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Abstract

In many inference problems, the evaluation of complex and costly models is often required.

In this context, Bayesian methods have become very popular in several fields over the last

years, in order to obtain parameter inversion, model selection or uncertainty quantification.

Bayesian inference requires the approximation of complicated integrals involving (often

costly) posterior distributions. Generally, this approximation is obtained by means of Monte

Carlo (MC) methods. In order to reduce the computational cost of the corresponding

technique, surrogate models (also called emulators) are often employed. Another alternative

approach is the so-called Approximate Bayesian Computation (ABC) scheme. ABC does not

require the evaluation of the costly model but the ability to simulate artificial data according

to that model. Moreover, in ABC, the choice of a suitable distance between real and artificial

data is also required. In this work, we introduce a novel approach where the expensive model
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is evaluated only in some well-chosen samples. The selection of these nodes is based on the

so-called compressed Monte Carlo (CMC) scheme. We provide theoretical results supporting

the novel algorithms and give empirical evidence of the performance of the proposed method

in several numerical experiments. Two of them are real-world applications in astronomy and

satellite remote sensing.

Keywords: Numerical Inversion, Bayesian inference, Particle Filtering, Importance

Sampling, Astronomy, Remote Sensing.

1 Introduction

In many areas of science and engineering, systems are analyzed by studying physical models and

running computer simulations, which serve as convenient approximations to reality. Depending on

the body of literature, they are known as physics-based, processed-oriented, mechanistic models,

or simply simulators [1, 2]. Simulators and their corresponding surrogate models are ubiquitous

in physics, brain, Earth, climate, and social sciences [3–7], but also in industrial environments for

developing new manufactured products and infrastructures, to quantify performance of engineering

systems, to understand and assess supply chains, or in robotics and vehicle design [8–11]. Model

simulations are needed to understand system behaviour, but also to perform interventional and

counterfactual studies.

Since common forward models (simulators) are computationally costly, both running

simulations or inverting them for parameter prediction becomes a big challenge. Machine learning

models are widely used to learn both the forward and inverse functions, and nowadays they

routinely replace complex models and sub-components to improve scalability and mathematical

tractability. These models are commonly known as emulators and report excellent accuracy-

speedup trade-offs compared to simulators, besides elegant ways to do uncertainty quantification,

error propagation, and sensitivity analysis [12].
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Bayesian methods are often applied for parameter inversion, model selection or uncertainty

quantification [13, 14]. In their common implementation, these techniques require the evaluation

of the possible complex and costly model. When the model is particularly expensive (or its

pointwise evaluation is impossible), generally two approaches are employed. In the first one,

the true model is replaced by a surrogate model (i.e., an emulator) that could be adaptively

improved [15–18]. Then, Bayesian inference is carried out on the approximate and cheaper model.

The second approach is the so-called approximate Bayesian computation (ABC) [19–21]. In the

standard ABC scheme, model evaluation is substituted by evaluating a distance between the

observed data and some artificial data generated according to the model. Therefore, ABC does

not need to evaluate the model but to simulate artificial data from it. Different types of distances

can be used. It is important to remark the choice of distance can be interpreted as a choice of an

approximate observation model.

In this work, we consider an alternative approach. The core idea is to reduce the number

of true model evaluations by a suitable selection of the inputs where we evaluate the model. In

this way, we can obtain a great reduction in the required computational time, at the expense

of a slight increase of the estimation error. The key point is a proper selection of inputs where

to evaluate the costly model. We present the novel approach in the context of particle filtering

where the variables of interest can also vary with time. The method is based on a technique

called compressed Monte Carlo (CMC) scheme, which summarizes the information contained in

N weighted Monte Carlo samples into M < N weighted particles (called summary particles),

based on a stratification approach [14, 22]. We aim at reducing the loss of information in terms

of moment matching, in a similar fashion of the deterministic-based quadrature rules [23–28]. We

provide different theoretical results supporting the novel approach.

We also give empirical evidence of the performance of the proposed method in four different

numerical experiments, both over simulations and real challenging problems. In particular, we

consider the problem of object detection (planets, satellites, etc.) in an N -body system observed
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from the Earth. The observation model is complex and costly, especially for some set of parameters

(see Section 6). The second real model considers the inversion of a radiative transfer model (RTM)

which encodes the energy transfer through the atmosphere. This model is used to understand and

model vegetation, as well as to estimate the parameters that describe the status of the Earth from

satellite observations by inversion.

The paper is structured as follows. Section 2 describes the problem statement and recalls

some background material. In Section 3, we introduce the CMC approach. In Section 4, we

provide some theoretical results. In Section 5, we introduce the novel compressed particle filtering

algorithms. Numerical simulations are given in Section 6. Finally, some conclusions are provided

in Section 7.

2 Problem statement

In many real-world applications, it is required to characterize the posterior probability density

function (pdf) of a set of unknown parameters given the observed data. More specifically, denoting

the vector of unknowns as x = [x1, . . . , xdX ]> ∈ D ⊆ RdX and the observed data as y ∈ RdY , the

pdf is defined as

π̄(x|y) =
`(y|x)g(x)

Z(y)
∝ `(y|x)g(x) = π(x|y), (1)

where π̄(x|y) and π(x|y) denote the normalized and unnormalized posterior, respectively, `(y|x)

is the likelihood function, g(x) is the prior pdf, and Z(y) is the normalization factor, which is

usually called marginal likelihood or Bayesian model evidence. Hereinafter, we will remove the

dependence on y to simplify the notation. A generic integral involving the density of the random
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variable X ∼ π̄(x) = 1
Z
π(x) is given by

I(h) , Eπ̄[h(X)] =

∫
D
h(x)π̄(x)dx

=
1

Z

∫
D
h(x)π(x)dx, (2)

where h(x) is an integrable function of x.1 For the sake of simplicity, we assume that the functions

h(x) and π̄(x) are continuous in D, and the integrand function, h(x)π̄(x), in Eq. (2) is integrable.

In many practical scenarios, we cannot obtain an analytical solution for (2), and Monte Carlo

methods are often applied. More generally, we are interested in obtaining a particle approximation

π̂(N)(x) of the measure of π̄(x), formed by a cloud of weighted samples [13]. See next section, for

further details.

2.1 Importance Sampling (IS) approximations

A well-known Monte Carlo approach is the importance sampling (IS) technique [14, 29]. Let us

consider N samples {xn}Nn=1 drawn from a proposal pdf, q(x), such that q(x) > 0 where π̄(x) > 0.

We also assume that q(x) has heavier tails than the target, π̄(x), since this assumption ensures

that the resulting IS estimator has finite variance [13,14]. We assign a weight to each sample and

then we normalize them as follows,

wn =
π(xn)

q(xn)
, w̄n =

wi∑N
j=1wj

, (3)

1We assumed h(x) : RdX → R and the integral I(h) ∈ R is a scalar value. However, more generally, we have
h(x) : RdX → Rν and I(h) ∈ Rν where ν ≥ 1. For simplicity, we keep the simpler notation with ν = 1.
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with n = 1, . . . , N . Therefore, the moment of interest can be approximated as

Î(N)(h) =
1

NẐ

N∑
n=1

wnh(xn) (4)

=
N∑
n=1

w̄nh(xn), (5)

where Ẑ = 1
N

∑N
n=1wn is a unbiased estimator of the marginal likelihood Z =

∫
D π(x)dx, which

is a useful quantity for model selection and hypothesis testing [14]. The particle approximation

of the measure of π̄ is given by

π̂(N)(x) =
N∑
n=1

w̄nδ(x− xn), (6)

where δ(x) is the Dirac delta function.

2.2 Particle filtering for state-space models

In the sequential scenario, the inference problem often concerns a sequence of variables of

interest x0:T = [x0,x1, . . . ,xT ] (a.k.a., trajectory) given a sequence of related observations

y1:T = [y1,y2, . . . ,yT ], where T represents the last time step. The corresponding state-space

model is completely defined by an initial density p(x0), a transition density and the likelihood

function), i.e.,  xt ∼ p(xt|xt−1),

yt ∼ p(yt|xt),
t = 1, . . . , T. (7)

The complete posterior density is given by

π̄(x0:T |y1:T ) ∝ p(x0)

[
T∏
t=1

p(xt|xt−1)

][
T∏
t=1

p(yt|xt)

]
. (8)
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Efficient Monte Carlo techniques for approximating the posterior π̄(x0:T |y1:T ) are the so-called

particle filtering algorithms. A particle filter (PF) combines the sequential importance sampling

approach with resampling steps. A standard PF is detailed in Table 1. The resampling steps are

performed when an effective sample size (ESS) approximation ÊSS in smaller than ηN where

η ∈ [0, 1] [30]. Examples of ESS are

ÊSS
(
w̄

(1:N)
t

)
=

1∑N
n=1(w̄

(n)
t )2

, (9)

ÊSS
(
w̄

(1:N)
t

)
=

1

maxn w̄
(n)
t

. (10)

Computational cost. Note that, at each iteration, we have N evaluations of the likelihood

function (i.e., the observation model). Hence, after T iterations of the filter, we have NT model

evaluations. Furthermore, the resampling steps (when performed) are done over N possible

particles. The cost of the resampling grows with N . More precisely, the complexity of the

resampling procedure is of O(N) [31].

3 Compressed Monte Carlo (CMC)

In this section, we describe a procedure for compressing the information contained in a set

of N weighted samples {xn, w̄n}Nn=1 obtained via importance sampling, with a smaller amount

M ≤ N of weighted samples {sm, âm}Mm=1.2 The CMC approach is based on the so-called stratified

sampling [22, 34]. The idea is to divide the support domain D of the random variable X into M

disjoint, mutually exclusive regions. More specifically, let us consider an integer M ∈ N+ with

2The case M = N corresponds to the uncompressed scenario.
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Table 1: A standard Particle Filter

Initialization: Choose N , η ∈ [0, 1], x̄
(i)
0 , with i = 1, . . . , N , and ÊSS [30]. Set w

(n)
0 = 1 for

all n.

For t = 1, . . . , T :

1. Draw x
(i)
t ∼ p(xt|x̄(i)

t−1), with i = 1, . . . , N .

2. Compute the N weights

w
(n)
t = w

(n)
t−1p(yt|x

(i)
t ), m = 1, . . . ,M. (11)

and normalized them w̄
(n)
t =

w
(n)
t∑N

k=1 w
(k)
t

.

3. if ÊSS
(
w̄

(1:N)
t

)
≤ ηN :

• Obtain {x̄(n)
t }Nn=1, by resampling N times within {sm}Mm=1 according to w̄

(m)
t , with

m = 1, . . . ,M .

• Set Ẑt = 1
N

∑N
n=1 w

(n)
t (see [32, 33]), and

w
(1)
t = . . . = w

(N)
t = Ẑt.

Outputs: Return {x(n)
t , w

(n)
t }Nn=1 for t = 1, . . . , T .

M < N , and a partition P = {X1,X2, . . . .,XM} of the state space with M disjoint subsets,

X1 ∪ X2 ∪ . . . ∪ XM = D,

Xi ∩ Xk = ∅, i 6= k, ∀i, j ∈ {1, . . . ,M}.
(12)

We assume that all Xm are convex sets. Now, let us consider N weighted samples {xn, w̄n}Nn=1.

Given the partition in Eq. (12), i.e., X1∪X2∪ . . .∪XM = D formed by convex, disjoint sub-regions

Xm, we denote the subset of the set of indices {1, . . . , N},

Jm = {all i ∈ {1, . . . , N} : xi ∈ Xm},
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which are associated to the samples in the m-th sub-region Xm. The cardinality |Jm| denotes the

number of samples in Xm, and clearly we have
∑M

m=1 |Jm| = N .

3.1 CMC approximation

We can summarize the information contained in the particle approximation π̂(N)(x) of Eq. (6),

by constructing an empirical stratified approximation based on M weighted particles {sm, âm}Mm=1

(where the sm are summary particles), i.e.,

π̃(M)(x) =
M∑
m=1

âmδ(x− sm), sm ∈ Xm, (13)

where

âm ≈ P(X ∈ Xm) =

∫
Xm

π̄(x)dx =
1

Z

∫
Xm

π(x)dx. (14)

We here refer to âm as summary weights, and to sm as summary particles.

3.2 Summary weights

The weights âm can be obtained using the IS approximation π̂(N) with N samples, i.e.,

âm =

∫
Xm

π̂(N)(x)dx =
N∑
n=1

w̄n

∫
Xm

δ(x− xi)dx,

=
∑
n∈Jm

w̄n. (15)

By defining

Ẑm =
1

N

∑
i∈Jm

wi, Ẑ =
M∑
m=1

Ẑm =
1

N

N∑
n=1

wn, (16)
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we can also obtain another expression âm, i.e.,

âm =
Ẑm

Ẑ
=
∑
i∈Jm

wi∑N
n=1 wn

=
∑
i∈Jm

w̄i. (17)

where Ẑm ≈
∫
Xm

π(x)dx and Ẑ ≈
∫
X π(x)dx. Note that

∑M
m=1 âm = 1, i.e., they are normalized.

Due to Eq. (17), the unnormalized CMC weights are defined as am = Ẑm ∝ âm. They play the

same role of the unnormalized weights in IS, indeed the arithmetic mean of am’s is an estimator

of the marginal likelihood.

3.3 Summary particles

We consider different strategies for the selection of the summary particles sm. The first one is

a stochastic approach based on the stratified sampling: each summary particle sm is resampled

within the set of samples xi ∈ Xm, i.e.,

sm ∈ {xi, with i ∈ Jm},

according to the normalized weights,

w̄m,i =
wi∑

k∈Jm wk
=

w̄i∑
k∈Jm w̄k

=
w̄i
âm

, i ∈ Jm. (18)

Namely, in that case,

sm ∼ π̂m(x) =
∑
i∈Jm

w̄m,iδ(x− xi). (19)

Deterministic choices are also possible, for instance setting

sm =
∑
j∈Jm

w̄m,jxj, (20)
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or, if we are interested on the approximation of a specific integral involving a function h, we can

set

sm =
∑
j∈Jm

w̄m,jh(xj). (21)

These deterministic rules provide a good performance and enjoy interesting properties, as discussed

in the next section. Table 2 summarizes the main notation of the work.

Table 2: Summary of the main notations.
IS CMC

wn w̄n am âm

π(xn)
q(xn)

wn
N∑
i=1

wi

Ẑm = 1
N

∑
i∈Jm wi

∑
i∈Jm

w̄i=
Ẑm

Ẑ

n = 1, . . . , N m = 1, . . . ,M

Marginal likelihood estimator: Ẑ =
∑M

m=1 Ẑm = 1
N

∑N
n=1wn.

Partial normalized weights: w̄m,i = wi∑
k∈Jm wk

= w̄i
âm
, i ∈ Jm.

CMC estimator: Ĩ(M)(h) =
∑M

m=1 âmh(sm).

Case of unweighted samples. Let us consider that we have N samples {xn}Nn=1 generated by a

direct sampling method [35], or an MCMC algorithm [14]. The CMC scheme works in the same

manner by setting âm = |Jm|
N

, that represents the ratio of samples within Xm. Moreover, in this

scenario, w̄m,i = 1
|Jm| for all i ∈ Jm.

Examples of partition rules. Given the N samples xn = [xn,1, . . . , xn,dX ]> ∈ D ⊆ RdX , with

n = 1, . . . , N . Then, we list three practical choices from the simplest to the more sophisticated

strategy:

P1 Random grid, where each component of the elements of the grid is contained within the

intervals min
n∈{1,...,N}

xn,i and max
n∈{1,...,N}

xn,i, for each i = 1, . . . , dX .
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P2 Uniform deterministic grid, where each component of the elements of the grid is contained

within the intervals min
n∈{1,...,N}

xn,i and max
n∈{1,...,N}

xn,i, for each i = 1, . . . , dX .

P3 Voronoi partition obtained by a clustering algorithm with M clusters (e.g., the well-known

k-means algorithm).

The procedures above are just possible examples. Note that using a particular partitioning

procedure, we can obtain different performance of the resulting algorithms. However, in all the

proposed schemes, the theoretical and practical benefits can be observed even applying the simplest

rule P1, as we show in the next section and in the numerical experiments (Sect. 6). Finally, note

that even the simple procedures P1 and P2 take into account the sample information for building

the partition.

4 Properties of CMC

In this section, we discuss some theoretical properties of the CMC schemes. The corresponding

proofs are given below or in the related appendix.

Definition. A partition procedure is called proper if, when M = N , then |Jm| = 1 (note

that m = n in this case). Namely, in the limit case of M = N , we consider all the MC samples as

summary samples, si = xi for i = 1, . . . , N .

Theorem 1. Let us consider a fixed set of weighted samples S = {(xn, wn)}Nn=1 and a given

partition P (obtained with a proper procedure). Considering the stochastic selection of sm ∼ π̂m(x)

in Eq. (19), the CMC estimator

Ĩ(M)(h) =
M∑
m=1

âmh(sm), sm ∼ π̂m(x), (22)
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is an unbiased estimator of Î(N)(h) in Eq. (5), i.e.,

E[Ĩ(M)(h)|S] = Î(N)(h) =
N∑
n=1

w̄nh(xn). (23)

Furthermore, if the partition rule is proper for M = N , the CMC estimator coincides with exactly

Î(N)(h).

Proof: See Appendix A for the proof. 2

Theorem 2. Let us consider a proper partition procedure. As M → N and N → ∞, the

consistency of CMC estimator is ensured.

Proof: The IS estimator is consistent as N → ∞ [14]. If the partition procedure if proper,

for M = N the CMC estimator coincides with the standard IS estimator, i.e., Ĩ(M)(h) = Î(N)(h)

(recall M = N). Hence, the corresponding CMC estimator is also consistent. 2

Proposition 1. The estimator of the marginal likelihood Ẑ = 1
N

∑N
n=1wn is reconstructed with

no loss by the CMC estimator Ĩ(M) = 1
M

∑M
m=1 am, i.e., Ĩ(M) = Ẑ.

Proof: Since am = Ẑm (see Table 2), we have

Ĩ(M) =
1

M

M∑
m=1

am =
1

M

M∑
m=1

Ẑm = Ẑ,

as shown in Eq. (16). 2

If we are interested only in one specific integral I(h) =
∫
D h(x)π̄(x)dx, it is convenient to apply
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CMC with the following deterministic choice of the summary particles

sm =
∑
j∈Jm

w̄m,jh(xj), (24)

as highlighted by the theorem below.

Theorem 3. If sm is chosen as in Eq. (24), for m = 1, . . . ,M ,3 and the linear mapping f(x) = x,

we have Î(N)(h) = Ĩ(M)(f), i.e., we have a perfect reconstruction of the IS estimator.

Proof: See Appendix B for the proof. 2

5 Compressed Particle Filtering

In this section, we show how CMC can be employed for a performance improvement or a decrease

of the computational cost of benchmark particle filtering (PF) algorithms. Let us recall the state-

space model  xt|xt−1 ∼ p(xt|xt−1),

yt|xt ∼ p(yt|xt),
t = 1, . . . , T, (25)

described by the propagation kernel, p(xt|xt−1), and the likelihood function p(yt|xt). Below, we

provide two novel PFs based on CMC. In the first one, called compressed bootstrap particle filter

(CBPF) and given in Table 3, based on the so-called bootstrap particle filter, where the resampling

is applied at each iteration. In the second one, described in Table 4, where the resampling is applied

at each iteration when ÊSS ≤ ηN . We describe the benefits of both compressed particle filter

(CPF) techniques.

Benefit 1. In both proposed methods, the compression is applied before the evaluation of the

likelihood function p(yt|xt). The reduction in computational cost is twofold (as shown also in the

3Note that in this case sm ∈ R is a scalar value since, for simplicity, we have assumed h(x) : RdX → R, instead
of the more general assumption h(x) : RdX → Rs with s ≥ 1. All the considerations are also valid for s ≥ 1.
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next point). First of all, both algorithms require the evaluation of the likelihood function only

M < N times, at the summary particles sm. This is particularly convenient if the evaluation of

the likelihood is costly due to the number of data, or to a complex measurement model.

Benefit 2. The resampling step is performed over M weighted samples instead of N . This

advantage can be found also in other filters proposed in the literature [36,37], which present lower

complexity than standard particle filters (decreasing the cost of the resampling steps). Recall that

the computational complexity of the resampling procedure is of O(N) in a standard PF, whereas

in CPF is O(M) with M ≤ N [31].

Benefit 3. Additionally, the application of CMC also helps to prevent the sample impoverishment

caused by the resampling operation as also shown in a similar approach [38]. This is due to the fact

that the summary particles contain also spatial information regarding the uncompressed particles

{x(n)
t }Nn=1 [38]. Therefore, the resampling in CPFs takes into account both, the normalized weights

and spatial information (not only the weights, as in resampling steps in standard particle filters

without applying CMC). The results in Section 6.1 confirm that the application of CMC ensures

a better approximation of the empirical measure defined by N weighted samples.

In summary, CPFs are clearly cheaper and faster than the corresponding classical particle filters.

Note that the CMC weights âm are included in particle weights in Eq. (27). The weighted summary

particles {sm, âm}Mm=1 play a similar role than the sigma points in the unscented Kalman filter

(UKF) [24,26].

Remark. If the computational time is mainly specified by the likelihood evaluation, the CPFs

provide better performance than the corresponding standard particle filtering schemes, for a fixed

time budget.

Limitations and further considerations. Compared with a standard filter with N particles,

the CPFs provide some performance loss in terms of estimation error, since the compressed
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filters use less likelihood evaluation (M < N). However, for a fixed budget of evaluations of

the likelihood function, the compressed filters provide the best results, as depicted in Figure 4,

which shows the benefits of the proposed compression procedure. The use of the compressed

filters is recommended only when the cost of the evaluation of likelihood function is significantly

higher than the operations required in the compression (e.g., inequalities checking and sums).

Therefore, the use of the CPF is required only when the evaluation of the model is costly. It is

also remarkable that the CPFs share some features and also present a robust behavior, similarly

to the so-called Gaussian particle filters [36, 37] and the approximate-grid particle filters [39, 40].

Another limitation of the proposed scheme is that the CPFs are less suitable for parallelization

than standard schemes. Finally, the design of refined adaptive partitions and adaptation of the

compression to more sophisticated filters, as the auxiliary particle filters [41], deserve and require

additional future works.

Table 3: The Compressed Bootstrap Particle Filter (CBPF)

Initialization: Choose N , M < N , and x̄
(i)
0 , with i = 1, . . . , N .

For t = 1, . . . , T :

1. Draw x
(i)
t ∼ p(xt|x̄(i)

t−1), with i = 1, . . . , N .

2. Apply a CMC scheme to {x(n)
t , 1

N
}Nn=1 obtaining {sm, âm}Mm=1.

3. Compute the M weights

w
(m)
t = âmp(yt|sm), m = 1, . . . ,M. (26)

and normalized them w̄
(m)
t =

w
(m)
t∑M

k=1 w
(k)
t

.

4. Obtain {x̄(n)
t }Nn=1, by resampling N times within {sm}Mm=1 according to w̄

(m)
t , with

m = 1, . . . ,M .

16



Table 4: Generic CPF

Initialization: Choose M and N such that N is a multiple of M , i.e.,

K =
N

M
∈ N+.

Moreover, choose η ∈ [0, 1], x̄
(i)
0 , with i = 1, . . . , N , and an effective sample size approximation

ÊSS [30]. Set ρ
(i)
0 = 1

N
for all i = 1, . . . , N .

For t = 1, . . . , T :

1. Draw x
(i)
t ∼ p(xt|x̄(i)

t−1), with i = 1, . . . , N .

2. Apply a CMC scheme to {x(n)
t , ρ

(n)
t−1}Nn=1 obtaining {sm, âm}Mm=1.

3. Compute the M weights

w
(m)
t = âmp(yt|sm), m = 1, . . . ,M. (27)

and normalized them w̄
(m)
t =

w
(m)
t∑M

k=1 w
(k)
t

.

4. if ÊSS
(
w̄

(1:M)
t

)
≤ ηM :

• Obtain {x̄(n)
t }Nn=1, by resampling N times within {sm}Mm=1 according to w̄

(m)
t , with

m = 1, . . . ,M .

• Set

ρ
(1)
t = . . . .. = ρ

(N)
t =

M∑
m=1

w
(m)
t .

For further details see [32,33].

5. Otherwise, if ÊSS
(
w̄

(1:M)
t

)
> ηM , set

x̄
(n)
t = sm, ρ

(n)
t = w

(m)
t , with m =

⌈ n
K

⌉
,

with n = 1, . . . , N .

Regularized Resampling. In the resampling steps of CPFs, we have

x̄
(n)
t ∼

M∑
m=1

w̄
(m)
t δ(x− sm). (28)
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The use of CMC provides clear advantages as discussed above in Benefit 3. Additionally, in both

CPF schemes, we can also employed a regularized resampling in order to reduce also the loss of

diversity in the cloud of particles. We can replace the delta functions in Eq. (28) with other kernel

functions. For instance, we can consider Gaussian kernels K(x|sm,Σm), of mean sm and with a

dX × dX covariance matrix Σm the dX × dX obtained by an empirical estimation considering the

samples in Xm, i.e.,

Σm =
∑
j∈Jm

w̄m,j(xj − sm)(xj − sm)> + εI, (29)

where sm is defined in Eq. (20) and ε > 0. Hence, in this case, we have

x̄
(n)
t ∼

M∑
m=1

w̄
(m)
t K(x|sm,Σm), (30)

where K(·) represents a kernel function with location parameter sm and covariance matrix Σm.

A similar regularized resampling is implicitly used in [36,37].

Adapting M . Let us consider the CBPF algorithm in Table 3. We can adapt the number of

summary particles M used at each iteration. The underlying idea is that if ÊSS is small, we need

a less number M of summary particles to summarize the information in {xn, w̄n}Nn=1. Otherwise,

if ÊSS is high, we could need more summary particles for encoding all the statistical information

contained in {xn, w̄n}Nn=1. Then we can set

Mt = max
[
γ
⌊
ÊSS

⌋
,Mmin

]
t = 1, . . . , T, (31)

with γ > 0 and Mmin ≥ 1.
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6 Numerical experiments

In the section, we test the proposed method in five different numerical experiments, comparing

its performance with benchmark methods. The first three numerical examples consider artificial

models and simple distributions, showing the advantages of the proposed compression scheme even

in these scenarios. The fourth numerical experiment considers the problem of object detection

(planet, satellite, etc.) in an N -body system observed from the Earth. The observation model is

complex and costly, especially for some set of parameters. In the last experiment, we consider the

inversion of a radiative transfer model (RTM) called PROSAIL, which models the energy transfer

through the atmosphere. This model is used to model and understand vegetation status from

satellite observations.

6.1 CMC versus standard resampling

For simplicity, Let us consider x ∈ R+. Moreover, we consider two possible target densities: the

first one is a Gamma pdf

π̄(x) ∝ xα−1 exp
(
−x
κ

)
, (32)

with α = 4 and κ = 0.5, and the second one is a mixture of two Gaussians, with x ∈ R,

π̄(x) =
1

2
N (x| − 2, 1) +

1

2
N (x|4, 0.25). (33)

Experiment: At each run, we generate N = 105 Monte Carlo samples {xn, 1
N
}Nn=1 from the target

pdfs. We compare the standard resampling (SR) strategy with different CMC schemes. Namely,

with SR, we resample uniformly M times within {xn}Nn=1 obtaining {sm, 1
M
}Mm=1 and, with the

CMC schemes, we obtain {sm, âm}Mm=1. Then, at each run, we compute the Root Mean Square

Error (RMSE) for estimating the first 5 moments of the corresponding target pdf (using the M

summary particles). Regarding the CMC schemes, we consider two kind of partition procedures:
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random (P1) and uniform (P2) described in Section 3.1. Furthermore we compare the stochastic

and the deterministic choices of the summary particles sm described in Section 3.3. For the

deterministic CMC we refer to the use of Eq. (20) for sm. We repeat the experiment 103

independent runs and average the results.

Figure 1 depicts the averaged RMSE as function of the number M of summary particles.

Figure 1-(a) refers to the Gamma target pdf, whereas Figure 1-(b) corresponds to the Gaussian

mixture pdf. The results of the SR method are displayed with triangles. The stochastic CMC

schemes are shown with dashed lines, whereas the deterministic CMC schemes with solid lines.

Discussion: In all cases, CMC outperforms SR and the deterministic CMC schemes provide

the better results. Clearly, the partition P2 (circles) outperforms P1 (squares). Note that P1

represents the simplest and perhaps the worst possible construction of the partition. However, it

is important to remark that the CMC schemes, even with P1, outperform the SR method. In this

experiment, the differences in computational time are negligible, and the CMC schemes provide

always the best performance.

0 100 200 300 400 500
M
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10-1

100

101
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103
SR
CMC P2
CMC P1
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Det CMC P1

(a) Gamma target pdf
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100

102

104

SR
CMC P2
CMC P1
Det CMC P2
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(b) Mixture target pdf

Figure 1: RMSE as function of M . The results obtained by SR is depicted with a solid line and
rhombuses. The results of CMC with a random partition (P1) and with a grid partition (P2) are
shown by squares and circles, respectively. The results obtained with the deterministic choice of
sm in Eq. (20) are shown with solid lines (squares and circles), whereas the results random choice
of sm are provided with dashed lines (squares and circles).
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6.2 Second Experiment

This section is devoted to analyze the performance of the compressed bootstrap particle filter

(CBPF) described in Table 3. Let us consider the state-space model

 xt = |xt−1|+ vt,

yt = log(x2
t ) + ut,

t = 1, . . . , T, (34)

where vt ∼ N (0, 1) and ut ∼ N (0, 1). The goal is to track xt for T = 100 steps, with a particle

filtering algorithm considering N ∈ {100, 1000} particles. We compare the bootstrap particle

filter (BPF) [42] with its compressed version (i.e., CBPF) in terms of the Root Mean Square Error

(RMSE) in estimation of x1:T . We apply CBPF with different values of M (clearly, with M ≤ N).

We consider the deterministic CMC scheme with a uniform construction P2 of the partition.

Figure 2 shows the RMSE (averaged over 5000 independent runs) as function of the compression

rate M
N

. The solid lines represent the RMSE obtained by the BPF. The dashed line with squares

corresponds to the CBPF (using the deterministic compression) with N = 100, whereas the dashed

line with circles corresponds to the CBPF with N = 1000. Note that CBPF virtually obtains the

same performance of the BPF with approximately 85% less evaluations of the likelihood function.

Clearly, in this toy example, the likelihood evaluation is not expensive, and the differences in

computational time are negligible. This is not the case in the two real-world experiments, in

Sections 6.4 and 6.5, where the gain in computational time is relevant. We also recall that

the N resampling steps are performing over M particles instead of N . Furthermore, fixing the

compression rate M
N

, It is interesting to note that the performance of CBPF improves when N

grows.
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Figure 2: RMSE (log-domain in the y-axis) as function of the ratio M
N

. The dashed line with
squares corresponds to the CBPF with N = 100, whereas with circles corresponds to the
CBPF with N = 1000. The solid lines corresponds to the bootstrap particle filter (BPF) with
N = 100, 1000. CBPF virtually obtains the same performance of the bootstrap particle filter with
approximately 85% less evaluations of the likelihood function.

6.3 Third Experiment

We now repeat the previous experiment considering another state-space model. More specifically,

we consider the benchmark growth model, as in [39], using also the the same parameters as in [39],

i.e.,  xt = ft(xt−1) + vt,

yt = 1
20
x2
t + ut,

t = 1, . . . , T, (35)

where

ft(xt−1) =
1

2
x2
t−1 +

25xt−1

1 + x2
t−1

+ cos(1.2t),

and vt ∼ N (0, 10) and ut ∼ N (0, 1). The goal is to estimate the temporal trajectory of the state

xt for T = 100 steps, with a particle filtering algorithm considering N ∈ {100, 1000} particles.

Again, we compare the bootstrap particle filter (BPF) [42], with its compressed version, CBPF,

with different values of M ≤ N . in terms of the Root Mean Square Error (RMSE) in the estimation

of the trajectory x1:T . We consider the deterministic CMC scheme with a uniform construction

P2 of the partition.
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Figure 3 shows the RMSE (averaged over 103 independent runs) as function of the ratio M
N

.

The solid lines provide the RMSE obtained by the standard BPF. The dashed line with squares

corresponds to the CBPF with N = 100, whereas the dashed line with circles corresponds to the

CBPF with N = 1000. Note that CBPF, with N = 100, obtains virtually the same performance

of the BPF with 70% less likelihood evaluations. With N = 1000, CBPF obtains the same

performance of the BPF with 98% less likelihood evaluations. As in Section 6.2, in this toy

example, the likelihood evaluation is not expensive, and the differences in computational time are

negligible. Fixing the compression rate M
N

, we can also observe that the performance of CBPF

improves when N grows.

In Figure 4, we compare the standard BPF and CBPF but, in this case, considering the

same number of likelihood evaluations. Therefore, both the standard BPF and CBPF waste M

evaluations of the likelihood function per iteration. We can observe that CBPF provides always

the smallest RMSE and the difference in RMSE increases when the compression is bigger, i.e., in

left side of the figure. Thus, fixing the likelihood evaluation budget, the proposed compression

scheme is an efficient procedure for managing this budget. The results in both Figures 3-4 show

the benefits of the proposed approach.

6.4 Inference in Kepler’s models

In recent years, the problem of revealing objects orbiting other stars has acquired large attention.

Different techniques have been proposed to discover exo-objects but, nowadays, the radial velocity

technique is still the most used [43–46]. The problem consists in fitting a model (the so-called

radial velocity curve) to data acquired at different moments spanning during long time periods

(up to years). The model is highly non-linear and it is costly in terms of computation time

(specially, for certain sets of parameters). Obtaining a value to compare to a single observation

involves numerically integrating a differential equation in time or an iterative procedure for solving

to a non-linear equation. Typically, the iteration is performed until a threshold is reached or
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Figure 3: RMSE (log-domain in the y-axis) as function of the ratio M
N

. The dashed line with
(squares and circles) corresponds to the CBPF with N ∈ {100, 1000}. The solid lines correspond
to the BPF with N ∈ {100, 1000}. With N = 1000, CBPF obtains the same performance of the
BPF, with 98% less evaluations of the likelihood function (i.e., only M = 20 evalutions).
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Figure 4: RMSE (log-log-domain) as function of the ratio M
N

. The circles correspond to the
CBPF with different values of M from 2 to 1000, and N = 1000. The triangles correspond to
the standard BPF with M particles. Both filters, CBPF and BPF, have the same number of
likelihood evaluations. CBPF always provides the smallest RMSE and the difference in RMSE
increases when the compression is larger (left side of the figure).
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Table 5: Description of parameters in Eq. (36).
Parameter Description Units

For each planet

Ki amplitude of the curve m s−1

ui,t true anomaly rad
ωi,t longitude of periastron rad
ei orbit’s eccentricity . . .
Pi orbital period s
τi time of periastron passage s

Below: not depending on the number of objects/satellite

V0 mean radial velocity m s−1

106 iterations are performed. The problem of radial velocity curve fitting is applied in several

related applications. It is similar to the problem of determining the orbits of spectroscopic binary

stars [47, 48] or the stars surrounding the galactic center [49]. In the following, we describe an

orbital model, which is equivalent for any N-body system observed from Earth, i.e. exoplanetary

systems, binary stellar system, double pulsars, etc.

6.4.1 Likelihood and transition functions

When analysing radial velocity data of an exoplanetary system, it is commonly accepted that the

wobbling of the star around the centre of mass is caused by the sum of the gravitational force of

each planet independently and that they do not interact with each other. Each planet follows a

Keplerian orbit and the radial velocity of the host star is given by

yr,t = V0 +
S∑
i=1

Ki [cos (ui,t + ωi,t) + ei cos (ωi,t)] + ξt, (36)

with t = 1, . . . , T and r = 1, . . . , R. The number of objects in the system is S, that is consider

known in this experiment (for the sake of simplicity). Both yr,t, ui,t depend on time t, and then ξt

is a Gaussian noise perturbation with variance σ2
e . For the sake of simplicity, we consider this value

known, σ2
e = 1. The meaning of each parameter in Eq. (36) is given in Table 5. The likelihood

function is defined by (36) and some indicator variables described below. The angle ui,t is the true
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anomaly of the planet i and it can be determined from

dui,t
dt

=
2π

Pi

(1 + ei cosui,t)
2

(1− ei)
3
2

(37)

As mentioned above, this equation has analytical solution. As a result, the true anomaly ut can

be determined from the mean anomaly M . However, the analytical solution contains a non linear

term that needs to be determined by iterating. First, we define the mean anomaly Mi,t as

Mi,t =
2π

Pi
(t− τi) , (38)

where τi is the time of periastron passage of the planet i and Pi is the period of its orbit (see

Table 5). Then, through the Kepler’s equation,

Mi,t = Ei,t − ei sinEi,t, (39)

where Ei,t is the eccentric anomaly. Equation (39) has no analytic solution and it must be solved

by an iterative procedure. A Newton-Raphson method is typically used to find the roots of this

equation [50]. For certain sets of parameters this iterative procedure, can be particularly slow.

We also have

tan
ui,t
2

=

√
1 + ei
1− ei

tan
Ei,t
2
, (40)

The variables ωi,t’s, for i = 1, . . . , N , can vary with time. In particular, if the central body is

much heavier than the other objects orbiting it or if the objects are very close, the so-called orbital

precession is observed (e.g. [51]). The state variable xt is the vector

xt = [V0, K1, ω1,t, e1, P1, τ1, . . . , KS, ωS,t, eS, PS, τS], (41)
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For a single object (e.g., a planet or a natural satellite), the dimension of xt is dX = 5+1 = 6, with

two objects the dimension of xt is is dX = 11 etc. Generally, we have dX = 1+5S. We also include

in the likelihood function the V0 ∈ [−20, 20], Ki ∈ [0, 50], ei ∈ [0, 1], Pi ∈ [0, 365], ωi,t ∈ [0, 2π],

τi ∈ [0, Pi] by means of indicator variables (i.e., the likelihood is zero outside these intervals), for

all i = 1, . . . , S. This means that the likelihood function is zero when the particles fall out of these

intervals. Note that the interval of τi is conditioned to the value Pi. This parameter is the time

of periastron passage, i.e. the time passed since the object passed the closest point in its orbit.

It has the same units of Pi and can take values from 0 to Pi. All the Eqs. (36)–(40), jointly with

the previous parameter constrains, induce a likelihood function

p(y1:T |x1:T ) =
T∏
t=1

p(yt|xt),

=
T∏
t=1

R∏
r=1

p(yr,t|xt).

where yt = [y1,t, . . . , yR,t]
>. Note that all the variables ωi,t vary with the time, whereas the

remaining components of xt are static parameters. Sophisticated particle approaches could be

used, for instance, combining MCMC and particle filtering schemes for addressing the inference of

both dynamic and static parameters [32,52,53]. The compressed particle idea can easily adapted

to this scenario, or within more complicated particle algorithms. For the sake of simplicity, we

leave it for future works. Here, we use the simpler approach where we consider an artificial time-

evolution of the parameters [54], i.e., xt = [V0,t, K1,t, ω1,t, e1,t, P1,t, τ1,t, . . . , KS,t, ωS,t, eS,t, PS,t, τS,t],

in order to have a prior transition equation for the entire state xt. We consider

ωi,t = ωi,t−1 + vt, t = 1, . . . , T, (42)
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where vt is a Gaussian noise perturbation with zero mean and variance σ2
V = 0.5. For the rest of

parameters, we consider



V0,t = V0,t−1 + ξ0,t,

Ki,t = Ki,t−1 + ξ
(1)
i,t ,

ei,t = ei,t−1 + ξ
(2)
i,t ,

Pi,t = Pi,t−1 + ξ
(3)
i,t ,

τi,t = τi,t−1 + ξ
(4)
i,t ,

(43)

for t = 1, . . . , T and ξ0,t, ξ
(j)
i,t , i = 1, . . . , S, are Gaussian noises with zero mean and variance

σ2
ξ = 0.1. Thus, we have a Gaussian transition probability p(xt|xt−1). The initial probability

p(x0) =
∏dX

i=1 p(xi,0) is a product of marginal prior pdf, where p(xi,0) is a uniform pdf for the

parameter with constrains (see above) and, for the rest of parameters, p(xi,0) is a Gaussian with

zero mean and variance equal to 10. The complete posterior is

p(x0:T |y1:T ) =
1

p(y1:T )
p(y1:T |x1:T )

[
T∏
t=1

p(xt|xt−1)

]
p(x0).

where Z = p(y1:T ) is the complete marginal likelihood, that is also unknown. Note that to compute

Z = p(y1:T ) we have to integrate out all the sequence of parameters x0:T (trajectory), .i.e.,

p(y1:T ) =

∫
XT+1

p(y1:T |x1:T )

[
T∏
t=1

p(xt|xt−1)

]
p(x0)dx0:T .

We will approximate this integral via particle filtering (i.e., sequential importance sampling with

resampling steps). See [32,33] for further details regarding the sequential estimation of Z.
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6.4.2 Inferring the number of objects orbiting the central mass

Given a set of data {yr,t}Tr=1 for all time instants t = 1, . . . , T generated according to the model (see

the initial parameter values below), our goal is to infer the number of objects. For this purpose,

we have to approximate the model evidence Z = p(y1:T ) via standard PF and the generic CPF

in Table 4. For a fair comparison, we consider the same ESS approximation, ÊSS = 1∑N
n=1(w̄n

t )2

and η = 0.5. In all experiments, we set R = 5 and T = 50 and average the results over 500

independent runs. We consider three different experiments: (E1) S = 0, i.e., no object, (E2)

S = 1 (one object) and (E2) the case of two objects S = 2. We set V0 = 2, in all cases. For the

first object in E1 and E2, we set K1,0 = 25, ω1,0 = 0.61, e1,0 = 0.1, P1,0 = 15, τ1,0 = 3. For E2,

we also consider a second object with K2,0 = 5, ω2,0 = 0.17, e2,0 = 0.3, P2,0 = 115, τ2,0 = 25 (in

that case S = 2). Note that the SNR associate to the second object is low (so that the detection

of this planet is not straightforward). The rest of trajectories are generated according to the

transition model (and the corresponding measurements yr,t according to the observation model).

We consider N = 105 total number of particles and just M = 100 summary particles for CPF in

Table 4 (M
N

= 10−3).

6.4.3 Results

At each run and for each experiment E1-E2-E3, we run the particle filters considering different

state dimensions and likelihood functions (according to Eq. (36)) computing Ẑ(1) (corresponding

to “no planet”), Ẑ(2) (corresponding to “one planet”) and Ẑ(3) (corresponding to “two objects”).

Then we obtain

j∗ = arg max
j∗∈{1,2,3}

Ẑ(j).

If j∗ = 0, we decide that there is no planet/satellite. If j∗ = 1, we decide that there is one

object and if j∗ = 2 we assume that there are 2 objects. The results are given in Tables 6–8. We

compute the rate of each decision over the 500 independent runs and for each scenario E1-E2-E3.
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Moreover, we provide the “ranking” of each decision, namely, how many times the specific decision

has been the first choice, the second choice or the third choice. For instance, let us consider the

decision “zero object” in Table 6: the ranking in this case is 100− 0− 0 which means that 100%

of cases the choice “zero object” have been the first one (i.e., with greater Bayesian evidence). In

the same table, the ranking of the decision “one object” is 0− 100− 0, i.e., this choice has been

always the second possibility (with the second greater Bayesian evidence). We can observe that,

in E1-E2, we have no loss with CPF in term of detection, since we obtain the same results of

the standard PF. However, CPF requires less computational time, saving almost the 70% of the

required time with the standard PF. In E3, CPF decides more times (67%) that there is only one

object, which is an error since we have two objects in this scenario. However, also the standard

PF decides 63% of times “one object”. In both cases, we always decide that there is at least one

object (the choice “zero object” has been never selected). Therefore, CPF provides very similar

performance than a standard PF with much less computational cost.

Table 6: Experiment 1 E1 (no planet): percentage of the decisions (over 500 runs) and the normalized
computational time spent by each method.

Method Zero One Two Time

PF
decision 100% 0% 0%

1
ranking 100-0-0 0-100-0 0-0-100

CPF
decision 100% 0% 0%

0.32
ranking 100-0-0 0-100-0 0-0-100

Table 7: Experiment 2 E2 (one planet): percentage of the decisions (over 500 runs) and the normalized
computational time spent by each method.

Method Zero One Two Time

PF
decision 0% 88% 12%

1
ranking 0-0-100 88-12-0 12-88-0

CPF
decision 0% 88% 12%

0.32
ranking 0-0-100 88-12-0 12-88-0
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Table 8: Experiment 3 E3 (two objects): percentage of the decisions (over 500 runs) and the normalized
computational time spent by each method.

Method Zero One Two Time

PF
decision 0% 64% 36%

1
ranking 0-0-100 64-36-0 36-64-0

CPF
decision 0% 67% 33%

0.32
ranking 0-0-100 67-33-0 33-67-0

6.5 PROSAIL inversion with time-varying physical parameters

Earth observation from satellite sensors offers the possibility to monitor our planet with

unprecedented accuracy. Radiative transfer models (RTMs) are forward models that encode the

energy transfer through the atmosphere, and are used to model and understand the Earth system.

These models also allow us to estimate the parameters that describe the status of the Earth from

satellite observations by inverse modeling. However, performing inference over such simulators

is generally an ill-posed problem because of the difficulty to invert the system and to compute

the marginal likelihood. Generally, RTMs are non-differentiable and computationally very costly

models, which adds on a high level of difficulty in inference.

Here we will test our method for inverting a commonly used radiative transfer model for

vegetation monitoring. The so-called PROSAIL RTM is the most widely used model over the last

two decades in remote sensing studies [55]. It simulates reflectance as a function of:

1) A set of leaf optical properties, given by the mesophyll structural parameter (MSP), leaf

chlorophyll (Chl), dry matter also referred as “leaf mass per unit area” (Cm), water (Cw),

carotenoid (Car) and brown pigment (Cbr) contents.

2) A set of canopy level characteristics, determined by leaf area index (LAI), the average

leaf angle inclination (ALA) and the hot-spot parameter (Hotspot). System geometry is

described by the solar zenith angle (θs), view zenith angle θv), and the relative azimuth

angle between both angles (∆Θ).

In our experiments, we consider the inference of 7 of these variables, that we also assuming
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varying in time. The rest of parameters are keep fixed to the default values in the PROSAIL code

(http://teledetection.ipgp.jussieu.fr/prosail/), so that for simplicity they are assumed

known. At time instant t, our state is

xt = [x1,t, x2,t, x3,t, x4,t, x5,t, x6,t, x7,t]
>

where x1,t = Chl(t), x2,t = Car(t), x3,t = Cbr(t), x4,t = Cw(t), x5,t = Cm(t), x6,t = MSP(t),

x7,t = LAI(t). The likelihood function at time t is

p(yt|xt) = exp

(
− 1

2σ2
||yt − f(xt)||2

)
IR(xt), (44)

where f(xt) : R7 → R2100 represents the PROSAIL model, and IR(xt) is an indication function

which is 1 if xt ∈ R otherwise is 0, if xt /∈ R. The region R is defined as R =
∏7

i=1 Ii with

I1 = [0, 100] (µg/cm2), I2 = [0, 25] (µg/cm2), I3 = [0, 1], I4 = [0, 0.05] (cm), I5 = [0, 0.02]

(g/cm2), I6 = [1, 3], I7 = [0, 1]. The function f(xt) = PROSAIL(xt) is the high-nonlinear

model represented by the code given at http://teledetection.ipgp.jussieu.fr/prosail/.

The vector yt ∈ R2100 contains the measurements obtained by the satellite. The transition model

is

p(xt|xt−1) = N (xt|xt−1,Λ), (45)

where Λ is a diagonal 7 × 7 matrix with diag[Λ] = [1, 0.4, 10−2, 10−3, 10−3, 0.4, 0.4]>. We recall

that t = 1, . . . , T . We generate synthetic data {x1:T ,y1:T} (setting T = 20 and σ2 = 1) according

to the model starting with x0 = [40, 8, 0.2, 0.01, 0.009, 2.5, 0.5]>. We compare a standard PF with

N = 104 particles with a CPF with M ∈ {1000, 2000, 5000} (and N = 104). We also consider

a standard PF with N = M in order to show the benefits of the compression in CPF. For all

the filters we employ ÊSS = 1∑N
n=1(w̄n

t )2
with η = 0.5. Figure 5 depicts the data yt at t = 15

(solid line) and the model values corresponding to 50 particles f (i) = f(x
(i)
t ) (as an example). We
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compute the Root Mean Square Error (RMSE) in the estimation of the trajectory of parameters

x1:T . The RMSE is obtained by averaging the square errors over all the component of the state,

and over each time. We have averaged the results over 103 independent runs. The results are

given in Table 9. We can observe that CPF provides very similar results than the standard PF

with N = 104 with much less computational cost. For instance, CPF with M = 103 saves more

than 95% of the computational time with an increase of the MSE of only 5%. The comparison

between CPF and the standard PFs with N = M ∈ {1000, 2000, 5000} shows the benefit of the

compression in CPF.

Figure 5: The data yt (solid line) and the model values corresponding to 50 particles, f (i) = f(x
(i)
t )

(dashed lines), at t = 15.

Table 9: Results of the PROSAIL inversion.
Method RMSE Norm. TIME

Standard PF - N = 104 3.99 1

CPF - M = 103 4.08 0.0112
CPF - M = 2 · 103 4.04 0.1938
CPF - M = 5 · 103 3.99 0.4215

Standard PF - N = 103 4.30 0.0984
Standard PF - N = 2 · 103 4.19 0.1856
Standard PF - N = 5 · 103 4.10 0.4181
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7 Conclusions

We have introduced a novel approach for performing sequential Bayesian inference in the context of

complex and costly models. In the proposed scheme, the expensive model is evaluated only in some

well-chosen samples. The selection of these nodes is based on the so-called compressed Monte Carlo

(CMC) scheme. The application of CMC within particle filtering schemes and the corresponding

benefits are described and discussed. The provided theoretical and numerical results, which include

applications in astronomy and remote sensing, showed the advantages of the proposed method.
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A Proof of Theorem 1

First of all, we need to obtain some additional relationships. Let us define the partial estimators as

Îm(h) =
∑
i∈Jm

w̄m,ih(xi), (46)

an estimator of the integral ∫
Xm

h(x)π̄(x)dx =

∫
X
h(x)π̄m(x)dx, (47)

where we have set π̄m(x) = π̄(x)I(Xm). with these definitions, note a that

Î(N)(h) =

N∑
i=1

w̄ih(xi) =

M∑
m=1

∑
i∈Jm

w̄ih(xi),

=

M∑
m=1

âm
∑
i∈Jm

w̄m,ih(xi)

=

M∑
m=1

âmÎm(h), (48)

where we have used w̄m,i = w̄i

âm
as shown in Eq. (18). Namely, the estimator Î(N)(h) of I(h) can be expressed as a

convex combination of the M partial estimators. A similar expression is valid for the particle approximations, i.e.,

π̂(N)(x) =

M∑
m=1

âmπ̂m(x), where (49)

π̂m(x) =
∑
i∈Jm

w̄m,iδ(x− xi). (50)

Proof. Assume that S = {xn, w̄n}Nn=1 (hence also N) and the partition P are given and fixed (hence M as

well). Then, the summary weights âm are also fixed. The unique stochastic part in Ĩ(M)(h) is the selection of sm’s.

Let us consider the case when sm is resampled randomly in each partition, according to the weights w̄m,j in Eq.

(18), i.e.,

sm ∼ π̂m(x).

Given the set of weighted samples S = {xn, w̄n}Nn=1, note that

E[h(sm)|S] =
∑
j∈Jm

w̄m,jh(xj) = Îm(h). (51)
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Given Eq. (48), we can also write

Î(N)(h) =

M∑
m=1

âmÎm(h) =

M∑
m=1

âmE[h(sm)|S]. (52)

Note also that

Ĩ(M)(h) =

M∑
m=1

âmh(sm),

Taking the expectation of both sides

E[Ĩ(M)(h)|S] = E

[
M∑
m=1

âmh(sm)

]

=

M∑
m=1

âmE[h(sm)|S],

= Î(N)(h),

where we have used Eq. (52).

B Proof of Theorem 3

Theorem 3 states that, with the choice sm =
∑
j∈Jm

w̄m,jh(xj) in (21), we have Ĩ(M)(f) ≡ Î(N)(h), for a specific

function h(x) and f(x) = x. Indeed, we have

Ĩ(M)(f) =

M∑
m=1

âmsm

=

M∑
m=1

âm

 ∑
j∈Jm

w̄m,jh(xj)

 ,
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where we have used sm =
∑
j∈Jm

w̄m,jh(xj). Replacing w̄m,j with the expression w̄m,j = w̄j/âm in Eq. (18), we

obtain a further simplification,

Ĩ(M)(f) =

M∑
m=1

âm

 ∑
j∈Jm

w̄j
âm

h(xj)

 ,
=

M∑
m=1

∑
j∈Jm

w̄jh(xj)

=

N∑
j=1

w̄jh(xj) = Î(N)(h), (53)

where we have also used the fact that, if we consider all the M possible sums within Jm, then we are considering

all the possible N samples and weights, i.e.,
∑M
m=1

∑
j∈Jm

w̄jh(xj) =
∑N
j=1 w̄jh(xj).
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