be fast enough to 
not delay frame rendering or starve other game processes of system resources. 
 

Our algorithms have much more consistent performance than Recursive Shadowcasting due to 

their running time not being as strongly affected by the number of visible cells. Recursive 
Shadowcasting’s highest mean running time was 46ms (with a very high standard deviation), 

Rectangle FOV’s was 10ms, and FOV Update’s was 1.8ms. Therefore, if an implementor would 

prefer to ensure that the running time of the FOV algorithm is always adequate, our algorithms 

can be used in all cases. The initial FOV calculation can be performed with Rectangle FOV, and 
subsequent FOV calculation can be performed with FOV Update in. Additionally, the initial FOV 

calculation can occur while the game is loading an environment and displaying a loading screen, 

which would eliminate the possibility for Rectangle FOV’s running time to cause issues. 
 

When evaluating these algorithms we tried to not make assumptions about how a particular game 

may use the FOV, so there is room for further improvements when certain assumptions are made. 
For example, the running times of Rectangle FOV and FOV Update might be improved in games 
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with environments similar to Environment 1 or Environment 4 by using portal-based occlusion 
culling. Portal-based culling would allow these algorithms to determine which portions of a more 

“structured” environment are not visible, which would allow the algorithms to skip many 

visibility checks and avoid resetting the entire FOV grid. Portal based culling is likely to not be 

effective in less “structured” environments such as Environment 2 or Environment 3, where the 
added overhead might result in increased running time. 
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