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In the first part we deal with the question which points we have to connect
to generate a non self-intersectioning polygon. Afterwards we introduce polyholes,
which is a generalization of polygons. Roughly spoken a polyhole is a big polygon,
where we cut out a finite number of small polygons.
In the second part we present two ‘centers’, which we call center and barycenter . In
the case that both centers coincide, we call these polygons as nice. We show that if
a polygon has two symmetry axes, it is nice. We yield examples of polygons with a
single symmetry axis which are nice and which are not nice.
In a third part we introduce the Spieker center and the Point center for polygons.
We define beautiful polygons and perfect polygons. We show that all symmetry axes
intersect in a single point.
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1 Introduction

We look for a criterion to generate a simple polygon.
Let us assume a set of k + 1 points called Points ⊂ R2, Points := {(x1, y1), (x2, y2), . . . (xk−1,
yk−1), (xk, yk), (xk+1, yk+1)}. We joint the possible edges. We define the subset Union of R2,
Union :=

⋃
{[(xi, yi), (xi+1, yi+1)]} for i ∈ {1, 2, . . . k − 1, k}. With the expression ‘[a, b]’ we

mean all points between a and b and the boundaries a and b. We say that Union is suitable if
and only if Union is homeomorphic to the circle {x2 + y2 = 1 | x, y ∈ R}.

Definition 1.1. We presume k + 1 points (xi, yi) of R2 where 1 ≤ i ≤ k + 1 and k > 2. We
name Union as a polygon if and only if it holds (xk+1, yk+1) = (x1, y1). The element (xi, yi) is
called a vertex. We call a polygon such that Union is suitable as simple polygon. If we have a
simple polygon we include its interior.

2 Star-Shaped Polygons

We can start also with a circle {(x, y) ∈ R2 | x2 +y2 = 1}, We presume a finite set called A of k
different points on the circle, where k > 2 and A := {~a1,~a2, . . . ~ak−1,~ak} is in counterclockwise
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order. We change it into a set H := {~h1,~h2, . . . ~hk−1,~hk} such that the three points ~hi,~ai and
(0, 0) are collinear and (0, 0) is not between ~ai and ~hi. We keep the order as in A. We move
all points with the same vector ~m, i.e. Z := {~z1, ~z2 . . . zi . . . ~zk−1, ~zk} ⊂ R2 where 1 ≤ i ≤ k
and ~zi := ~hi + ~m. We keep the order. We call a polygon with a set of vertices Z := {~z1, ~z2, . . .
~zk−1, ~zk} as a star-shaped polygon if and only if Z provided with an appropriate order can be
constructed as it is just described. We add ~zk+1 := ~z1. Please see the following Proposition 2.2.

Question 2.1. Is there an alternative description of star-shaped polygons? Is every convex
simple polygon a star-shaped polygon?

Proposition 2.2. We get a simple polygon P if there is a finite set of points Z := {~z1, ~z2, . . .
~zk−1, ~zk, ~zk+1} ⊂ R2 constructed as above where k > 2 and

P :=
⋂
{ W ⊂ R2 | Z ⊂W, where W is homeomorphic to the circle area {x2 + y2 ≤ 1} and

the points between ~zi and ~zi+1, 1 ≤ i ≤ k − 1, including ~zi and ~zi+1 are a subset of W

and also the points between ~zk and ~z1 belong to W }

Proof. The claim of the proposition is trivial, since Union is a suitable set.

It follows that a star-shaded polygon is a compact set, homeomorphic to any circle, and for all
1 ≤ i ≤ k the vertex ~zi is a boundary point.
We get that a triangle is a star-shaped polygon, too.

We assume a set of points {(x1, y1), (x2, y2), (x3, y3), . . . (xk−1, yk−1), (xk, yk), (xk+1, yk+1)}
of R2. We call this set Points. We demand that in Points three successive elements are dis-
tinct and not collinear. We assume k > 2. We connect the points of Points by the given order
and we call this set Union. In the case that Union is homeomorphiv to a circle we get a simple
polygon. For k = 3 the polygon is a triangle.

Proposition 2.3. If we have a set of k + 1 points Points := {(x1, y1), (x2, y2), . . . (xk, yk),
(xk+1, yk+1)} with (xk+1, yk+1) = (x1, y1) and k > 2, we get a simple polygon if and only if the
set Union is suitable.

Proof. Trivial.

3 Polyholes

We define a subset of R2, which we will call a polyhole. This geometric structure consists of a
finite number of simple polygons P, P1, P2, P3, . . . Pm−1, Pm. From the polygon P we cut out
polygons P1, P2, P3, . . . Pm−1, Pm.

Definition 3.1. Let {P, P1, P2, P3, . . . Pm−1, Pm} be a set of simple polygons. A polyhole is
defined as P without P1 ∪ P2 ∪ P3 ∪ . . . ∪ Pm−1 ∪ Pm

A corresponding definition is possible for polytops.

Definition 3.2. Let {P, P1, P2, P3, . . . Pm−1, Pm} be a set of polytops in Rn. A polytophole is
defined as P without P1 ∪ P2 ∪ P3 ∪ . . . ∪ Pm−1 ∪ Pm.

Question 3.3. What is the barycenter of a polyhole, if it is realized with homogeneous material
of constant thickness? What is the barycenter of a polytophole in R3, if it is realized with
homogeneous material?
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4 Nice Polygons

We define two ‘centers’, where the center Cent is just the arithmetic means of the first and
second coordinates of the generating points, respectively.
We got the following formulas for the barycenter B = (Bx, By) of a simple polygon from [1]
or [2]. Please see also [3] and [4]. Area is the area of a simple polygon. Note that Area 6= 0,
and that in [1] and [3] the barycenter is called a Centroid, and further that B is the center of
gravity of the polygon, if it is realized with homogeneous material of constant thickness. Note
that the order in the polygon is counterclockwise. We write

Di = xi · yi+1 − xi+1 · yi, where 1 ≤ i ≤ k (4.1)

Area =
1

2
·

k∑
i=1

Di (4.2)

Bx =
1

6 · Area
·

k∑
i=1

(xi + xi+1) ·Di, By =
1

6 · Area
·

k∑
i=1

(yi + yi+1) ·Di (4.3)

Cent =
1

k
·

(
k∑

i=1

xi,
k∑

i=1

yi

)
(4.4)

Definition 4.1. Let us presume a simple polygon P . We call P nice if and only if it holds
B = Cent.

Remark 4.2. When we use the term symmetry axis of a polygon P we mean a line segment
s in the convex hull of P of maximal length, i.e. it holds for a symmetry axis t in the convex
hull of P with more than one common point with s that t ⊂ s.

Proposition 4.3. If a simple polygon has two different symmetry axes, it is nice

Proof. The proposition is an easy consequence of the following important two lemmas.

Lemma 4.4. Let P be a polygon. The following two operations yield a polygon again. The
property of being nice or being not nice remain under these operations.
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• Revolving P by an arbitrary angle around any point

• Shifting P by an arbitrary vector

Proof. We assume B 6= Cent. Let us revolve P by an arbitrary angle around any point. There
is a positive distance d between B and Cent. It will be kept, since a rotation is a distance
preserving map. Hence the distance between the images points of B and Cent is also d. After
the rotation still P is not nice.
In the case B = Cent the claim of the lemma is trivial.

Lemma 4.5. Both operations which we have mentioned above in Lemma 4.4 are distance
preserving operations. Therefore the shape of a polygon is kept after these operations.

Proof. Trivial.

In a polygon we fix four real numbers.

Definition 4.6. Let Points be the set of vertices of a polygon P . We define
minx := minimum of the set of the first coordinates of the set of the vertices Points of P .
miny := minimum of the second coordinates of Points,
maxx := maximum of the first coordinates of Points,
maxy := maximum of the second coordinates of Points.
We define a rectangle called Rectangle(P ) by four vertices
(maxx,maxy), (minx,maxy), (minx,miny), (maxx,miny).

Remark 4.7. In a polygon P it holds that both P and the convex hull of Points is in
Rectangle(P ).

Definition 4.8. Let s = {~a + r · ~d | r ∈ [m,n] for fixed real numbers m,n} be a symmetry
axis of a polygon. We define l(s) as the line {~a + r · ~d | r ∈ R}.

Remark 4.9. It holds that s is a subset of l(s).

Lemma 4.10. Let s be a symmetry axis of a simple polygon P . Both B and Cent are on the
line l(s) ∩ Rectangle(P ).

Proof. We assume a simple polygon P with a symmetry axis s and centers B and Cent. Note
that B is the center of gravity of P . Hence B must be on l(s), since s is a symmetry axis of P .
For the same reason B is in Rectangle(P ).
We use Lemma 4.5. We map P by a rotation and a shift parallel the vertical y axis into a second
polygon P ′ with a symmetry axis s′ and centers B′ and Cent′ such that s′ is on the x axis.
Assume a vertex (x′, y′) of P ′. Since s′ is a symmetry axis and it is on the x axis either y′ = 0
or there is a second vertex (x′,−y′) of P ′. If we add all vertices together we get Cent′ = (c′, 0)
with any real number c′, i.e. Cent′ is on the x axis. This means that Cent′ is on l(s′). Since
P ′ has the same shape as P we get that Cent is on l(s).
It is easy to show that Cent is a point in Rectangle(P ): It holds

minx =
1

k
·

k∑
i=1

minx ≤
1

k

k∑
i=1

xi ≤
1

k

k∑
i=1

maxx = maxx (4.5)

If we consider correspondingly the second coordinate of Cent we get miny ≤ 1
k

∑k
i=1 yi ≤

maxy, and it follows that Cent is in Rectangle(P ).
We get that Cent is in l(s) ∩Rectangle(P ). Lemma 4.10 has been proved.
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Two symmetry axes intersect in a single point. It is both B and Cent. The proof of Proposition
4.3 is finished.

Corollary 4.11. In a simple polygon all symmetry axes intersect in a single point. It is both
B and Cent. It follows that a simple polygon with more than one symmetry axis is nice.

Note that a single symmetry axis is not sufficient, as the kite defined by (0, 0), (1,−1), (3, 0), (1, 1)
shows, since 5

4 6=
4
3 . It is not nice.

It follows an example of a polygon with a single symmetry axis which is nice.
Take the 5-gon with vertices

(0, 0), (1, 0), (1, 1),

(
1

2
, 1 +

1

2
·
√

6

)
, (0, 1). We get B = Cent =

(
1

2
,

1

10
·
(

6 +
√

6
))
≈ (0.50, 0.85)

(4.6)
The last example proves that the conjecture that besides triangles only polygons with two or
more symmetry axes are nice is wrong.

5 Spieker Center and Point Center

In a triangle the Spieker center is well-known. We have got the formulas of the Spieker center
from [4]. Please see also [5]. The Spieker center is the barycenter of a triangle A = (xA, yA), B =
(xB, yB), C = (xC , yC) without the interior, which is formed by a wire of constant thickness.
The barycenter is outside the wire. The sidelengths of the triangle are l1, l2 and l3, where sides
with lengths l2 and l3 intersect in A, while sides with lengths l1 and l3 intersect in B. The
coordinates of the Spieker center S = (spiekerx, spiekery) are

spiekerx =
(l2 + l3) · xA + (l1 + l3) · xB + (l1 + l2) · xC

2 · (l1 + l2 + l3)
and (5.1)

spiekery =
(l2 + l3) · yA + (l1 + l3) · yB + (l1 + l2) · yC

2 · (l1 + l2 + l3)
(5.2)

The concept of the Spieker center can easily be generalized on polygons. We imagine the
polygon is made from a wire of constant diameter. We look for its center of gravity; it is gen-
erally outside the wire. We consider a new polygon, constructed by k mass centers. Therefore
it also has k vertices. We compute the Point center of the new polygon. The Point center of
a r-gon is defined by the imagination that the masses are in the vertices of the polygon. Let
m1,m2, . . .mr−1,mr be r masses. The polygon has the Point center Point = (pointx, pointy).

pointx =
1

M
·

r∑
i=1

mi · ai (5.3)

pointy =
1

M
·

r∑
i=1

mi · bi, and (5.4)

M =
r∑

i=1

mi is the sum of the masses and (5.5)

(a1, b1), (a2, b2), . . . (ar−1, br−1), (ar, br) are different vertices of the polygon. (5.6)
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To calculate the Spieker center of a given simple polygon we have to consider a new polygon,
constructed by k mass centers of the k edges. Therefore it also has k vertices. We assume that
in the new polygon the masses are on these k vertices. The Spieker center of the given polygon
is the Point center of the new polygon. The formulas are

spiekerx =
1

U
·

k∑
i=1

li ·
(

1

2
· (xi + xi+1)

)
=

1

2 · U
·
k+1∑
i=2

(li + li−1) · xi (5.7)

spiekery =
1

U
·

k∑
i=1

li ·
(

1

2
· (yi + yi+1)

)
=

1

2 · U
·
k+1∑
i=2

(li + li−1) · yi (5.8)

where li =
√

(xi − xi+1)2 + (yi − yi+1)2 and U =

k∑
i=1

li (5.9)

We define lk+1 := l1. Note the indices in the formulas! Note that it holds (xk+1, yk+1) = (x1, y1).
The variable ‘li’ means the length of one edge of the polygon. Every edge [(xi, yi), (xi+1, yi+1)]
has a center of gravity 1

2 · ((xi, yi) + (xi+1, yi+1)). U is the perimeter of the polygon.
As an example we take the 5-gon of above. Its Spieker center is about (0.50, 0.93). In exact
coordinates it is(

1

2
,

1

6 + 2 ·
√

7
·
(

2 + 2 ·
√

7 +
1

2
·
√

42

))
=

(
1

2
,
√

7− 2 +
1

8
·
(

3 ·
√

42−
√

294
))

. (5.10)

Definition 5.1. Let us presume a simple polygon P . We call P beautiful if and only if it holds
that B equals the Spieker center. We call P perfect if and only if all three centers are the same,
i.e. it holds that B equals both Cent and the Spieker center.

Lemma 5.2. Let s be a symmetry axis of a simple polygon P . The Spieker center is on the
line l(s) ∩ Rectangle(P ).

Proof. The segment s is a symmetry axis both for the entire polygon and for its contour.
Therefore the Spieker center is on s. Because the Spieker center is the barycenter of the
contour it has to be in Rectangle(P ).

Proposition 5.3. Let a simple polygon has two or more symmetry axes. Then it is perfect and
all symmetry axis intersect in a single point.

Proof. The three points B,Cent and the Spieker center all are on the line determined by a
symmetry axis. There is only a single possibility that all points are on every symmetry axis.

Conjecture 5.4. In a simple polygon which is not a triangle we have that B = Cent if and
only if B = Cent = Spieker center.

Conjecture 5.5. A triangle is perfect if and only if it is an equilateral triangle.

Conjecture 5.6. A r-gon is perfect if and only if it is an regular r-gon.

Conjecture 5.7. A simple polygon is beautiful if and only if it has more than one symmetry
axis. In other words it holds that we have B = Spieker center if and only if B = Spieker center
= Cent.
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Hegelstrasse 101
28201 Bremen, Germany
49 (0) 421 591777
volker@thuerey.de
Orcid: 0000 - 0001 - 7774 - 8189

7


