Theorems on the transfer function of first-order $R C$-circuits with either an ideal or a non-ideal capacitor

Aloys J. Sipers*, Joh. J. Sauren ${ }^{\dagger}$

February 19, 2021

Abstract

In this letter two theorems are stated, the first one on the ratio of an electrical output voltage signal $y(t)$ to an electrical input voltage signal $x(t)$ of a circuit with an ideal impedance and the second one on the ratio of an electrical output voltage signal $y(t)$ to an electrical input voltage signal $x(t)$ of a circuit with a non-ideal impedance. In the latter case, the change of the ratio $y(t) / x(t)$ is a measurable quantity of the change of the resistive part of the output impedance and therefore a measure of its quality.

1 Theorems on the transfer function of first order circuits

Figure 1: The transfer function $H(\omega)$ describing the linear relationship between the input signal $x(t)$ and the output signal $y(t)$.

[^0]For a given input signal $u=x(t)=r_{x} \cdot \cos \left(\omega \cdot t+\varphi_{x}\right)$ and a given transfer function $H(\omega)$ the output signal $y(t)=r_{y} \cdot \cos \left(\omega \cdot t+\varphi_{y}\right)$ can be determined from

$$
r_{y} \cdot e^{\jmath \cdot \varphi_{y}}=H(\omega) \cdot r_{x} \cdot e^{\jmath \cdot \varphi_{x}}
$$

Motivated by practical applications, we will confine our studies to the class of transfer functions

$$
H(\omega)=\rho \cdot \cos (\varphi) \cdot e^{\jmath \cdot \varphi}, \varphi \in\left\langle-\frac{\pi}{2},+\frac{\pi}{2}\right\rangle, \rho>0
$$

We then have the following result:

Lemma

Let

$$
\begin{array}{r}
x(t)=r_{x} \cdot \cos \left(\omega \cdot t+\varphi_{x}\right), \varphi \in\left\langle-\frac{\pi}{2},+\frac{\pi}{2}\right\rangle, \rho>0 \text { and } \\
y(t)=\rho \cdot r_{x} \cdot \cos (\varphi) \cdot \cos \left(\omega \cdot t+\varphi_{x}+\varphi\right) .
\end{array}
$$

Then
(1) $y(t)-\rho \cdot x(t)=\frac{\tan (\varphi)}{\omega} \cdot \dot{y}(t)$
(2) Let $z(t)=x(t)-y(t)$. Then:

$$
\dot{z}(t)-(1-\rho) \cdot \dot{x}(t)=\omega \cdot \tan (\varphi) \cdot(x(t)-z(t))
$$

Proof

$$
\begin{align*}
& \dot{y}=-\rho \cdot \omega \cdot r_{x} \cdot \cos (\varphi) \cdot \sin \left(\omega \cdot t+\varphi_{x}+\varphi\right) \Leftrightarrow \tag{1}\\
& \frac{\dot{y}}{\omega \cdot \cos (\varphi)}=-\rho \cdot r_{x} \cdot \sin \left(\omega \cdot t+\varphi_{x}+\varphi\right) \\
& y-\rho \cdot x=\sin (\varphi) \cdot\left(-\rho \cdot r_{x} \cdot \sin \left(\omega \cdot t+\varphi_{x}+\varphi\right)\right)= \\
& =\sin (\varphi) \cdot \frac{\dot{y}}{\omega \cdot \cos (\varphi)}=\frac{\tan (\varphi)}{\omega} \cdot \dot{y} \\
& \ddot{y}=-\omega^{2} \cdot y, \quad y=x-z \tag{2}\\
& \dot{y}-\rho \cdot \dot{x}=\frac{\tan (\varphi)}{\omega} \cdot \ddot{y}=\frac{\tan (\varphi)}{\omega} \cdot\left(-\omega^{2} \cdot y\right)=-\omega \cdot \tan (\varphi) \cdot y \\
& (\dot{x}-\dot{z})-\rho \cdot \dot{x}=-\omega \cdot \tan (\varphi) \cdot(x-z) \\
& \dot{z}-(1-\rho) \cdot \dot{x}=\omega \cdot \tan (\varphi) \cdot(x-z) \quad \square
\end{align*}
$$

1.1 Theorem

Let $x(t)=r_{x} \cdot \cos \left(\omega \cdot t+\varphi_{x}\right), \varphi \in\left\langle-\frac{\pi}{2},+\frac{\pi}{2}\right\rangle \backslash\{0\}$ and $y(t)=r_{x} \cdot \cos (\varphi) \cdot \cos \left(\omega \cdot t+\varphi_{x}+\varphi\right)$
Then:
(1) $\dot{y}(t)=0 \Leftrightarrow y(t)=x(t)$
(2) Let $z(t)=x(t)-y(t)$. Then:

$$
\dot{z}(t)=0 \Leftrightarrow z(t)=x(t)
$$

Proof

(1) Using part (1) of the previous lemma for $\rho=1$:

$$
\dot{y}=0 \Leftrightarrow 0=\frac{\tan (\varphi)}{\omega} \cdot \dot{y}=y-x \Leftrightarrow y=x
$$

(2) Using part (2) of the previous lemma for $\rho=1$:

$$
\dot{z}=0 \Leftrightarrow 0=\dot{z}=\omega \cdot \tan (\varphi) \cdot(x-z) \Leftrightarrow z=x
$$

From part (1) of the previous lemma we have the following theorem:

1.2 Theorem

Let $x(t)=r_{x} \cdot \cos \left(\omega \cdot t+\varphi_{x}\right), \varphi \in\left\langle-\frac{\pi}{2},+\frac{\pi}{2}\right\rangle, \rho>0$ and $y(t)=\rho \cdot r_{x} \cdot \cos (\varphi) \cdot \cos \left(\omega \cdot t+\varphi_{x}+\varphi\right)$. Then: $\dot{y}(t)=0 \Leftrightarrow y(t)=\rho \cdot x(t)$

Proof

Using part (1) of the lemma:

$$
\dot{y}=0 \Leftrightarrow 0=\frac{\tan (\varphi)}{\omega} \cdot \dot{y}=y-\rho \cdot x \Leftrightarrow y=\rho \cdot x
$$

2 Application to an $R C$-circuit with an ideal capacitor

Figure 2: The $R C$-circuit with $x(t)$ as input voltage signal and $y(t)$ as output voltage signal. This circuit is a special case of the circuit in Figure 5, as the latter converges to the former for $\widetilde{R} \rightarrow \infty$.

Applying Theorem 1.1

$$
\begin{aligned}
r_{x} & =405 \mathrm{~V}, \varphi_{x}=-\frac{\pi}{2} \mathrm{rad}, \omega=100 \pi \mathrm{rad} / \mathrm{s} \\
Z_{R} & =R=15 \mathrm{k} \Omega, Z_{C}=\frac{1}{\jmath \omega C}=-10 \jmath \mathrm{k} \Omega \\
H(\omega) & =\frac{Z_{C}}{Z_{R}+Z_{C}}=\frac{\frac{1}{\jmath \omega C}}{R+\frac{1}{\jmath \omega C}}=\frac{1}{1+\jmath \omega R C}:=\cos (\varphi) \cdot e^{\jmath \cdot \varphi} \\
\varphi & :=-\arg (1+\jmath \omega R C)
\end{aligned}
$$

Remark: in the case of an ideal capacitor, the graph of the signal $u=x(t)$ intersects the graph of the signal $u=y(t)$ at its extremum. Accordingly, the graph of the signal $u=x(t)$ intersects the graph of the difference signal $u=z(t)=x(t)-y(t)$ at its extremum. These results can be used as a didactic aid to visually recognize the fact that a capacitor is ideal, in the graphs of both signals.

Figure 3: Application of the theorem to an $R C$-circuit with an ideal capacitor: the graph of the input signal $u=x(t)$ in blue intersects the graph of the output signal $u=$ $y(t)$ in red at its extremum, i.e. $y\left(t_{0}\right)=x\left(t_{0}\right)$.

Figure 4: The graph of the signal $u=x(t)$ intersects the graph of the difference signal $u=z(t)=x(t)-$ $y(t)$ at its extremum.

3 Application to an $R C$-circuit with a non-ideal capacitor

Figure 5: The $R C$-circuit of Figure 2 now with a resistive impedance $Z_{\widetilde{R}}$ added in parallel to impedance Z_{C}.

Applying Theorem 1.2

$$
\begin{aligned}
Z_{R} & =R=15 \mathrm{k} \Omega, \quad Z_{C}=\frac{1}{\jmath \omega C}=-10 \jmath \mathrm{k} \Omega, \quad Z_{\widetilde{R}}=\widetilde{R}=30 \mathrm{k} \Omega \\
Z_{\widetilde{R}, C} & =Z_{\widetilde{R}} \| Z_{C}=\frac{Z_{\widetilde{R}} \cdot Z_{C}}{Z_{\widetilde{R}}+Z_{C}}=\frac{\widetilde{R} \cdot \frac{1}{\jmath \omega C}}{\widetilde{R}+\frac{1}{\jmath \omega C}}=\frac{\widetilde{R}}{1+\jmath \omega \widetilde{R} C} \\
H(\omega) & =\frac{Z_{\widetilde{R}, C}}{Z_{R}+Z_{\widetilde{R}, C}}=\frac{\frac{\widetilde{R}}{1+\jmath \omega \widetilde{R} C}}{R+\frac{\widetilde{R}}{1+\jmath \omega \widetilde{R} C}}=\frac{\widetilde{R}}{R+\widetilde{R}+\jmath \omega R \widetilde{R} C} \\
& =\frac{\widetilde{R}}{R+\widetilde{R}} \cdot \frac{1}{1+\jmath \omega C \frac{R \widetilde{R}}{R+\widetilde{R}}}=\rho \cdot \cos (\varphi) \cdot e^{\jmath \cdot \varphi} \\
\rho & :=\frac{\widetilde{R}}{R+\widetilde{R}} \text { i.e., independent of the capacitance } C \\
\varphi & :=-\arg \left(1+\jmath \omega C \frac{R \widetilde{R}}{R+\widetilde{R}}\right) \\
\rho & =\frac{\widetilde{R}}{R+\widetilde{R}}=\frac{30 \mathrm{k} \Omega}{15 \mathrm{k} \Omega+30 \mathrm{k} \Omega}=\frac{2}{3} \\
\dot{y}(t) & =0 \Leftrightarrow y(t)=\rho \cdot x(t)=\frac{2}{3} \cdot x(t)
\end{aligned}
$$

Remark: In the case of a non-ideal capacitor, the graph of the signal $u=\rho \cdot x(t)$ intersects the graph of the signal $u=y(t)$ at its extremum. In the extremum it therefore holds that the ratio of the signal values $y(t)$ and $x(t)$ is equal to the ratio of resistance values \widetilde{R} and $R+\widetilde{R}$. These results can be used as a didactic
aid to visually recognize the fact that a capacitor is non-ideal, in the graphs of both signals.

Figure 6: Application of the theorem on an $R C$-circuit with a non-ideal capacitor: the output signal $u=y(t)$ depicted in red is at its extremum, i.e. $y\left(t_{0}\right)=\rho \cdot x\left(t_{0}\right) \Leftrightarrow \rho=y\left(t_{0}\right) / x\left(t_{0}\right)$ with the input signal $u=x(t)$ drawn in blue.

4 Acknowledgement

The authors acknowledge the support of Ad Klein and of the Department of Engineering of Zuyd University of Applied Sciences.

[^0]: * Corresponding author, Department of Engineering, Zuyd University of Applied Sciences, NL-6419 DJ, Heerlen, The Netherlands, aloys.sipers@zuyd.nl
 \dagger Department of Engineering, Zuyd University of Applied Sciences, NL-6419 DJ, Heerlen, The Netherlands, hans.sauren@zuyd.nl

