Theorems on the transfer function of first–order RC–circuits with either an ideal or a non–ideal capacitor

Aloys J. Sipers^{*}, Joh. J. Sauren[†]

February 19, 2021

Abstract

In this letter two theorems are stated, the first one on the ratio of an electrical output voltage signal y(t) to an electrical input voltage signal x(t) of a circuit with an ideal impedance and the second one on the ratio of an electrical output voltage signal y(t) to an electrical input voltage signal x(t) of a circuit with a non-ideal impedance. In the latter case, the change of the ratio y(t)/x(t) is a measurable quantity of the change of the resistive part of the output impedance and therefore a measure of its quality.

1 Theorems on the transfer function of first order circuits

Figure 1: The transfer function $H(\omega)$ describing the linear relationship between the input signal x(t) and the output signal y(t).

^{*}Corresponding author, Department of Engineering, Zuyd University of Applied Sciences, NL–6419 DJ, Heerlen, The Netherlands, aloys.sipers@zuyd.nl

 $^{^\}dagger \rm Department$ of Engineering, Zuyd University of Applied Sciences, NL–6419 DJ, Heerlen, The Netherlands, hans.sauren@zuyd.nl

For a given input signal $u = x(t) = r_x \cdot \cos(\omega \cdot t + \varphi_x)$ and a given transfer function $H(\omega)$ the output signal $y(t) = r_y \cdot \cos(\omega \cdot t + \varphi_y)$ can be determined from

$$r_{y} \cdot e^{j \cdot \varphi_{y}} = H\left(\omega\right) \cdot r_{x} \cdot e^{j \cdot \varphi_{x}}$$

Motivated by practical applications, we will confine our studies to the class of transfer functions

$$H\left(\omega\right)=\rho\cdot\cos\left(\varphi\right)\cdot e^{\jmath\cdot\varphi}, \ \varphi\in\langle-\frac{\pi}{2},+\frac{\pi}{2}\rangle, \ \rho>0$$

We then have the following result:

Lemma

Let

$$\begin{split} x\left(t\right) &= r_x \cdot \cos\left(\omega \cdot t + \varphi_x\right), \ \varphi \in \langle -\frac{\pi}{2}, +\frac{\pi}{2} \rangle, \ \rho > 0 \text{ and} \\ y\left(t\right) &= \rho \cdot r_x \cdot \cos\left(\varphi\right) \cdot \cos\left(\omega \cdot t + \varphi_x + \varphi\right). \end{split}$$

Then

(1)
$$y(t) - \rho \cdot x(t) = \frac{\tan(\varphi)}{\omega} \cdot \dot{y}(t)$$

(2) Let
$$z(t) = x(t) - y(t)$$
. Then:
 $\dot{z}(t) - (1 - \rho) \cdot \dot{x}(t) = \omega \cdot \tan(\varphi) \cdot (x(t) - z(t))$

 \mathbf{Proof}

(1)
$$\dot{y} = -\rho \cdot \omega \cdot r_x \cdot \cos(\varphi) \cdot \sin(\omega \cdot t + \varphi_x + \varphi) \Leftrightarrow \frac{\dot{y}}{\omega \cdot \cos(\varphi)} = -\rho \cdot r_x \cdot \sin(\omega \cdot t + \varphi_x + \varphi) \\ y - \rho \cdot x = \sin(\varphi) \cdot (-\rho \cdot r_x \cdot \sin(\omega \cdot t + \varphi_x + \varphi)) = \\ = \sin(\varphi) \cdot \frac{\dot{y}}{\omega \cdot \cos(\varphi)} = \frac{\tan(\varphi)}{\omega} \cdot \dot{y}$$
(2)
$$\ddot{y} = -\omega^2 \cdot y, \quad y = x - z \\ \tan(\varphi) = -\sin(\varphi) = \tan(\varphi)$$

$$\dot{y} - \rho \cdot \dot{x} = \frac{\tan(\varphi)}{\omega} \cdot \ddot{y} = \frac{\tan(\varphi)}{\omega} \cdot \left(-\omega^2 \cdot y\right) = -\omega \cdot \tan(\varphi) \cdot y$$
$$(\dot{x} - \dot{z}) - \rho \cdot \dot{x} = -\omega \cdot \tan(\varphi) \cdot (x - z)$$
$$\dot{z} - (1 - \rho) \cdot \dot{x} = \omega \cdot \tan(\varphi) \cdot (x - z) \quad \Box$$

1.1 Theorem

Let
$$x(t) = r_x \cdot \cos(\omega \cdot t + \varphi_x), \ \varphi \in \langle -\frac{\pi}{2}, +\frac{\pi}{2} \rangle \setminus \{0\}$$
 and
 $y(t) = r_x \cdot \cos(\varphi) \cdot \cos(\omega \cdot t + \varphi_x + \varphi)$
Then:
(1) $\dot{y}(t) = 0 \Leftrightarrow y(t) = x(t)$
(2) Let $z(t) = x(t) - y(t)$. Then:

$$\dot{z}(t) = 0 \Leftrightarrow z(t) = x(t)$$

Proof

 Using part (1) of the previous lemma for ρ = 1: *y* = 0 ⇔ 0 = tan (φ)/ω · *y* = y - x ⇔ y = x
 (2) Using part (2) of the previous lemma for ρ = 1: *z* = 0 ⇔ 0 = *z* = ω · tan (φ) · (x - z) ⇔ z = x

From part (1) of the previous lemma we have the following theorem:

1.2 Theorem

Let
$$x(t) = r_x \cdot \cos(\omega \cdot t + \varphi_x), \ \varphi \in \langle -\frac{\pi}{2}, +\frac{\pi}{2} \rangle, \rho > 0$$
 and
 $y(t) = \rho \cdot r_x \cdot \cos(\varphi) \cdot \cos(\omega \cdot t + \varphi_x + \varphi)$. Then:
 $\dot{y}(t) = 0 \Leftrightarrow y(t) = \rho \cdot x(t)$

Proof

Using part (1) of the lemma:

$$\dot{y} = 0 \Leftrightarrow 0 = \frac{\tan\left(\varphi\right)}{\omega} \cdot \dot{y} = y - \rho \cdot x \Leftrightarrow y = \rho \cdot x$$

2 Application to an *RC*-circuit with an ideal capacitor

Figure 2: The RC-circuit with x(t) as input voltage signal and y(t) as output voltage signal. This circuit is a special case of the circuit in Figure 5, as the latter converges to the former for $\widetilde{R} \to \infty$.

Applying Theorem 1.1

$$\begin{aligned} r_x &= 405 \text{ V}, \ \varphi_x = -\frac{\pi}{2} \text{ rad}, \ \omega = 100\pi \text{ rad/s} \\ Z_R &= R = 15 \text{ k}\Omega, \ Z_C = \frac{1}{\jmath\omega C} = -10\jmath \text{ k}\Omega \\ H(\omega) &= \frac{Z_C}{Z_R + Z_C} = \frac{\frac{1}{\jmath\omega C}}{R + \frac{1}{\jmath\omega C}} = \frac{1}{1 + \jmath\omega RC} \coloneqq \cos\left(\varphi\right) \cdot e^{\jmath\cdot\varphi} \\ \varphi &\coloneqq -\arg\left(1 + \jmath\omega RC\right) \end{aligned}$$

Remark: in the case of an ideal capacitor, the graph of the signal u = x(t) intersects the graph of the signal u = y(t) at its extremum. Accordingly, the graph of the signal u = x(t) intersects the graph of the difference signal u = z(t) = x(t) - y(t) at its extremum. These results can be used as a didactic aid to visually recognize the fact that a capacitor is ideal, in the graphs of both signals.

Figure 3: Application of the theorem to an RC-circuit with an ideal capacitor: the graph of the input signal u = x(t) in blue intersects the graph of the output signal u =y(t) in red at its extremum, i.e. $y(t_0) = x(t_0)$.

Figure 4: The graph of the signal u = x(t) intersects the graph of the difference signal u = z(t) = x(t) - y(t) at its extremum.

3 Application to an *RC*-circuit with a non-ideal capacitor

Figure 5: The RC-circuit of Figure 2 now with a resistive impedance $Z_{\widetilde{R}}$ added in parallel to impedance Z_C .

Applying Theorem 1.2

$$\begin{split} Z_R &= R = 15 \text{ k}\Omega, \qquad Z_C = \frac{1}{j\omega C} = -10j \text{ k}\Omega, \qquad Z_{\widetilde{R}} = \widetilde{R} = 30 \text{ k}\Omega \\ Z_{\widetilde{R},C} &= Z_{\widetilde{R}} \mid\mid Z_C = \frac{Z_{\widetilde{R}} \cdot Z_C}{Z_{\widetilde{R}} + Z_C} = \frac{\widetilde{R} \cdot \frac{1}{j\omega C}}{\widetilde{R} + \frac{1}{j\omega C}} = \frac{\widetilde{R}}{1 + j\omega \widetilde{R}C} \\ H(\omega) &= \frac{Z_{\widetilde{R},C}}{Z_R + Z_{\widetilde{R},C}} = \frac{\frac{\widetilde{R}}{1 + j\omega \widetilde{R}C}}{R + \frac{\widetilde{R}}{1 + j\omega \widetilde{R}C}} = \frac{\widetilde{R}}{R + \widetilde{R} + j\omega R\widetilde{R}C} \\ &= \frac{\widetilde{R}}{R + \widetilde{R}} \cdot \frac{1}{1 + j\omega C \frac{R\widetilde{R}}{R + \widetilde{R}}} \coloneqq \rho \cdot \cos(\varphi) \cdot e^{j\cdot\varphi} \\ \rho &\coloneqq \frac{\widetilde{R}}{R + \widetilde{R}} \text{ i.e., independent of the capacitance } C \\ \varphi &\coloneqq - \arg\left(1 + j\omega C \frac{R\widetilde{R}}{R + \widetilde{R}}\right) \\ \rho &= \frac{\widetilde{R}}{R + \widetilde{R}} = \frac{30 \text{ k}\Omega}{15 \text{ k}\Omega + 30 \text{ k}\Omega} = \frac{2}{3} \\ \dot{y}(t) &= 0 \Leftrightarrow y(t) = \rho \cdot x(t) = \frac{2}{3} \cdot x(t) \end{split}$$

Remark: In the case of a non-ideal capacitor, the graph of the signal $u = \rho \cdot x(t)$ intersects the graph of the signal u = y(t) at its extremum. In the extremum it therefore holds that the ratio of the signal values y(t) and x(t) is equal to the ratio of resistance values \tilde{R} and $R + \tilde{R}$. These results can be used as a didactic

Figure 6: Application of the theorem on an *RC*-circuit with a non-ideal capacitor: the output signal u = y(t) depicted in red is at its extremum, i.e. $y(t_0) = \rho \cdot x(t_0) \Leftrightarrow \rho = y(t_0) / x(t_0)$ with the input signal u = x(t) drawn in blue.

4 Acknowledgement

The authors acknowledge the support of Ad Klein and of the Department of Engineering of Zuyd University of Applied Sciences.