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Abstract

My colleagues suggested that I publish an overview of my works which could be of interest to a free-

thinking reader. Some results and claims of these works may at first sight, and often at the second sight,

seem paradoxical. The first reaction to this type of results is―it can’t be, the second is―there may be

something in it, the third is―well, that’s common knowledge. I must underscore that the papers covered in

this overview

have been published in high ranking international journals after robust discussions with peer reviewers.

Thus, the results presented in these papers are not fantasies of an amateur. In this overview, I made an

effort to make the main ideas of my works understandable for non-specialists without formulas. Specialists,

I think, will agree with the formulas, too.
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Preamble 

 

My colleagues suggested that I publish an overview of my works which could be of 

interest to a free-thinking reader. Some results and claims of these works may at first 

sight, and often at the second sight, seem paradoxical.  The first reaction to this type of 

results is “it can’t be”, the second is “there may be something in it”, the third is “well, 

that’s common knowledge”. I must underscore that the papers covered in this overview 

have been published in high ranking international journals after robust discussions with 

peer reviewers. Thus, the results presented in these papers are not fantasies of an 

amateur. In this overview, I made an effort to make the main ideas of my works 

understandable for non-specialists without formulas.  Specialists, I think, will agree with 

the formulas, too. 

        Before delving into the results, it is important to review the goofs and 

misconceptions which accompanied the development of the foundations of quantum 

physics.   

        As I started writing about this background, though, I had an uncomfortable feeling 

of writing about “a feast during a plague”. No, the plague in this expression is not the 

covid-19 pandemic caused by a mildly malicious virus. Compared to what humankind 

might face in the not-so-distant future, this pandemic may end up looking like a small 

episode. In many parts of the world, in the jungles and in the deserts, there live viruses 

to which the local populations have become immune over many generations.  Other, 

even worse viruses, may crawl out of laboratories.  The modern transportation created 

on the basis of scientific discoveries, air travel above all, has the capability to spread 

them around our small planet very swiftly. We may all end up like the majority of 

Native Americans, who perished because of the viruses brought over by the Europeans, 

to which they were not immune; there may not be enough time for a vaccine.  
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       It felt irresponsible to talk about science and not to talk about the catastrophes it has 

caused and may cause in the future. We say that science has given humanity the modern 

civilization with all its benefits. It is absolutely correct.  But that obscures the other side 

of the coin.  

       Therefore, I decided to write not only about science, but also to include a chapter 

about the nature of humans, about our trajectory, and about the responsibilities of 

science. This decision justified the writing of what you are about to read (hopefully), and 

made the process more palatable.  

       The resulting book is a mixture of some banal ratiocinations and original scientific 

results. And dishes which contain seemingly incompatible ingredients (as my five-year-

old granddaughter Anja used to say), can unexpectedly turn out quite edible.  This is 

what I am counting on.  

  

Chapter one.  Who we really are, why science appeared, and how it is 

bad for you 

 

Disclaimer: I must emphasize from the start that I am not at all a misanthrope, and wrote 

the below singularly out of humanitarian motives. 

 

       It is widely said that humans descended from apes.  Less widely, it is said that apes 

descended from humans. Both are wrong. Zoologically speaking, Homo Sapiens are 

talking apes of the hominidae family.  This does not bother me, since this family besides 

humans contains very likable and inquisitive animals - gorillas and chimpanzees. I am 

proud to be related to these wonderful creatures. I am writing this to point out that 

humans are part of nature, which we are trying to destroy while hoping to pull through 

ourselves. Separating humans from nature is dangerous both for humans and for nature.  

I am reminding that humans are apes not only for the sake of truth, but also because our 
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fate troubles me. I am not sure that “sapience” is a completely fitting endonym for our 

species of primates - look how often humans act ignorantly and unwisely! Be it as it 

may, by leading up to humans, evolution has allowed matter at this stage of its 

organization to become self-aware.  

       Besides looks and ability to talk (regrettably, often not making much sense), 

humans differ from their family members by our need to create a worldview, and to find 

explanations for phenomena in the world.  This need may be called the knowledge 

instinct. Children are bottomless sources of questions, which is why there is a phase of 

childhood called “the why phase”.  

        The knowledge instinct requires to be satisfied. Modern civilization is the 

consequence of satisfying this instinct through intellect by representatives of humanity 

who are called scientists. The knowledge instinct pushes them deeper and deeper into 

the innermost mysteries of nature, ignoring the possible consequences.  

 

        If one gives up the work which satisfies the knowledge instinct, it is usually a 

painful sacrifice, even if the replacement work yields higher financial satisfaction. I will 

give just one example. In 1998 I was invited to a conference in Paris to talk about my 

time reversal experiments (which we will discuss in a later chapter). Times were hard, I 

barely scraped together enough money to buy a ticket to Paris from Kazan. During a 

layover in Moscow I was strolling down a street and out of the blue a Mercedes-Benz 

W140 pulled up (a status symbol in Russia at the time, the darling of businessmen and 

mafiosi). The door opened and out swaggered an old acquaintance, a physicist who did 

his Ph.D. at Kazan University.  “How do you like my ride?” he proudly asked. “Coffin 

on wheels,” I replied, and asked what he was doing these days. He had given up physics, 

started a business, got support from friends, was successful.  Then he asked “And what 

brings you to Moscow?” I explained that that night I was flying to Paris for a conference 

talk about time reversal experiments. He asked for details of the experiments; being a 

knowledgeable scientist, he understood my explanations, and somehow deflated. Then 

he waved dejectedly at his Mercedes with a downbeat comment: “yeah, and here are my 

achievements.” He wished me a good time at the conference and was on his way. 

 

       The knowledge instinct begat science and modern civilization with all its 

foreseeable and unforeseeable consequences. As a reminder, the Earth radius is 6370 

km; there is practically no life 5 km. above sea level.  Thus, the thickness of the 

biosphere is less than 1/1000th of the Earth radius. This means that life exists within a 
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ridiculously thin film which is sticking to the surface of our planet. There are too many 

of us within this thin film, considering how we are behaving. Hundreds of millions of 

cars and other machines are crawling on the surface of the Earth, several million 

airplanes are plowing through the atmosphere. All of them burn oxygen which we and 

other animals breathe, and poison the environment.  Before the fantastic scientific 

achievements, the Earth had a fantastic diversity of plant and animal species.  Humans 

led to the extinction of thousands of them. The dynamic equilibrium of nature has been 

disturbed.  Now the debate is whether we have reached the point of no return. And just 

to think, because of science there are almost no horses in so-called civilized countries - 

let alone horse manure, which is so good for growing cucumbers!  

        Throughout history, there have been tribal wars.  Before the triumphs of science, 

the death toll of those wars was relatively small. Then chemistry gave us industrial scale 

explosives and poisons, biology gave us bacteriological warfare, physics gave us the 

monstrous thermonuclear weapons. Does it mean scientists know not what they do?  

They know, but they do anyway. Science allowed humans to kill each other by the 

million.  

       We, hominids claiming to be sapient, behave like an occupying alien force on the 

planet. As a result, humanity may perish from an asteroid hit in an indeterminate future, 

or from its own actions rather soon, unless humanity comes to its senses. 

        

       Now, it is a good time to talk about physics.   

 

Chapter two, the short one. No need to be star struck 

  

       The material component of civilization is grounded primarily in the successes of the 

following branches of physics: classical mechanics, thermodynamics, electrodynamics, 

and quantum mechanics. In the foundation of each of these disciplines, there are specific 

mathematical formulas. These formulas cannot be derived from other, more general 

formulas; they are the results either of successful inductions from observations of 

physical processes, or of a daring conjecture.  The authors of these formulas become 

known as great scientists, are called “founders”, and are recorded in history.     
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       Formulas do not explain the nature of physical processes.  They allow us to find the 

numerical value for the physical quantities involved in those processes.  To explain the 

nature of the processes, it is natural to use images formulated during observations of the 

phenomena which are perceptible through our senses. But what about phenomena which 

are not perceptible by our senses, and thus are not accessible through direct observation? 

Using the same images there can hardly yield an adequate picture. Often, when familiar 

images and notions cannot be used to interpret a new phenomenon, the phenomenon can 

be misunderstood.  

        New images may be developed when scientists use instruments where direct 

observation is impossible. Preferably, these new images would correspond to physical 

reality. In other words, new foundational formulas should be accompanied by an 

adequate physical interpretation.  It is the interpretation that should create an acceptable 

description of physical phenomena at each new stage of science.  

       The founders are not geniuses who received a superhuman revelation and ability to 

first divine the nature of physical phenomena, and then to create formulas to 

mathematically describe what they have divined. They are knowledgeable and curious 

human beings whose social position allowed them to dedicate themselves to satisfying 

the human knowledge instinct. The interpretation of the physical processes described by 

their formulas is always the biggest problem of their work, and often of their lives. 

       In the following chapters we will illustrate this based on the lives and work of the 

founders of quantum mechanics: Max Planck, Louis de Broglie, and Erwin Schrödinger.  

 

Chapter three. Jack-in-the-box 

 

       By the early XX century it seemed like physical science had reached the pinnacle of 

perfection. However, there accumulated a number of questions which could not be 

answered within classical physics. Classical physics could not explain the line 
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absorption and emission spectra of gasses. Radioactivity, discovered by Antoine 

Becquerel in 1896 and studied by Marie and Pierre Curie at the end of the XIX century, 

evidenced that atoms contain enormous energy, whose origin was also inexplicable 

within classical physics. 

       The new, quantum physics was born from the study of black-body radiation.  The 

black-body experiments use an opaque closed cavity whose walls have the same 

temperature, and which has a small hole.  The light passing through the whole into the 

cavity will be reflected many times and completely absorbed, and the hole will look 

completely black from the outside.  But when the cavity is heated, it begins to emit its 

own visible radiation. The radiation emitted by the inner walls of the cavity in the 

overwhelming majority of cases will go through countless new absorptions and 

emissions. Therefore, we can confidently say that the radiation within the cavity is in the 

thermodynamic equilibrium with the walls of the cavity. 

       So while serious people were creating all types of electric engines, lighting cities 

with electricity, inventing telephone communication, and so much more, some even 

more serious people were, figuratively speaking, huddled around the aforementioned 

cavity and gazed curiously into the aforementioned hole. The gazing turned out to be 

productive, because out of the hole, like jack-out-of-the-box, there sprang quantum 

mechanics. 

 

      This is what happened: 

       By the end of the XIX century a series of measurements established a few 

regularities of the black-body radiation. Josef Stefan (empirically, in 1879) and Ludwig 

Boltzmann (using Maxwell theory, in 1884) established the law connecting the black-

body radiation to its temperature: 

                                                               
!
" = #$%                                                            (1)  
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Here, P is the full radiation flow, S is the radiating surface, T is the temperature of the 

radiating body, and σ is the so-called Stefan-Boltzmann constant.  This law was 

experimentally confirmed by L. Gretz in 1880. 

       In 1896 Wilhelm Wien, based on empirical observations, suggested a form of the 

function of black body radiation density for frequency υ unit:  

                                                             
&!
&' = ()*+,-./

0
1                                                 (2)                                  

However, this formula does not correctly describe low-frequency behavior.  Besides, it 

contains unknown constants () and 2(3.    

       In 1890 Rayleigh derived the spectrum function 
&!
&'  based on classical physics.  In 

1905 this derivation was updated by Jeans.  According to the Rayleigh-Jeans law,   

                                                                   
&!
&' =

3'/45
6/                                                     (3)                 

Here, k is the Boltzmann constant, and c is the speed of light.  

       At low frequencies, classical theory provided correct predictions. However, as 

frequencies rise, the spectrum density  
&!
&'   would increase indefinitely, so the total 

radiated energy would end up being infinite.  This conclusion was called “the ultraviolet 

catastrophe”.  

       By 1900, when German physicist Max Planck started working on the heat radiation 

theory, this discipline was facing a problem which went to the foundations of physics:  

to calculate the distribution of energy of the black body radiation at all frequencies. 

Planck wrote down the expression which interpolated the extreme cases of long and 

short wavelengths.  He arrived at the following formula for energy distribution: 

                                                                  7 = .89:
; <
>12-)

                                                     (4) 

 where λ is the wavelength, and C and c  are some constants.  

       The scientist noted that this expression seemed to accurately describe experimental 

results.  He now faced the problem of explaining the physical reality behind the formula 

he found.  
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        In order to fit his formula to the requirements of thermodynamics, Planck divided 

the radiation energy of given frequency into an exact number of parts (elements, or 

quants) equal ε=hυ, where h is the “universal constant”, now known as the Planck 

constant. As a result, the formula of black body radiation density for wavelength  λ 

became 

                                                           ?@AB $C = 3DE6/
8: F )

; G<
>H12-)

                                     (5) 

Here, R(λ,T) is the power of radiation per surface unit of the radiating surface per 

wavelength unit, c is the speed of light. Accordingly, the distribution of radiation energy 

by frequency is recorded as 

                                                            ?@*B $C = 3DE'I
6/ F )

;G0H12-)
                                     (6) 

where R(υ,T) is the power of radiation per surface unit of the radiating surface per 

frequency unit, and c is the speed of light.  

       Formulas (5) and (6) turned out to accurately describe the distribution of energy for 

the whole range of the black body radiation. 

 

       The appearance of quantity h signals the beginning of the quantum era in physics, 

and Planck is considered the founder of quantum physics. 

 

Chapter four. The thorny path of discovery 

 

       Planck believed that the main goal of the further development of quantum theory is 

to explain the origins of the mysterious quantity h. He linked the solution of this 

problem to the detailed study of the light emission process at the microscopic level, i.e. 

the electronic theory of matter, which was formulated by the early XX century. 

       Planck’s works of this period do not mention the quantization of radiation energy, 

i.e. the representation of the energy through a discrete set of certain number of portions 
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(quants) at the value of hυ. Planck himself at that time did not consider such a 

possibility, and his view of his own results remained purely classical not only in his 

works of 1900-1901, but also in the first edition of his Lectures on Thermal radiation 

[1].  The equation ε=hυ was used only to calculate the equilibrium distribution of 

energy. 

       Planck did not completely appreciate the full consequences of his work; at that time, 

the concept of quantum discretion itself did not seem terribly important to him. He 

expended a lot of effort trying to reconcile his results with the concepts of classical 

physics; he was very sceptical of further moves leading away from the old views. We 

witness a situation which is unprecedented in the history of science: having given the 

world an extremely effective theory, its creator became intimidated by the scale of the 

consequences and made every effort to prevent the theory from taking hold in science. 

He failed in those efforts, of which he wrote in his scientific autobiography [2]: “My 

futile attempts to introduce quant actions into the classical theory continued for several 

years and took a lot of effort.  Some of my colleagues viewed this as a tragedy of sorts. 

But I thought differently, because this deep analysis yielded significant value” [2].  

       Do not think that this diminishes Planck’s role in the development of physics, or 

that the “father of quantum physics” did nothing substantial in 1900. He identified the 

constant h and created the formal scaffolding for what could later be considered the 

quantum-theoretical proof of the black-body radiation law.  Planck’s dilemma is simply 

the first instance of the typical situation in quantum theory: the “correct” interpretation 

of new mathematical schemes usually appears after the formulas themselves have been 

developed. 

 

       Another founding father of quantum mechanics is Louis de Broglie.  He studied the 

nature of x-ray radiation and discussed its properties with his brother Moris; in the 

process, Louis de Broglie realized the need for a theory which would connect 

corpuscular and wave representations. All that was left to do was to extend the wave 
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ideas to all massive particles, and in 1923 a decisive breakthrough took place. De 

Broglie proposed the idea that the propagation as a wave, which had been established for 

photons, is universal.  It should manifest for all particles which have an impulse p. All 

particles with an impulse p have wave properties, including being subjected to 

interference and diffraction.    

       De Broglie presented his ideas in a short paper ¨Waves and quants¨ (Ondes et 

quanta) [3], presented at the meeting of the Paris Science Academy  September 10, 

1923). In that paper the scientist proposed that a moving particle with energy E is 

characterized by a certain internal periodic process with the frequency E/h, where h is 

the Planck constant.  De Broigle assigned a wave to the moving body, which later was 

named the  de Broglie wave.  

       De Broigle’s formulas establish the dependence of the length λ of the moving 

particle’s wave on the impulse p of that particle, and the dependence of the total energy 

E on the frequency υ.  The relationship is expressed in the equations:  

                                                                  λ=h/p                                                              (7) 

                                                                 E=hυ                                                               (8) 

 where h is the Planck constant.   

       Louis de Broglie wrote that “it may be, that each moving body is accompanied by a 

wave, and that it is impossible to separate the movement of the body and the propagation 

of the wave”. According to de Broglie, this logic must be true for material particle, e.g. 

electrons. But in 1924 de Broglie’s ideas about the wave properties of particles were just 

a hypothesis. He presented his results in detail in his doctoral thesis “Research on 

quantum theory”, which he defended in the Sorbonne on November 25, 1924. The 

dissertation committee, which included four well known scientists - the physicists Jean 

Perrin, Charles Victor Mauguin, and Paul Langevin, and a mathematician Elie Cartan - 

duly recognized the originality of the results, but may not have fully appreciated their 

full significance.  Langevin was an exception; he reported about de Broglie’s work at the 

Solvay conference in April 1924. Einstein was interested in this work, which brought de 
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Broglie’s hypothesis to the attention of some leading physicists, but few people were 

taking it seriously at the time. 

       In 1927 the evidence of the diffraction of electrons were discovered, primarily due 

to the experiments of Clinton Davisson and Lester Germer in the USA, and of George 

Paget Thomson in the UK. This discovery made de Broglie’s achievements widely 

acknowledged, as evidenced by his receiving of the Nobel Prize in physics for 1929, 

with the citation “for the discovery of the wave nature of the electron”. 

       In his article “Wave mechanics and the atomic structure of matter and radiation”, 

published in Journal de Physique in May 1927, de Broglie proposed the existence of two 

objects with different physical nature: a material particle and a continuous wave, where 

the wave directs the movement of the particle. This wave was called “the pilot wave” 

(l’onde pilote). 

       That article did not attract much attention from the scientific community.  However, 

Wolfgang Pauli spoke highly about the originality of the French scientist’s ideas.  Thus, 

in his letter to Niels Bohr of August 6, 1927, he said “even if this article by de Broglie is 

missing the mark (and I hope it is), it is still very rich in ideas, very sharp…”  During the 

fifth Solvay conference (October 1927), de Broglie failed again to persuade his 

colleagues in the accuracy of his theory of the pilot wave. The theory was received 

coolly by the participants.  De Broglie said later that this unfavorable reaction was one 

of the reasons he did not pursue the development of his original ideas.  

      In 1951 de Broglie found a reason to return to his previous views thanks to the works 

of the American physicist David Bohm.  Bohm’s theory in fact repeats the pilot-wave 

ideas in a slightly different form. 

 

       De Broglie’s paper “Waves and Quants” launched the development of wave 

mechanics. The next step was made by the Autrian theoretical physicist Erwin 

Schrodinger, who in the early 1926 developed the mathematical formalism of the wave 

mechanics, based on the ideas of the French scientist. The immediate prompts for 
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Schrodinger were his learning about Louis de Broglie’s dissertation in early November 

1925, and Einstein’s paper on quantum theory of gasses, where Einstein quoted the 

French scientist.  Shrodinger’s success in that project was founded on his knowledge of 

the relevant mathematical apparatus, including the method for solving problems for 

eigenvalues.   

       We know from mathematics that equations of the type   

                                                                 JKL = JL                                                       (9) 

where operator  JK  refers to an operation on the following function, and A is constant, 

can be solved only for certain (discrete) values JM of that constant; such eigenvalues of 

the operator. Each eigenvalue of JM corresponds to a solution  LM, which is called the 

eigenfunction of the operator.  

       Schrodinger knew that the energy levels of a hydrogen atom are a discrete set of 

values. So he proposed that those levels are the eigenvalues of the operator of the atom’s 

energy.  In the first half of 1926 the journal Annalen der Physik received four parts of 

Schrodinger’s famous work “Quantization as an Eigenvalue Problem” [4]. In the first 

part, which the journal received on January 27, 1926, the author wrote the equation  

                                                                   NOL = 7L                                                    (10) 

now known as the time-independent (stationary) Schrödinger equation.    

       Mathematically, equation (10) is the equation for the eigenvalues of the energy 

operator (Hamiltonian) NO. When this equation was used to find discrete energy levels of 

a hydrogen atom, the solution agreed with experiment. Thus, Schrodinger’s proposal 

turned out to be rather fortunate.  

       The introduction to installment 3 of the paper, which was received by the journal on 

May 10, 1926, for the first time features the term “wave mechanics” (Wellenmechanik) 

to describe the approach developed by Schrodinger. In the fourth installment, received 

June 21, 1926, the scientist formulated the equation  

                                                                   PQ RSRT =2NOL,                                               (11)                                       
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which was later named time-dependent (non-stationary) Schrodinger equation. He used 

the equation to develop the theory of time-dependent disturbances. 

       Schrodinger equations are the generalizations from experimental data. They should 

be considered as postulated equations; they cannot be derived in quantum mechanics, 

just as Maxwell equations cannot be derived in electrodynamics nor Newton’s equations 

in classical mechanics. 

       The wave function  L, which is the solution to Schrodinger equation (11), may be 

resented as the superposition    

                                                   L =2U VM@WCLM@XCM ,                                (12)         

where t is time, x is the generalized coordinate, LM@XC are eigenfunctions of system 

Hamiltonian.  

       Measurements show one of the energy eigenvalues.  The system’s total energy 

equals  

                                                  7 = 2U |VM@WC|²M 7MY22                         (13)  

       The value |VM@WC|² is the probability that energy value 7M  will be observed. 

Accordingly, 

                                                          U |VM@WC|²M  2= Z                                                   (14)                            

       After the publication of Schrodinger’s papers, physicists started widely using his 

convenient and consistent mathematical formalism to solve all sorts of quantum theory 

problems. Quantum concepts have allowed us to find adequate mathematical 

descriptions of the processes in the nuclei of atoms and depths of stars, radioactivity, 

particle physics, solid state physics, low temperature physics (superconductivity and 

superfluidity). These concepts have become the theoretical basis of numerous practical 

applications of physics: nuclear energy, semiconductor technology, lasers, and others. 

       The physical reality behind the eigenvalues of the energy operator in Schrodinger 

equation was clear from the beginning.  The main question posed by Schrodinger’s 

fundamental work was “what is the physical reality behind and properties of the wave 

function, which is the solution to the wave equation”.   
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       The author of the wave equation himself, Erwin Schrödinger, first thought that we 

may imagine particles as wave packets and thus abandon the corpuscular view 

altogether. Wolfgang Pauli in his letter to Niels Bohr about de Broglie’s paper, which 

we already cited above, wrote that de Broglie’s work was “written on a much higher 

level than the childish works of Schrodinger, who keeps thinking even now that he can 

... abolish material particles.” The flaw of Schrödinger interpretation quickly became 

obvious: wave packets inevitably dissipate, which contradicts the obviously corpuscular 

behavior of particles in electron scattering experiments. 

 

Chapter five. Shut up and calculate 

 

       Since then, scientists spent decades looking for the physical reality behind the 

successful mathematical formulas. 

  

       Max Born proposed the probability interpretation, or statistical interpretation, which 

allows us to use the Schrödinger equation to describe physical processes without 

abandoning the corpuscular view. According to Born, every measurement act identifies 

with a certain probability the value of a physical quantity (e.g. the particle coordinates).  

The wave function determines this probability. For instance, quantity  |VM@WC|² in the 

formula (13) is the probability of observing energy value 27M . It remains unknown, 

however, if the wave function contains all needed information about the physical 

system, because of the inconvenient fact that while the function is the same for every 

measurement, the result is different every time.  Born surmised that the system may 

possess some properties which are not reflected in the wave function. What these 

properties are and how they manifest during observation remained unclear.    

       The probability interpretation offered by Born was unacceptable to Schrodinger, 

because it contradicted his ideas about the real quantum mechanical waves, keeping in 
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place the quantum leaps and other elements of discreteness, which Schrodinger wanted 

to abolish. 

       Copenhagen interpretation, the most popular one in our days, was formulated in 

1927.  While Born’s statistical interpretation does not claim that the probability appears 

as a result of measurement, Copenhagen interpretation claims that when the system is 

not being measured, it does not have specific physical properties, and it is only as a 

consequence of the measurement that the probability of physical values appears.  Wave 

function can predict only the probability of a value appearing as an outcome of 

measurement.  Unlike Born’s interpretation, the Copenhagen interpretation argues that 

the wave function contains all necessary information about the physical system.   

       The wave function relates at any given time to the entire interval of coordinates on 

which the function is defined. Most likely, this fact provoked the emergence of the 

Copenhagen interpretation of quantum mechanics, which rejects questions like "where 

was the particle before I registered its location?" as meaningless. However, the inability 

of the wave function to specify the location of the particle at a particular time does not in 

any way imply the meaninglessness of the question about this location. I believe that, at 

least before the Copenhagen interpretation, particles existed in nature independently of 

observation. I am convinced that the particle is located in a specific place at a specific 

time, where it is detected during observation. 

       Schrödinger found the Copenhagen interpretation unacceptable, because it 

contradicted his idea of the real quantum-mechanical waves.  He was trying to eliminate 

quantum leaps and other elements of discreteness.  He continued to insist on the wave 

nature of the electron and to treat the electron within the atom as a negatively charged 

cloud. Schrodinger finally joined the probabilistic interpretation of the nature of waves 

in 1950. In his paper “What is an elementary particle?” he wrote: “We now say that all 

waves, including light, are better viewed as “probability waves”. They are just a 

mathematical construct to calculate the probability of finding the particle”. Schrödinger 
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never accepted the Copenhagen interpretation and till the end of his life he insisted that 

the wave function should have a real physical meaning.  

       Many physicists have objected to Copenhagen interpretation, because it treats the 

wave function as just an auxiliary mathematical tool, whose only purpose is to allow us 

to calculate probability. Einstein exclaimed in a conversation with Abraham Pais: "Do 

you really think the moon isn't there if you aren't looking at it?" [5].  

       Like many physicists, we do not agree with any of the commonly known 

interpretations. We also do not think it productive to subscribe to the “no interpretation” 

position.  We will not discuss other interpretations of wave function here. The fact that 

very many exist testifies to the absence of a satisfactory one. Nobel Laureate in physics 

Richard Feynman said “I think I can safely say that nobody understands quantum 

mechanics”. That is why many physicists lean towards the instrumentalist interpretation, 

best summed up in the succinct slogan “Shut up and calculate!” formulated by David 

Mermin [6].  

  

Chapter six. What’s inside 

 

       Ernest Rutherford in a letter to Niels Bohr noted: “Physicists are submerged in the 

foggy atmosphere of matrices and wave mechanics, in the mathematical operations; they 

provide the correct solutions, but at the same time do not understand the physical reality 

behind them”. 

      De facto, mathematics has substituted physics in quantum theory. Physics formulas 

must have corresponding physical processes.  But the formulas we have do not describe 

processes, they only allow us to calculate the measurement results.  Louis de Broglie 

stated the obvious: “Quantum physics urgently needs new images and ideas, which can 

appear only if its foundational principles are deeply revised” [7].  

       However, quantum mechanics is a very single-minded field. Where it rules, an 

attitude and an organized system develop which strangle any sign of dissent, any bud of 
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a new living theory which is yet too young to fight back effectively. In spite of that, we 

will try to break out of the foggy atmosphere about which Rutherford wrote, using new 

images and ideas in accordance with de Broglie’s call. 

       For de Broglie, understanding means ability to visualize. In the early 1960ies, he 

formulated an approach adding a chance element to the movement of a particle; this 

chance element is caused by the particle’s interaction with a hidden “subquantum 

environment” [8]. 

       In our view, for a particle to be found in a point in space, it must actually be there at 

the moment when it is found. It is clear that for a particle to be manifested at a point in 

space, physical processes are needed to provide for this manifestation.  In papers [9,10] 

we offer an interpretation of the wave function in which wave function is the 

mathematical reflection of real physical processes taking place at the subquantum level 

of the organization of matter which underlies the phenomena described by quantum 

mechanics; this subquantum world generates all matter and sets the parameters for the 

matter with which our visible world is built. From this point of view, material particles 

can be viewed as excitations in the subquantum world which possess specific properties. 

       Below we will see how the acceptance of the existence of the subquantum world 

helps to answer questions which intrigue intelligent and thoughtful people who are 

interested in quantum mechanics. 

 

6.1. Quantum mechanics and probability 

       Value E in equation (13) equals the full energy of the system only if |VM@WC|²  is the 

probability of observing the energy value  7M. This requires the observed system to visit 

the states with the energy value 7M many times.  This means there must exist certain 

processes which would provide for the transitions between states with different energy 

values  7M. Quantum mechanics says nothing about such processes, because they are 
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subquantum. Cleary, the subquantum processes must be extremely fast; otherwise the 

probability theory could not have been used in quantum mechanics. 

  

6.2. Electrons within the atom 

       If electrons were moving on an orbit within the atom, this would have been a 

movement with centripetal acceleration. We know from electrodynamics that a particle 

moving with acceleration radiates energy.  Accordingly, very soon the electrons would 

have given off all their energy and would have fallen on the nuclei, and the Universe to 

which we are so accustomed would have ceased to exist. Fortunately, it does not happen. 

The electrons do not move around nuclei on orbits. Instead, the subquantum world 

(according to laws which science has not yet discovered) generates electrons in different 

spots within the atom, with the probability determined by the square module of the wave 

function. It is meaningless to say “which” electron disappeared from one place and 

appeared in another.  This means that the electrons in the atom are identical. 

       Let us consider a helium atom as an example. Wave functions of a helium atom, 

which contains two electrons, and the energy corresponding to those functions, can be 

written as [11,12]: 

       [\@])Y ]3C = )
^3 {LM@])CL_@]3C ` L_@])CLM@]3C}B 7\ = 7M ` 7_ ` a ` A,     (15) 

       [b@])Y ]3C = )
^3 {LM@])CL_@]3C c L_@])CLM@]3C}B 7b = 7M ` 7_ ` a c J,      (16) 

where Ld@]eC   are the wave functions of the electrons in the Coulomb field of the 

nucleus, and  7M  and   7_  are their energy values in this field,  

a = ,3f|LM@])C|
3|L_@]3C|3
])3 gh)gh3 

J = ,3fLM
F@])CL_@])CLM@]3CL_F @]3C

])3 gh)gh3 

       Quantity K has a simple physical meaning: it is the average energy of Coulomb 

interaction of two electrons in their independent states  LM@])C  and   L_@]3C.  Quantity 
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A is called the exchange energy and has no analogues in classical mechanics. Exchange 

energy is the consequence of the particles being identical and of the existence of states 

2[\@])Y ]3C  and 2[b@])Y ]3C  which are the superposition of products of states of two 

electrons (such states are usually called “the entangled states” in modern physics).  

       The states 2[\@])Y ]3C and 2[b@])Y ]3C are the states of parahelium and orthohelium. 

Parahelium and orthohelium, like the Moon, exist in nature independently of 

observations. Consequently, the probability of the value of the electron coordinates, 

which allows us to calculate helium atom energy independently of observations, does 

not appear as a result of the observations. Instead, it is determined by physical processes, 

which we call subquantum processes.  

       Without the idea of subquantum processes, which determine the electron’s 

disappearance in one spot and its appearance in another one, it is impossible to explain 

why the electrons are identical and thus lead to the atom properties that we see (e.g. the 

existence of exchange energy). This means that subquantum processes represent that 

physical reality which the mathematical formalism of quantum mechanics describes. 

 

6.3. The collapse of wave function during observation 

       The movement of the electron in free space is described by the wave equation.  In 

the context of subquantum processes it means that the subquantum world makes the 

electrons manifest in points of space with the probability determined by the square 

module of the wave function in those points.  When an electron at some point of space 

encounters an obstacle capable of interacting with it, the electron may be absorbed by 

the obstacle, and cause measurable changes in it. Experience shows that the subquantum 

world will not generate a replacement electron instead of the one that was captured. 

Naturally, in this case the electron wave, together with the wave function which 

describes it, will cease to exist.  The wave function of the electron will collapse.  
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       According to quantum mechanics, the value |VM@WC|² in the equation (13) determines 

the probability of system energy being equal to 7M.  However, the value |VM@WC|²cannot 

be considered the probability of eigenstates LM (see textbooks on quantum mechanics). 

Truly, according to (12) the quantum mechanical average value of any observable A is 

                                   Ji =  jLkJKkLl = 2U VMFMB_ V_JM_,-e@mn-moC
p
q ,                          (17)     

                                                      JM_ = jLMkJKkL_l 
       If the value 2|VM@WC|²  determined the probability of eigenstates LM, then we would 

have had  

                                                       Ji = 22U |VM@WC|²2M JMMY2                                            (18) 

        It follows that if during measurement we find the system, with a certain probability, 

in a state with energy  7M, it does not mean that we find it with the same probability in 

an eigenstate LM corresponding to that energy. At the same time it is obvious that some 

physical state of the system must correspond to every different  7M.  We posit that these 

states appear as a result of subquantum processes.  Let us emphasize that these states 

should not be confused with the system’s eigenstates which are described by wave 

functions – the eigenfunctions of the system’s Hamiltonian (it may be supposed that the 

combination of all states with this particular energy forms the eigenfunction).   

       After the system is found by a measurement tool in one of the states with energy 7M 

caused by the subquantum processes, it can no longer be described by the wave function 

which existed before the measurement, which means the collapse (or reduction) of the 

wave function. 

       The above interpretation of the wave function collapse complies both with scientific 

criteria and with common sense.  

 

6.4.  Subquantum processes and quantum entanglement.  
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       In recent years, the study of entangled states is generating much interest (see, e.g. 

[13-16]). It is stimulated by the possibility of using quantum entanglement in 

computation and communication [17].  

       The wave function of an entangled system is the sum of products of the wave 

functions of the parts of the system.  For example, the wave function of an entangled 

state with zero spin of the pair of particles possessing spin is: 

                                                  [ = )
^3 @L)rL3- c L)-L3rC                                            (19) 

      Here Ler  and Le-  (i = 1,2) are the states where a particle has a clockwise and  a 

counterclockwise spin on a certain axis. 

       The entangled particles are “one organism” and cannot be considered separately. 

The measurement results of the state of the entangled particles correlate a priori.  For 

instance, if the total spin of the entangled particles is zero, then when one particle is 

found to have a clockwise spin on a certain axis, the other particle will be found to have 

a counterclockwise spin on the same axis.  It appears as if the particles “know” about 

each other’s state. Most interestingly, this “knowledge” is preserved even when the 

particles are separated by such a distance that information about the particle states would 

have to travel from one particle to another much faster than the speed of light in order to 

reach it between the measurements of the states of each particle. This is why Einstein 

was not happy with the concept of entanglement and called such transfer of information 

“spooky action at a distance” [18].      

       Because a pair of entangled particles represents “one organism”, it is natural to infer 

that the subquantum world simultaneously generates pairs of particles whose wave 

functions are entangled. In this case it is meaningless to talk about transfer of 

information from one particle to another, i.e. about the speed of Einstein’s “spooky 

action at a distance”.  Attempts to measure this speed should result in enormous values. 

For instance, in experiments [19,20] lower boundary of speed of the spooky action in 

entangled photon pairs was 4 orders of magnitude of the speed of light (note that these 
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experiments did not measure movement of a mass above the speed of light, which, of 

course, would have contradicted the theory of relativity).   

       If the measurement process does not change the states of entangled particles beyond 

recognition, then the results for different particles will be correlated.  This will violate 

the Bell's inequality [21]; this violation was demonstrated in a significant number of 

experiments. Experience shows that the subquantum world preserves the “one 

organism” of entangled particles even at great distances (how the subquantum world 

does it, neither Schrodinger nor Einstein would have told us).  A system consisting of 

two particles whose state is described by an entangled wave function is not a simple 

“sum” of those particles.  

       The wave function (which reflects a result of processes in the subquantum world) is 

a non-local quantity and the distance between the particles is irrelevant. 

        In this chapter we have proposed to consider that the distribution of the probability 

of the physical values, which is determined by the wave function, arises from 

subquantum processes which take place on the level of the organization of matter which 

underlies the phenomena described by quantum mechanics, i.e. in the subquantum 

world. These processes allow to explain from one position the meaning of the wave 

function, behavior of electrons in the atom, the collapse of this function during 

measurement and the paradoxes of entangled states,  

       From our point of view, it is necessary to recognize the existence of the subquantum 

processes and to study them. The subquantum processes defining the behavior of 

physical systems are one of manifestations of the general properties of a matter in the 

Universe. The study of these processes will further our knowledge of the laws of the 

microworld and macroworld.     

 

Chapter seven.  What can be where there is nothing. Just a regular 

paper 
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             Full waves, empty waves and subquantum processes  

  

Abstract  

 

In this paper the appearance of a particle in a certain point in space, the full waves, and 

the empty waves are considered as a consequence of subquantum processes. The paper 

describes an experiment which measured the absorption of single photons by absorbers 

with various absorption coefficients, in one of the beams, after the photons interacted 

with the beam splitter. The measurements showed that the absorption corresponds to a 

single photon traveling in either one or another beam. The results of our measurements 

and of single photon interference experiments, combined, demonstrate the existence of 

the empty waves, that is, the excitations in the subquantum world which do not contain a 

photon. We show that seemingly justified criticism of our interpretation of the 

experiment is not valid.  New experiments are proposed to study single-photon 

interference involving an empty wave. 

 

Introduction 

 

       In 1986, Grangier, Roger and Aspect [22] demonstrated the interference of the two 

output beams from the beam splitter in experiments using single photon states, even 

though the photon can only be detected in one of the two output beams for a given run of 

the experiment. Paper [23] considers the supposition that one of the beams contains a 

wave which is not accompanied by a particle, i.e. an empty wave. This supposition is 

consistent with the de Broglie–Bohm theory.  

       According to the de Broglie-Bohm theory, it can be assumed that while a single 

photon travels in one particular beam, the so-called "pilot wave" that influences it travels 

in both. Thus, the empty wave can be considered part of the pilot wave. A number of 
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works suggest experiments for the detection of empty waves (see, e.g. [24-26]); 

however, until now no experimental evidence of the existence of such waves has been 

received. 

       The Born rule connects the wave function to the probability density of finding the 

particle at a given point. However, this rule is an interpretation, аnd not a fundamental 

law. In de Broglie-Bohm theory, the wave is considered a physical reality, and the link 

between the probability density and the wave function has the status of a hypothesis. It 

can be said that Born’s interpretation is the truth, but not the whole truth. This means 

that the wave function may not equal zero even in the part of space where the particle is 

not observed. Hence the empty wave may also be described by the wave function, which 

may explain the interference of the wave containing the photon, i.e. the probability 

wave, or full wave, and the empty wave.    

       Clearly, in order to discuss the empty wave it is important to understand the 

physical meaning of the wave function, i.e. to have an adequate interpretation of the 

wave function. We will proceed from our interpretation, according to which wave 

function is some mathematical reflection of real physical processes taking place at the 

subquantum level (we think that the road into the structure of matter is a staircase with 

an infinite number of steps, and the subquantum level is one of these steps).       

       Our view is that it is impossible to exclude the existence of a region of subquantum 

excitation associated with a particle, where subquantum processes do not manifest the 

particle itself. Given the absence of a particle, this area can be called empty. 

Accordingly, the subquantum excitation wave, in which the particle is present, can be 

called the probability wave or the full wave, and the excitation wave in which the 

particle is absent can be called the empty wave. The full wave and the empty wave are 

created by real subquantum processes, that is, they are physical reality, not just 

mathematical objects.  

       Experiments observe the manifestation of the particle in a certain point of the 

probability wave. It is common knowledge that behind every chance there is a rule. We 



26 

 

do not know the rules of the subquantum world determining the formation of wave trains 

in which the particle manifests as an observable object. It is clear, however, that the 

photon can manifest anywhere in the wave train, and that this possibility is determined 

by some subquantum processes. A direct proof of the existence of the empty wave 

would mean that along with the wave train where the photon manifests, there also exists 

a wave train containing the potential possibility of the photon manifestation, but the 

actual photon does not manifest, and thus cannot be detected. Note that at any given 

time the photon manifests only in one of the points of the probability wave train. In all 

other points at that moment the wave may be considered empty. 

       According to [22], after the recombination of two beams the interference picture is 

observed. This implies that two coherent wave trains appear as a result of the interaction 

of the photon with the beam splitter. If the photon were to manifest in both wave trains, 

it would mean that its wave function is the superposition of two probability waves: the 

transmitted one and the reflected one. The empty wave hypothesis is consistent with the 

suggestion that the photon manifests in only one of the two output beams. In this case 

the photon wave function cannot be a superposition of two probability waves.  Thus, 

experiments are needed which will clarify whether the photon wave function after the 

interaction with the beam splitter is the superposition of two probability waves or the 

superposition of a probability wave and an empty wave. 

 

Experiment and discussion 

 

Our experiment is illustrated in figure 1.   
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                                                              Fig.1  

 

       Let us assume that after the beam splitter the wave function of the single photon is 

the superposition of the wave functions corresponding to the transmitted and the 

reflected probability waves:   

                                                     L = V)LTs ` V3Ls; .                                                 (20) 

where the ratio of2|V)|3 and |V3|3 | is equal to the ratio of the probability of the photon’s 

manifestation in the transmitted and reflected waves. In this case the ratio of |V)|3  and 

|V)|3 | will be equal to the ratio of the number of photons registered by the detectors 1 

and 2 in the absence of the absorber. Let tu is the number of the photons registered by 

both detectors in the absence of the absorber.  Then numbers of the photons registered 

by the detector 1 and by the detector 2 will be equal to tu|V)|3    and    tu|V3|3 

accordingly.     

     If the number of the absorbed photons is tvw, then the number of the unabsorbed 

photons is  @tu ctvwC. Photon absorption has no effect on the wave function (20) of the 

unabsorbed photon after the beam splitter.  If the wave function of the single photon 

were the superposition (20) and the absorber did not influence unabsorbed photons, then 

at the presence of the absorber the numbers of the photons registered by the detector 1 

and by the detector 2 would be equal to @tu ctvwC|V)|3!and to @tuctvwC|V3|3.  The 
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numbers of the photons registered by the detectors 1 and 2 would diminish on tvw|V)|3  

and tvw|V3|3  accordingly.       

      The measurement results are provided in Table 1. 

 

 

 

 K T tZ   tx          tZytx  @t)yt3Cvz 

0 2 44730 33745 1.325 
 

0 0.02 459 343 1.339 1.346 

0 0.002 45 33 1.373 
 

      

0.1 2 44271 26068 1.698 
 

0.1 0.02 433 255 1.696 1.701 

0.1 0.002 43 25 1.710 
 

      

0.2 2 44188 20502 2.155 
 

0.2 0.02 446 210.6 2.118 2.096 

0.2 0.002 44 28 2.016 
 

 

                               

Table 1. Column names: 

K - absorption coefficient of the absorber 

T = 20 $~   

$~     - duration of one measurement cycle 
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 tZ  - average number of photons registered by detector 1 in one measurement cycle 

 tx  - average number of photons registered by detector 2 in one measurement cycle 

 @t)yt3Cvz  - average ratio of the number of photons registered by the detector 1 and 

the detector 2 at different T    

 

       Table 1 shows that the ratio of the number of the photons registered by the detector 

1 and the detector 2 without the absorber is 1.346 (with variation in the third decimal at 

various values of T). This means, that in the absence of the absorber the number of the 

photons registered by the detector 1 is 

                                                     @tZC� = �Y���t�                                                    (21) 

 and the number of the photons registered by the detector 2 is 

                                                     @txC�= �Y�x�t�                                                   (22) 

      Let us suppose that after the beam splitter the wave function of the single photon is 

the superposition   

                                                      L = V)LTs ` V3Ls;                                              (23) 

kVZkx` kVxkx = Z 

  where kVZkx = �Y���, kVxkx = �Y�x�.   

      Let us admit that the absorber does not influence unabsorbed photon and the photon 

wave function remains the superposition (23). Then, when absorber is present, the 

number of the photons registered by the detector 1 would  be equal to �Y���@t�ct��C 
and the number of the photons registered by the detector 2  would be equal to !

�Y�x�@t�ct��CY The  ratio of the numbers of the photons registered by the detectors 1 

and 2  would  remain equal to the ratio 0.574 and 0.426, i.e. equal to 1.346.  Our 

measurements have shown, however, that the presence of the absorber in the path of the 

reflected beam does not change the number of the photons registered by detector 1. In 

the presence of the absorber, the number of unabsorbed photons registered by the 

detector 2 corresponds up to the third decimal to the expression  
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                                                       tx = @txC�Z�c�                                                   (24)                                      

      Because the presence of the absorber does not change the number of the photons 

registered by the detector 1, the number of absorbed photons is equal to    

                    t�� = @txC�ctx = �tx�� �ZcZ�c��= �Y�x�t�@ZcZ�c�C             (25)                                        

      In the presence of the absorbers the ratio of the numbers of photons registered by the 

detectors 1 and 2 also corresponds to the expression  

                                                    
��

@�/C�)u9H = ZY��� F Z�4                                          (26)   

 up to the third decimal, so it does change.  

      Let us suppose that the photon wave function after the beam splitter is the 

superposition (23) and the absorber influences the unabsorbed photon. Let us suppose 

also that as a result of the absorber influence the photon appears in the reflected beam 

(like an electron appears under influence of light in two slits experiments).  This photon 

will be registered by detector 2. Obviously, it cannot increase the number of the photons 

registered by the detector 1 and make it equal to  tu|V)|3.       

       Let's suppose for a moment that the tricky absorber transforms the wave function of 

an unabsorbed photon (23) into a superposition               

                                                     L = VTsLTs ` Vs;Ls;                                                (27)                    

where 

                                  |VTs|3 = ��|62�|/22
��-���   and  |Vs;|3 = ��|62/|/-���22

��-��� 2 
 

       In this case, the number of photons recorded by detectors 1 and 2 will be equal to  

               @tu ctvwC|VTs|3 = tu|V2)|32and @tu ctvwC|Vs;|3 = tu|V23|3 ctvw, 

as in our experiment. However, it is obvious that the real absorber is not able to perform 

such a transformation. 
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        Thus, it is not possible to explain our results based on superposition (23).  The 

results of our measurements, reflected in formulas (21), (24) and (26), correspond to the 

photon traveling after the beam splitter in either one or another beam. 

       Let us now discuss the seemingly justified criticism of our interpretation of the 

experiment. Let us consider the experiment proposed by critics that uses a second beam 

splitter instead of the absorber (Fig.2). 

 

 

                                                                 Fig.2 

 

       If we assume that after the second beam splitter we have a superposition of the wave  

LTs@3C  that passed this beam splitter and the wave Ls;@3C  reflected from it, then the 

wave function of the photon can be represented as   

                                         L = V)LTs 2` 2V)@3CLTs@3C ` V3@3CLs;@3C22                             (28)              

        Let the ratio kV)@3Ck3  andkV3@3Ck3be equal to the ratio of the number of photons 

recorded by detector 2 and the number of photons absorbed in our experiment.  Then the 

number of photons recorded by the detectors 1 and 2 in the experiment with two beam 

splitters will be equal to the number of photons recorded by the detectors 1 and 2 in our 

experiment. The number of photons recorded by the detector 3 will be equal to the 

number of photons absorbed in our experiment. From this fact critics conclude that the 

experiment with two beam splitters is equivalent to our experiment. The results of 
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measurements in the experiment with two beam splitters can be interpreted in the 

traditional way based on the superposition (28). Therefore, according to critics, the 

results of our measurements can also be interpreted without involving the idea of the 

empty wave. 

       If our experiment were equivalent to the experiment in which the absorber is 

replaced by a second beam splitter, then we could not claim that the results of our 

measurements indicate the existence of an empty wave.  But  these experiments could be 

considered equivalent only if the photon wave function in our experiment were a 

superposition of the functions LTs 2 and LTs@3C  corresponding to the waves passed beam 

splitter and absorber, as well as some wave function � corresponding to the absorbed 

photon,  that is if 

                                            L = V)LTs `2V)@3CLTs@3C ` V3@3C�                                    (29)  

       However, according to the basic principles of quantum mechanics, the wave 

function Ψ can be considered the superposition 

                                                          � = U VMM LM                                                             

of wave functions LM only if the functions LMare eigenfunctions of the same operator. 

As a result of the absorption of a photon, a state of the substance of the absorber occurs, 

which could be described by a certain wave function2�. However, there is no operator 

whose eigenfunctions are both the function2LTs@3Cand the function 2�.  Accordingly, we 

do not have the right to assert that the absorber transforms the photon wave function into 

the superposition of the wave functions  2LW]@xC and2�. This means that superposition 

(29) does not exist. 

       If in the experiment with two beam splitters the wave function is described by 

superposition (28), then before absorption by one of the detectors the photon belongs 

concurrently to all three beams. In our experiment, we can't claim that the photon 

belongs concurrently to the transmitted beam, the reflected beam and the absorber. 

Detectors record only unabsorbed photons whose number is equal to  2t�ct�� . 
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Therefore, it is impossible to consider our experiment equivalent to the experiment with 

two beam splitters.   

       The results of measurements in the experiment with two beam splitters can be 

interpreted both on the basis of the superposition (28) and under the assumption the 

photon traveling after the beam splitters in either one or another beam. If there were a 

superposition (29), then the results of our experiment could also be explained both on 

the basis of the traditional approach and under the assumption of the photon traveling 

only in one of the possible beams.  However, due to the fact that superposition (29) does 

not exist, it is impossible to explain the results of our measurements on the basis of the 

traditional approach.  

                                                   

Conclusion 

 

     Our measurements show the photon traveling after the beam splitter in either one or 

another beam. At the same time, for the interference in the experiments [22] to be 

observed, two waves must be superposed. This means that while the photon is traveling 

in one beam, the empty wave is traveling in the other beam. In other words, the wave 

function of the photon after the interaction with the beam splitter is the superposition of 

the probability wave (full wave) and the empty wave.  

        The need to perform further experiments is obvious. For example, similar double-

slit experiments are possible. It would be very interesting to study single-photon 

interference in the presence of an absorber.  If the absorber does not absorb the empty 

wave, then the interference pattern will be created by photons which passed the free 

beam and corresponding empty waves, as well as photons which passed through the 

absorber and their empty waves. Otherwise, the interference pattern can only be created 

by photons which passed the absorber. We can also consider the case when the absorber 

affects the empty wave, but does not absorb it, as well as the case of complete 

absorption of photons by the absorber. 
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       Quantum mechanics is a fundamental theory which allows us to describe a vast 

number of physical phenomena.  However, as a truly fundamental theory, it cannot 

explain and describe itself.   

       Quantum mechanics cannot specify the location of a particle, since it does not 

describe the subquantum processes that ensure the manifestation of a particle at a certain 

point in space.  Also, quantum mechanics says nothing about subquantum processes 

which provide for the existence of the empty wave. Experimental proof of the existence 

of the empty wave may be useful in developing a more general theory, to which 

quantum mechanics will be an approximation. 

   

Chapter eight. Why tomorrow is not yesterday  

 

8.1. Time reversal experiments 

 

       There is a contradiction between the reversibility of equations in mechanics, and the 

irreversibility of real-world macroscopic processes. This contradiction is called “the 

irreversibility problem”. It is one of the Great Problems of Science. Maxwell, 

Boltzmann, Planck, Poincare, Einstein, Von Neuman, Born, and many other outstanding 

physicists have tackled it.  Over the century and a half, a Mont Blanc worth of papers 

devoted to this problem has accumulated, but it still has not been solved. The reason is 

that scientists tried to arrive at irreversibility from the reversible equations of mechanics 

without questioning whether these equations are even applicable to describing 

macroscopic systems.  Remember, the science of mechanics was created on the basis of 

observing systems with a small number of particles. There really isn’t a reason to 

assume that mechanics will be equally precise is the macroworld, where the second law 

of thermodynamics reigns supreme. 
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       It is impossible to solve the mechanics equations for macrosystems with the number 

of particles Z�3+. But it is possible to compare the predictions of mechanics with the 

predictions of thermodynamics without having to solve the equations! We made such a 

comparison in the experiments reversing the sign of  time in quantum mechanics 

equations for macroscopic systems. Here is what happened. 

 

      The general solution of the Schrödinger equation  

                                                           PQ RSRT =2NOL,                              (30) 

has the following form 

                                                       L@WC = ,-e�QTL@�C                                           (31)                                                                    

 

Let the macroscopic system at the initial moment be described by the wave 

function  L@�C.  .  
Then in accordance with (31) by the moment W) we will get 

                                            L@W)C = ,-e�p�Q L@�C                                           (32)               

        If at this moment we succeed in reversing the sign of the operator  NO , then after 

time W3  we have 

                                      L@W) ` W32C = ,e�p/Q ,-e�p�Q L@�C                                      (33) 

                                       

If  W3=W),  then it follows from  (33) that 

                                               L@W) ` W32C = L@�C                                              (34)     

 We know from mathematics that (-a)b = a(-b). Hence, the change of sign of the 

operator NO   in the expression (33) is equivalent to the change of sign of time, i.e. 

reversal of time.                                                           

Consequently, if the Schrodinger equation correctly describes the evolution of a 

macroscopic system, then the system should revert to its original state by the moment 
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xW), after we change the sign of the Hamiltonian NO  at the moment2W), i.e. the system’ 

evolution will be reversible in time. 

       It might seem impossible to influence a macroscopic system to change the sign of  

NO, because in such systems the energy operator includes all the interactions between the 

particles in the system. However, the method of high resolution magnetic resonance 

allowed us to conduct this procedure for the macroscopic system of interacting magnetic 

moments of Fluorine nuclei in (��3  [27,28]. Using a specific sequence of impulse 

influences on the system, we tracked the evolution of energy reservoir of the magnetic 

interactions of the nuclei under the conditions of the changing sign of the Hamiltonian, 

or - which is the same thing - the sign of time. The measurements showed that equations 

(30) and (31) do not describe that evolution.  

       The magnetic resonance methods allow to measure spin system states very 

precisely.  Our experiments were conducted in Kazan, Russia, the city where magnetic 

resonance was discovered in 1944 by E. Zavoisky, and the home of the magnetic 

resonance school recognized around the world. The papers were published in serious 

journals after intense peer reviews. The results have not been challenged or overturned 

in the years since their publication.  

       If the evolution of the macroscopic system had turned out to be reversible in our 

experiment, then the Second Law of Thermodynamics would have faced a problem.  

Fortunately, this did not happen.   From the point of view of mechanics yesterday and 

tomorrow are the same.  We are fortunate that the second law of thermodynamics exists 

and makes yesterday, today, and tomorrow possible.  

       If subquantum processes determine the behavior of separate particles, then clearly 

these processes are also responsible for the evolution of systems with the macroscopic 

number of particles. This implies that the second law of thermodynamics is the 

consequence of subquantum processes.  

       The Problem of Irreversibility was born from the belief that the equations of 

mechanics can fully describe the evolution of macrosystems. Our results have shown 
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that it is inappropriate to extrapolate the mechanics equations to macrosystems, which 

was to be expected.  So what is left of the irreversibility problem? 

 

8.2. Subquantum processes and statistical physics     

 

       The formula 

                                                           �@7MC =2 ;9��oU ;9��oo
.                                                2(35) 

plays a fundamental role in statistical physics. It allows us to calculate the observed 

values of physical quantities belonging to a macroscopic system in equilibrium. In this 

formula, �@7MC2 is the probability of a macroscopic system state with energy 7M .The 

name for expression (35) is the formula of canonical distribution, or simply canonical 

distribution.   

       When deriving formula (35), textbooks on statistical physics don’t mention any 

subquantum processes, and don’t question the absolute accuracy of quantum mechanics. 

Instead, they assume either that the Universe is in the state of thermodynamic (heat) 

equilibrium, or that the Universe consists of a legion of systems which are identical to 

the system which is being studied, i.e. identical to each other (see, e.g. the well known 

textbook [29]). The first assumption means we are all dead. The second is just as 

scientifically credible as an assumption that inside the Earth there is a second globe 

which is much larger than the first.  Both  assumptions  lead  to the desired formula, but 

a correct end result can be derived from delirious assumptions (see collections 

«Physicists joke»). The correct end result does not make the delirium true. 

       Misconceptions in modern science can be more stunning than misconceptions of the 

past.  It is wrong to consider that scientists of the past centuries were sillier than us. 

Scientific delusions of the past very often didn't contradict common sense. For instance, 

to be convinced that the Earth is flat, it is enough to live in an open country, and it is 

much more natural to assume that the small Sun which ascends in the east and sets in the 



38 

 

west revolves around the huge Earth, rather than the reverse.  Today physicists have 

convinced themselves and tell the students that it is possible to consider the Universe 

being in equilibrium or consisting of a huge number of identical systems.  

       The oddities don’t stop at making such marvelous assumptions. Another premise 

which leads to formula (35) is that the system energy may equal only to eigenvalues of 

its Hamiltonian [29]. But that would require the interaction between the system and its 

environment to be vanishingly small, i.e. the system must be practically isolated from its 

environment.   

Let us see what happens in reality. 

According to formula (13), the full energy of the isolated system is 

                                               7 =2222U |VM|²M 7M22,                                              (36) 

where 

                                 U |VM|²M = ZY                                                     (37) 

       Also, 

                                       VM@WC = 2 VM@�C���2@c e
Q7MWC ,                                 (38) 

 from which it follows that           

                                               |VM@WC|² = 2 |VM@�C|².                                            (39) 

       For a macroscopic system, equations (36) and (37) have an infinite number of 

solutions for|VM|². This means that at a given value of energy E there are numerous 

different states of the system and not at all one state equal to some eigenvalue of energy. 

In other words, with the same value of the total energy E we have a great number of 

different system states which cannot originate one from another as a result of temporal 

system evolution. 

       From the point of view of quantum mechanics, the probability of energy values 7M2 
cannot change (see (39)). However, in the process of the system arriving at equilibrium 

this probability does change, and arrives at the values determined by formula (35). 
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       The textbooks on statistical physics explain the changes in macrosystem states by its 

interaction with the environment. In the same breath, the system’s interaction with its 

environment is considered extremely weak. The values of the system’s physical 

quantities are calculated by averaging all possible states using formula (35).  It is 

obvious that formula (35) can be used to calculate the observed quantities only if during 

the measurement the system has time to visit all states of the spectrum repeatedly, which 

is unrealistics if the interaction with the environment is extremely weak. The 

aforementioned models do not link the values of the contact with the environment, 

spectral diapason of the system energy and measurement time.   

       Thus we can safely say that statistical physics textbooks do not offer a derivation of 

canonical distribution which is in any way justified. What’s left is either to follow the 

inspirational advice "Shut up and calculate!”, or to offer a derivation for formula (35) 

which would not contain some physically absurd assumptions.  

       The speed at which a macrosystem arrives at the canonical distribution does not 

depend on the properties of the surface of the macrosystem nor on the structure of its 

environment. Thus, the influence of the environment does not explain the transition of 

the probabilities of the macrosystem’s eigenstates to canonical distribution. This means 

that there must be internal processes which determine the transition of the initial 

distribution of probabilities to the canonical distribution. Hence, canonical distribution 

may be derived as a result of internal processes within the macrosystem – the processes 

not described by the existing quantum formalism, i.e. the subquantum processes.  

       In papers [9,10]  we have proposed the derivation of canonical distribution (35) as a 

consequence of subquantum processes (in [10] we called them “hidden internal 

processes”, which was not a very felicitous name). Our derivation proceeds on the 

assumption that subquantum processes cause the macrosystem to arrive at states with 

energy equal to eigenvalues of the Hamiltonian, while the total energy of the system 

remains unchanged.  Using the method of the most probable distribution [29,30], we 
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found that it’s canonical distribution (35) that corresponds to the most probable 

distribution of those states.  We did not have to resort to any improbable assumptions 

In ch.6 in 6.1 we saw that the subquantum processes are extremely fast on the 

time scale we are used to. It is obvious that it is exactly thanks to the speed of the 

subquantum processes that we can use formula (35) to solve practical problems.  

We know from statistical physics that  

                                 2U �@7MC2���@7MCM = c���@7C = 22�,                               (40) 

where S is the system’s entropy. 

Formula (40) connects entropy to the maximum number of system state 

realizations as a consequence of subquantum processes. We consider that the states 

which are described by canonical distribution (35) are the consequence of the 

macrosystem’s irreversible tendency towards the maximum freedom in realizing its state 

with a given total energy, i.e. towards maximum entropy. This tendency is captured in 

the second law of thermodynamics, thanks to which tomorrow is not the same as 

yesterday.  

 

Chapter nine. Akela has missed 

  

 
        As is known, the phenomenological theory of the second-kind phase transitions (the 

Landau theory), based on the expansion of the thermodynamical function in terms of the 

order parameter, does not adequately describe phenomena near the critical point.   

       Believing in phenomenology, we decided to take a closer look at the phenomenological 

theory. Our efforts were rewarded. One small but principle mistake revealed itself before 

our careful eye. The correction of this mistake makes it possible for the phenomenological 

theory to describe phenomena near the critical point in the right way. How it was done and 

what came out of it we describe below. 
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The re-examined phenomenological phase 

transitions theory for ferromagnets [31] 

  

Abstract. The existence of the linear on the order parameter term of the 

thermodynamic functions expansion near the critical point is justified. The criticism of 

the arguments, used for the rejection of the odd-power expansion terms of the 

ferromagnets thermodynamic functions is presented. It is shown, that taking into account 

the linear term in expansion one achieves the consentience with experimental data on the 

magnetization behavior near the transition temperature in ferromagnets. 

 

I. INTRODUCTION 

 

Experimental investigations of the critical phenomena show, that the Landau 

phase transitions theory does not agree with an experiment. Usually, this fact is 

attributed to the large fluctuations near the critical point. However the Landau 

conclusions contradict even the experimental data, which are received as an exact 

measurements result (fluctuations are proved negligible). The experiments of Heller and 

Benedek [32] may be the example. In these experiments the temperature dependence of 

the magnetization near the critical point has been studied. The measurements were 

carried out by the nuclear magnetic resonance method. In the case of large fluctuations 

the measurements of the magnetization would be impossible. Therefore, the explanation 

of discrepancy of the theory and the experiment [32] by very large fluctuations seems to 

be not convincing enough. 

The assumptions, which lie in the basis of the Landau theory, look natural and 

simple. That is why we decide to re-analyze carefully this theory. In the process of our 

analysis we have found one essential circumstance, with which it is necessary to 

acquaint the reader. 
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II. THE CORRECTION OF THE LANDAU THEORY 

 

By examining the symmetry change at the second type phase transitions, Landau 

presented the crystal density function in the form: 

 
( ) ( )å=

ni

n
i

n
in

,

yr                  (41)    

 

Here n is the index of the irreducible representation of the crystal symmetry group 

G in the high symmetry phase and )(n
iy  are the basic functions of these irreducible 

representations. 

Denoting by 0r  the invariant at all transformations of the G group function (this 

function realizes the unit representation of the G group), Landau wrote: 

 

      '0 drrr +=            (42) 

 

where 

 

( ) ( )å=
/

ni

n
i

n
in

,

' ydr  (43) 

 

and the unit representation (n=1) is excluded from the summation. 

Near the phase transition temperature (critical point Tc) the expansion of 

thermodynamic functions in the Landau theory is realized on the powers of small 'dr  

with 0r  kept invariable. We suggest that the contribution to the crystal density of the 

function 0r  cannot remain equal to ( )cT0r  as the temperature changes. Otherwise, far 

from the critical point, ( )T0r  would be equal to ( )cT0r , which is obviously not the case. 

Instead, it is naturally to present the crystal density r  as 

 

( ) drrr += cT0  (44) 

'0 drdrdr +=  (45) 
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( ) ( )11
0 ydr n=  (46) 

 

We believe that the expansion of thermodynamic functions on powers of dr  is 

mathematically and physically more correct, than the expansion on powers of 'dr  (43). 

We verify this conjecture in the next Section by calculating the critical index for 

magnetization and general thermodynamic relations for ferromagnets. 

The invariants of the second and higher orders in the expansion of the 

thermodynamic functions near the critical point correspond to the density change 'dr , 

which does not consist the unit representation. In particular, the second order invariant 

has the form 

 

å=
i

i
22 hh  (47) 

 

with h  being the quantitative measure of the deviation from the critical point. 

The linear invariant ( )1h  corresponds to the density change 0dr , which transforms 

according to the unit representation. This invariant does not determine the symmetry 

change and does not independent. The magnitudes 0dr  and 'dr  are of the same order. 

Hence, ( )1h  is proportional to h . This means, that in the expansion of the 

thermodynamic functions the linear on h  term presents. Below we will show for 

ferromagnets, that keeping the linear term provides the consistency of experiment and 

theory. 

 

III. THE LINEAR TERM AND THE CRITICAL PHENOMENA IN 

FERROMAGNETS 

 

Following Landau the linear terms of the thermodynamic potentials expansion are 

rejected in description of the critical phenomena. One usually uses some additional 

arguments to exclude the odd terms in the expansion of the ferromagnet’s 

thermodynamic functions. In the book [33] it is claimed, that the scalar function 



44 

 

expansion on the vector quantity may only contain the even power of this quantity. 

However it is not difficult to show, that this statement is incorrect. Indeed, the first law 

of thermodynamics for the magnetic systems can be written as 

 

MHdTdSdU +=  (48) 

 

For the Helmholtz potential A(T;M) we have 

 

MHdSdTdA +-=  (49) 

 

From the expression (49) it follows that 

 

M

A

M

A

¶
¶

=
¶
¶

= nH  (50) 

 

where n is the unit vector along the M direction. Thus, we can rewrite Eq. (49) in the 

following way: 

 

HdMSdTdA +-=  (51) 

 

The example illustrates the general situation that only numerical characteristics of 

the vectors do appear (via the scalar products) in the expression for the thermodynamic 

functions. Therefore, it is instructive to expand the ferromagnet's thermodynamic 

functions on powers of magnetic moment magnitude. Thus, it is not possible to reject the 

terms of the expansion with odd powers of the magnetic moment magnitude declaring 

that the magnetic moment is vector. 

In the book [34] the absence of the M odd powers in the ferromagnet's 

thermodynamic functions expansion is justified by the statement, that these functions are 

even regarding M. However, the change in the M sign in a ferromagnets is confined to 

the change of the magnetic field sign (see Eq.(50)). At the simultaneous change of M 

and H signs the thermodynamic functions values do not change. If we expand the 

thermodynamic function on the magnetic moment magnitude, when M changes sign, the 
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non-zero coefficients at odd M powers also change the sign, and the independence of the 

thermodynamic function on the M sign will be ensured. 

Let us expand the potential A(T;M) up to fourth power on M near the critical 

point: 

 

( ) ( )å
=

=
4

0

,
n

n
n MTLMTA  (52) 

 

For the ferromagnetic phase the equilibrium value of M is determined from the 

expression: 

 

( ) ( ) ( ) ( ) 3
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¶
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=  (53) 

 

Then consider separately the term ( )TL1  of equation (53). The expansion of ( )TL1  

on cTTt -=  powers up to the first power has the form: 
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ø
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In the ferromagnetic phase ( ) 01 =TL , since at T=Tc the equilibrium value M = 0 

in the case H = 0. Hence, the coefficient ( )TL1  is given by 

 

( ) atTL =1  (55) 

 

where 
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Therefore, the coefficient L1 changes the sign at the M sign change that is 

confined with the H sign change. Thus, the rejection of the linear term of the expansion 

(52) has no serious theoretical reasons. 
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Expanding the coefficients L on powers of t, we rewrite Eq.(53) in the form: 

 

å
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nm

nm
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For the magnetic systems at the phase transition point we have the following 

relations (in accordance with the general theory of the second-type phase transitions): 
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Hence, the terms with M and M
2
 must be absent in Eq.(57). The terms 

proportional to tM, t
2
, t

2
M, tM

2
 and t

3
 are smaller than the term at, and we may neglect 

these terms. At the same time we must keep the terms with M
3
, since a priory the 

relative values of t and M unknown. As a result, in the case H=0 the equation (57) takes 

the form: 

 

03 =+= cMatH  (59) 
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From Eq.(59) we easily find: 
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In the experiments of Heller and Benedek [32] the dependence of M
3
 on t in MnF2 

in zero external field was studied (Fig.1). This dependence occurs to be linear. Thus, 

taking into account the linear term in the expansion (52) one achieves the good 

agreement with the experiments in zero fields. 

 

 
Fig.1 The dependence of the magnetization third power on the temperature in zero 

field for MnF2 

 

If the odd terms in the expansion (52) are rejected, we return to the Landau-type 

theory, and get instead of Eq. (59) 

 

03 =+= cMbtMH  (62) 
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From Eq.(62) it follows: 
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which contradicts with experiments. Moreover, in the Landau-type theory one of the 

equilibrium values of M is zero. At the discussion of this fact it is affirmed, that zero 

solution corresponds to the temperature, which is higher than the Curie point. This 

statement seems internally inconsistent with physical meaning of the equation (62), for 

which both zero and non-zero solutions correspond to the same temperature. 

Alternatively, in our theory the spurious, non-physical solution, M = 0, does not appear. 

It is known, that for magnetic systems the correlation must be fulfilled [34]: 
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Using Eq.(59) and Eq.(61), we find at T = Tc in correspondence with relation (65): 
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If linear term in the expansion is rejected, from Eq.(62) and Eq.(64) at T = Tc we 

find: 

0
6

2
1

3

3

2
3

2

2
1

=

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

÷÷
ø

ö
çç
è

æ

¶

¶
-÷÷

ø

ö
çç
è

æ

¶¶
¶

=÷
ø
ö

ç
è
æ
¶
¶

÷
ø
ö

ç
è
æ
¶
¶

-

M

HTM

H
t

M

H

T

M

TH

 (67) 

Hence, the relation (65) does not hold, that is incompatible with thermodynamics 

of magnetic systems. In the presence of the external field we rewrite Eq.(57) in the form: 

 

03 =++= cMbtMatH  (68) 

 

We retain in the above equation the term proportional to tM, since this term is 

essential for the explanation of the critical phenomena in the strong magnetic fields. 

The dependence of the magnetic moment on the external field near the critical 

point (Fig. 2,3) was studied in the work [35]. In strong magnetic fields the dependence 



49 

 

of H/M on M
2
 occurred to be linear. This result is in agreement with Eq.(68). Indeed, 

this equation can be converted to the form: 

 

21 cMbt
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æ -  (69) 

 

 
 

Fig.2 The dependence of MH /  on 
2M  for Ni 

 

 

 
 

Fig.3 The dependence of MH /  on 
2M  for alloy of 36% Ni and 64% Fe 
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In the strong field we can neglect the term at/H in the left-hand part of Eq.(69) in 

comparison with unity. As a result we obtain the linear dependence of H/M on M
2
. 

In the Landau-type theory the term at/H is absent from the very beginning. That is 

why the experiments [35] were considered as the confirmation of the Landau-type 

theory. 

With the decrease of the field the domain structure is starting to influence the 

dependence of H/M on M
2
. Therefore it is impossible to pick out the contribution of the 

at/H term of Eq.(69) to the above experimental results. 

We may conclude, that the taking into account the linear term in the expansion of 

thermodynamic functions is consistent with the experiment both in the strong and zero 

magnetic fields. 

IV. CONCLUSION 

 

We have the serious reasons to consider, that the thermodynamic function 

expansion up to the fourth power in order parameter is correct at least for the three 

dimension systems. The origin of the Landau-type theory failures is connected with 

incorrect disregard of the linear term in thermodynamic functions expansion. Keeping of 

the linear term restores consistency of the theory with an experiment and may promote 

the better comprehension of phenomena near the critical point. 

 

 

Epilogue   

     

       They say that “man is the king of nature”, but in our time he is more likely the 

executioner of nature. Let’s ask the question “Who harms nature more, a human or a 

dog?” Would you like a hint? 

       The leaders of so-called civilized countries, having fallen greedily on power, and 

having received bloodcurdling weapons from the scientists of the Hominidae family, are 

dancing around their tribal fires, beating their chests and brandishing those weapons. 
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Other governing apes, looking at those dances, also reach out their grabby hands for 

such weapons.  Mass destruction methods are mushrooming on the planet. I can only 

hope that the results of my scientific endeavours presented in this essay will not be used 

for creating new methods of mass destruction or to perfecting the old ones.  

       Premeditated murder of one human being is considered a grave offense in all UN 

countries.  Creating an army and equipping it with deadly weapons designed to kill a 

maximum possible number of people is considered natural and even respectable by the 

leaders of the same countries.  Design and manufacture of such weapons enriches the 

gangs of industrialists, politicians and scientists. Poets, writers, musicians and organs of 

mass disinformation glorify those heroes of real and imaginary wars who destroyed the 

largest number of human lives.  

      Now is good time to break this news: we have unexpectedly found ourselves in the 

21st century! The situation has changed but we have remained the same, which is bound 

to result in big trouble. Here is a Russian fable to illustrate: 

      “Once upon a time there lived an old man and an old woman who were very poor 

and had nothing at all to their name. And they kept getting poorer and poorer till there 

was nothing left to eat in the house, not even bread, Said the old man: "Do bake us a 

bun, old woman! If you scrape out the flour-box and sweep out the bin, you'll have 

enough flour." 

      So the old woman scraped out the flour-box and swept out the bin, she made some 

dough and she shaped a little round bun out of it. She then lit the oven, baked the bun 

and put it on the window sill to cool. But the bun jumped out of the window and onto the 

bench outside, and from the bench onto the ground, and away it rolled along the road! 

      On and on' it rolled, and it met a Rabbit coming toward it.  "I'm going to eat you up, 

Little Round Bun!" called the Rabbit. "Don't do that, Fleet-Feet, let me sing you a song 

instead," said Little Round Bun. "All right, let's hear it!" "Here it is!” 

"I was scraped from the flour-box 

And swept from the bin 



52 

 

And baked in the oven 

And cooled on the sill. 

I ran away from Grandpa, 

I ran away from Grandma, 

And I'll run away from you, this minute I will!"  

       And off it rolled and away.  

  

      By and by it met a Wolf coming toward it. "I'm going to eat you up, Little Round 

Bun!" called the Wolf. "Don't do that, Brother Wolf, let me sing you a song instead." 

"All right, let's hear it!" 

"I was scraped from the flour-box 

And swept from the bin 

And baked in the oven 

And cooled on the sill. 

I ran away from Grandpa, 

I ran away from Grandma, 

And I'll run away from you, this minute I will!" 

       And away it rolled. 

 

       By and by it met a Bear coming toward it. "I'm going to eat you up, Little Round 

Bun!" called the Bear. "Don't do that, Brother Bear, I'll sing you a song instead!" "All 

right, let's hear it!" 

"I was scraped from the flour-box 

And swept from the bin 

And baked in the oven 

And cooled on the sill. 

I ran away from Grandpa, 

I ran away from Grandma, 
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And I'll run away from you, this minute I will!" 

       And away it rolled and away! 

 

       By and by it met a Fox coming toward it. "I'm going to eat you up, Little Round 

Bun!" called the Fox. "Don't do that, Sister fox, I'll sing you a song instead." "All right, 

let's hear it!"   

       Little Round Bun began to sing: 

"I was scraped from the flour-box 

And swept from the bin-" 

       But before it could go on, the Fox opened her mouth and - snap! -she gobbled it up”. 

 

        This fable has a tragic ending. The Little Round Bun did not realize that the 

situation has changed, and kept singing the same tune. So it was eaten. 

        Power-hungry hominids are calculating how many times they can destroy their 

geopolitical enemies, and all humanity as collateral damage, with the help of the modern 

weapons. More effective weapons of mass destruction are developed and widely 

demonstrated.  Political prostitutes of all genders and paid-off journalists-propagandists 

stoke up mutual hate in the unstable world. The likelihood of a global catastrophe is 

rising every day.    

So is there a way out? Yes there is!  Even two!    

Way out #1.  

Change the nature of humans. It won’t take more than 100,000 years, and serenity will 

reign on Earth, if no serious problems occur until then. 

Way out #2 

Create effective international special forces which will be taking out the government 

leaders who start a war.  It’s better to take out a small number of reprobates than to 

allow them to kill a large number of innocent civilians. This approach will certainly save 

numerous humans who so want to live.  



54 

 

          The implementation of the idea of taking out those who start a war will bring 

peace to the world and will save humankind. It is time to realize that the middle ages are 

over, and to stop being Little Round Buns. 

        So, to work, United Nations! 

  

       Homo Sapiens is a part of life which appeared remarkably on our small planet. If we 

really are sapiens, we must do everything to preserve this life. I hope we will make it, if 

we try very hard. 
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