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Abstract

This paper develops the theory of the kth power expectile estimation and considers
its relevant hypothesis tests for coefficients of linear regression models. We prove that
the asymptotic covariance matrix of kth power expectile regression converges to that
of quantile regression as k converges to one, and hence provide a moment estimator of
asymptotic matrix of quantile regression. The kth power expectile regression is then
utilized to test for homoskedasticity and conditional symmetry of the data. Detailed
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comparisons of the local power among the kth power expectile regression tests, the
quantile regression test, and the expectile regression test have been provided. When
the underlying distribution is not standard normal, results show that the optimal k
are often larger than 1 and smaller than 2, which suggests the general kth power
expectile regression is necessary.
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1 Introduction

Homoskedasticity and conditional symmetry are important to evaluate regression coeffi-

cient estimates. So tests of these conditions have been attracting many researchers in

econometrics and statistics. In the beginning, for the linear regression models, the major-

ity of tests for homoskedasticity are constructed recognizing whether the residuals (or their

functions) from an interesting preliminary regression are dependent on the covariate, see

Anscombe (1961), Glejser (1969), Goldfeld and Quandt (1972), Harvey (1976), Godfrey

(1978), Breusch and Pagan (1979), and White (1980). Tests of symmetry of the error dis-

tributions have not been focused on enough, albeit Antille, Kersting, and Zucchini (1982),

and Boos (1982) considered these tests for the i.i.d. data.

Another completely different group of methods are based on the quantlie regression

or the expectile regression. Koenker and Bassett (1982)/Newey and Powell (1987) pro-

posed to reject the null hypothesis of homoskedasticity provided the slope coefficients of

the quantile/expectile regression at different weights of the loss function are significantly

different. Newey and Powell (1987) also found that the quantile regression and the expec-

tile regression can be utilized to test symmetry. Newey and Powell (1987) compared in

terms of relative efficiency the expectile-based approach with the quantile-based one and

other commonly-used approaches in linear regression models when the error term obeys a

contaminated normal distribution. They reported that: the expectile-based approach is the

same efficient as the method of absolute residual regression, and is generally better than

the quantile-based approach when testing heteroskedasticity; the expectile-based approach

is almost as good as the method of median versus mean, and is mostly better than the

quantile-based approach when testing conditional symmetry. For quantile-based methods

and expectile-based methods, each of course has its advantages and disadvantages. The
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former is comprehensible and robust in the non-normal cases, but computationally diffi-

cult, especially in calculating the asymptotic variance. The later is easy for calculation

and more efficient in normal cases, but less intuitive. Anyway, as two extremely important

families of approaches, they receives great attention from other areas far more than test

of homoskedasticity and symmetry. For organized introduction and discussions to quantile

regression methods, see Koenker (2005), Engle and Manganelli (2004), Kim (2007), Cai and

Xu (2008), Cai and Xiao (2012), Andriyana et al. (2016), Koenker (2017) and Wang et

al. (2020), among others. For the literature on expectile-based methods, see Efron (1991),

Yao and Tong (1996), Granger and Sin (1997), Taylor (2008), Kuan et al. (2009), Gu and

Zou (2016), Farooq and Steinwart (2017), Daouia et al. (2018) and Daouia et al. (2020),

among others. Zhao et al. (2018) analyzed heteroscedasticity in high dimension using the

expectile regression.

Methodologies based on quantiles regression or expectiles regression appeal to many

researchers. But there is few attention put on the relation between quantiles and expec-

tiles. Jiang et al. (2019) considered a general check function Qτ (r) = (τ − I{r < 0})|r|k

(1 < k ≤ 2) and proposed the kth power expectile regression. They prove the asymptotic

normality of the estimators related to the regression and provide the consistent estimator of

the asymptotic covariance matrix. They unexpectedly found that the asymptotic efficien-

cies of the kth power expectile estimation (1 < k < 2) in both scale-location models and

location shift models are much higher than those of the quantile estimation or the expectile

estimation in many cases. Cabrera and Schulz (2017) used the same check function, but

they only supposed k = 1 or 2. Efron (1991) studied the same check function but only

setting k = 1.5 and asserted its corresponding regression method may balance the robust-

ness (the merit of the quantile regression) and the effectiveness (the merit of the expectile
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regression). Efron (1991) did not provide theoretical analysis for his assertion. Returning

to Jiang et al.(2019), they gave a proof of the asymptotic normality by restricting k to the

interval (1.5, 2] when the data are i.i.d. It is imperfect to overlook the case k ∈ (1, 1.5]

from either a theoretical point of view or a perspective of statistically empirical analysis.

We ultimately found that the problem comes down to their condition (6) in Assumption 3,

i.e.
∫ +∞

−∞
|y − x′b|k−2f(y|x)dy/|x|k < c2, (1)

for any b, as |x| → +∞, which is the primary cause why Jiang et al. (2019) did not complete

the proof of their asymptotic normality for k ∈ (1, 1.5]. For common distributions, such

as those with bounded probability densities f(y|x) (the boundedness is uniform in x), we

have a more strong result, for 1 < k ≤ 2, i.e.,
∫ +∞

−∞
|y − x′b|k−2f(y|x)dy < c1 (2)

since
∫ +∞
−∞ f(y|x)dy = 1 and

∫ c3
0

sk−2ds < c4, where ci are positive constants independent

on x. Condition (1) is too weak for a great many of distributions while condition (2) is

suitable.

Under the condition similar to (2), we prove asymptotic normality of the kth power

expectile regression estimators for 1 < k ≤ 2 by a method totally different from Jiang

et al.(2019) when the data is either i.i.d. or local alternative to the i.i.d. setting. The

a.s. uniform consistency of the estimators are also investigated. When k = 2, the kth

power expectile regression theory is just the expectile regression theory in Newey and

Powell (1987). Although the condition (2) is not satisfied for k = 1 and hence the quantile

regression theory (Koenker and Bassett (1978)) could not be deduced from that of kth

power expectile regression, we show that the mean vector and covariance matrix of the
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asymptotic distribution of the later converges to those of the asymptotic distribution of

the quantile regression estimators in Koenker and Bassett (1978) when k converges to

1. This is a new discovery and interesting result, see Remark 3.4 below for a potential

application, which theoretically makes sure we can get an optimal k in the whole [1, 2] by

minimizing the trace or the sum of eigenvalues of the estimated variance matrix of the

kth power expectile estimation. This paper then constructs a general linear relation test

based upon the kth power expectile regression following the train of thought of Newey and

Powell (1987), which relaxes the requirement in Newey and Powell (1987) (which supposed

the data mean exists) since the kth power expectile only requires that the (k − 1)th order

moment of the data exists, and hence is very friendly to the financial data. As its special

cases, tests of homoskedasticity and conditional symmetry are mainly investigated and

the limit distributions of the test statistics are provided. We compare the local power

of the proposed test to that of the test based on the quantile regression/the expectile

regression when the error comes from the contaminated normal distribution or the Student

t distribution. Although on past results, the method based on the expectile regression

will outweigh that based on the quantile regression under normal error cases, we find

the kth (1 < k < 2) power expectile regression miraculously performs better than the

quantile regression and the expectile regression for the majority of the combination values

of contamination percentage and relative scale of the contaminated normal distribution.

Especially, the kth (1 < k < 2) power expectile regression dominates the quantile regression

for testing of both homoskedasticity and symmetry. It seems that using the kth (1 < k < 2)

power expectile regression instead of the expectile/quantile regression can produce more

satisfying results in many issues. In practice, an optimal k̃ (1 ≤ k̃ ≤ 2) can easily be

found such that the estimated variance matrix of the corresponding k̃th power expectile
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estimation has the smallest eigenvalues in the sense of norm.

The kth power expectile estimators are a special type of M-estimators. But the con-

ditions of asymptotic results for the M-estimators are difficult to check, see He and Shao

(2000), and our conditions of the limit theorems are easily verified. In this sense, the kth

power expectile regression theory enriches the literature on M-estimators.

The paper has four main contributions. The first one is putting the quantile regression

and the expectile regression in a unified framework, i.e., the proposed kth power expectile

regression. The unified framework makes it possible that we can find an optimal k in

[1, 2] using cross validation or the aforementioned method. The second one is providing

some easily-checked moment conditions under which the whole theories of the kth power

expectile regression hold. Finding these conditions is the challenging work. The third

one is proposing a completely new moment estimator for asymptotic matrix of quantile

regression. In past, estimating asymptotic matrix of quantile regression undertakes the

difficulty of estimating the density function of error, which can now be gotten round by our

method. The last one is to present new methods to test homoskedasticity and symmetry,

and a new view point about the efficiencies of the quantile regression test, the expectile

regression test, and ours. Concretely, we find the efficiencies of the three tests all decrease

as the tail of the data becomes thicker, but the descending rates are different from each

other.

The paper proceeds as follows. In Section 2, the notation and a basic property of the

kth power expectile regression estimators have been given. Section 2 also contains some

comparisons between the kth power expectile estimation and the MLE in the skewed power

exponential distribution. Section 3 contains the main asymptotic results and assumptions

needed to derive these results. The test setting, test statistics, their asymptotic distribu-
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tions are provided in Section 4, and Section 5 compares in details three tests in terms of

relative efficiency, in which we consider both the normal error and the Student t distribution

errors. Section 6 concludes the paper. All proofs are postponed to Section 7. Throughout

the paper, the ci, c, Ci and C are positive and finite constants which may vary from line

to line.

2 Notation, properties and relationship with MLE

Firstly, notation and properties for the kth power expectile regression are presented. Sec-

ondly, we summarize some interesting links between the kth power expectile estimation

and the MLE in the skewed power exponential distribution.

2.1 Notation and some properties

Suppose the data (yt, x
′
t)
′, (t = 1, · · · , T ) are copies of (y, x′)′, which satisfies

y = x′β0 + u, (3)

where x′ is a p-dimension vector with first component being one, β0 is a vector of parameters,

and u is an error terms. Consider the kth power loss function:

Qτ,k(s) = |τ − I(s < 0)||s|k, (4)

with weight τ ∈ (0, 1) and 1 ≤ k ≤ 2. Letting Y be a random variable, µ(k, τ, Y ), the kth

power expectile of Y for weight τ , is

µ(k, τ, Y ) = argminlE(Qτ,k(Y − l)−Qτ,k(Y )). (5)
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So µ(1, τ, Y ) and µ(2, τ, Y ) are exactly the quantile and expectile of Y , respectively, see

Koenker and Bassett (1978) and Newey and Powell (1987). The kth power expectile of Y

contains information about the full distribution of Y .

The regression coefficient of kth power expectile regression of y on x′ for weight τ is

β̃(k, τ, y, x) = argminβE(Qτ,k(y − x′β)−Qτ,k(y)).

If (y, x′)′ satisfies (3) and u is independent of x , i.e., a homoskedasticity hypothesis,

µ(k, τ, y) = x′β̃(k, τ, y, x) = x′β0 + µ(k, τ, u).

In other words, only the first component of β̃(k, τ, y,x) varies as τ changes, which motivates

a test of homoskedasticity. Suppose (yt, x
′
t)
′ are i.i.d. copies of (y, x′)′, we can construct

the estimator β̂ through minimizing the sample counterpart of E(Qτ,k(y− x′β)−Qτ,k(y)),

i.e.,

β̂(k, τ, yt, xt) = argminβ∈Rp

T∑
t=1

(Qτ,k(yt − x′tβ)−Qτ,k(yt))/T.

Remark 2.1. Theorems 3.1 and 3.2 below discuss the existence a.s. and with proba-

bility one, respectively.

In the sequel, we mainly focus on k ∈ (1, 2] and often omit k, y, x, yt, and xt and write

µ(k, τ, Y ), β̃(k, τ, y, x), and β̂(k, τ, yt, xt) as µ(k, τ), β̃(k, τ), and β̂(k, τ) whenever it does

not cause confusion, and even as µ(τ), β̃(τ), and β̂(τ) when we do not care about k. The

existence and uniqueness of µ(τ) were proved by Theorem 1 in Jiang et al. (2019). Some

other basic properties about β̂(τ) can be found in their Theorem 2. The following is a

simple but important result about β̃(τ) which implies a test of conditional symmetry.
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Theorem 2.1 Suppose y satisfies (3) and fix k ∈ (1, 2]. The u is distributed symmet-

rically around zero with E|u|k−1 < ∞ and the c.d.f Fu. Then we

β̃(k, τ) + β̃(k, 1− τ) = 2β0.

2.2 Relationship with MLE

Nelson (1991) put forward the PED (power exponential distribution), also called the gen-

eralized error distribution, with the following density

f(x) = f(x; µ, σ, η) =
η exp(−1

2
|x−µ

σc
|η)

21+1/ηcσΓ( 1
η
)

, (6)

where µ ∈ R, σ > 0, η > 0, and c = c(η) =
√

Γ(1/η)(22/ηΓ(3/η))−1. Due to its tractability

and usefulness in practice, generalized forms of the PED have been provided, such as

the multidimension PED and various skewed PED. A natural extension of the PED, by

replacing “1
2
” in the exponent part of the density with “1-τ” or “τ” in (6), has the density

g(x) = g(y; µ, σ, η, τ) =
η exp(−|τ − I(y < µ)||x−µ

σc
|η)

(( 1
1−τ

)1/η + ( 1
τ
)1/η)cσΓ( 1

η
)

, (7)

which is a skewed version of (6) and contains the PED as a special case, τ = 1/2. It is

obvious that the (skewed) PED deduces the (skewed) Gaussian distribution when η = 2,

and the (skewed) Laplace distribution when η = 1.

We suppose the data yi are generated by yi = x′iβ+εi, where x′i are covariates and εi are

i.i.d. from the skewed PED. Some simple calculation shows that the kth power expectile

estimation of β is equivalent to its MLE. Especially, the quantile regression estimation of β

is exactly the same as the MLE of β in the skewed Laplace distribution, while the expectile
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regression estimation of β is exactly the same as the MLE of β in the skewed Gaussian

distribution. Nevertheless, the kth power expectiles regression methods are completely

different from and cannot be replaced by the MLE in skewed PED, as quantile regression

and expectile regression have not been respectively replaced by the MLE in the skewed

Laplace distribution and the MEL in the skewed Gaussian distribution. First and foremost,

the kth power expectiles regression does not set the specific type of error distributions and

has inherent robustness. Secondly, the kth power expectiles regression cares for the kth

power expectiles of variables but not the whole distribution density of variables. Roughly

speaking, the kth power expectiles regression theory in the present paper may be treated

roughly as the quasi-likelihood theory related to the (skewed) PED distributions.

There are many MLE related to the PED or the generalized PED in the regression

setting, such as latest Prataviera et al. (2019) and Prataviera et al. (2020). They suppose

that the parameters of the generalized PED are the parametric or semiparametric expres-

sions of covariates. We mainly focus on how the kth power expectiles of yi is explained by

the x′i.

3 Asymptotic properties of the kth power expectile

estimators

The asymptotic theory for the kth power expectile estimators will be proved under more

general assumptions, which contain linear models (3) as special cases. Let l denote the

Lebesgue measure on the real line and let z ≡ (y, x′), where x is a p × 1 vector. For a

matrix A = [aij], let |A| ≡ maxi,j |aij|. The l2-norm is denoted by ‖ · ‖.
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3.1 a. s. uniform consistency

For considering the consistency, we generally let the data be independent without require-

ment of identical distribution. The results are established on the following conditions.

Condition A: Suppose zt = (yt, x
′
t)
′ (t = 1, . . . , T ) are independent but may not be

identically distributed. Their probability density functions are ft(y|x)gt(x) with respect to

a measure Mz,t = l×Mx,t, where l is the Lebesgue measure and Mx,t is the measure related

to gt(x). Additionally, the ft(y|x) is continuous in y for almost all x.

Condition B:
∫ |zt|kft(y|x)gt(x)dMz,t < c, where c is dependent from t.

Condition C: The following inequalities hold,

inf
xt∈Rp

inf
b∈B

∫ +∞

−∞
|y − x′tb|k−2ft(y|xt)dy = c1 > 0,

∫ +∞

−∞
|y − x′tb|k−2ft(y|xt)dy < c, (8)

where c1 and c are independent from xt and t, B is an arbitrary compact subset of Rp.

Condition D: (i) For fixed U = [τl, τh] ⊂ (0, 1) and k ∈ (1, 2], there exists a constant

C1 > 0 such that, for all τ, τ ′ ∈ U , we have

|β̃(k, τ)− β̃(k, τ ′)‖ ≤ C1|τ − τ ′|.

(ii) For fixed K = [kl, kh] ⊂ (1, 2] and τ ∈ (0, 1), there exists a constant C2 > 0 such that,

for all k, k′ ∈ K, we have

|β̃(k, τ)− β̃(k′, τ)‖ ≤ C2|k − k′|.

Condition E: The (1/T )
∑T

t=1 E(xtx
′
t) is nonsingular.

12



Remark 3.1. In fact, Condition C is not strong since it can be satisfied for common

data generating processes, such as yt = g(xt, β)+εt, where g(xt, β) is the function of xt and

parameter β, and εt obeys the exponential distribution family or the Student t distribution..

We have the following uniform consistency result for β̂(k, τ).

Theorem 3.1 If Conditions A-C and E are satisfied, then there exists unique global

minimum β̃(k, τ) of 1
T

∑T
t=1 E(Qτ,k(yt− x′tb)). Let Θ (with β̃(k, τ) as its interior point) be

a compact subset of the parameter space. There is a measurable function β̂(k, τ) such that

β̂(k, τ) = argminb∈Θ
1

T

T∑
t=1

Qτ,k(yt − x′tb)

almost surely. In addition, if (i) of Condition D holds, then

sup
τ∈U

‖β̂(k, τ)− β̃(k, τ)‖ a.s.−→ 0 as T →∞ for fixed k;

and if (ii) of Condition D holds, then

sup
k∈K

‖β̂(k, τ)− β̃(k, τ)‖ a.s.−→ 0 as T →∞ for fixed τ.

3.2 Asymptotic normality

For analyzing asymptotic normality, we need the following conditions.

Assumption 1. Let zt = (yt, x
′
t)
′ (t = 1, . . . , T ) be i.i.d. copies of z = (y, x′)′ and z

has a probability density function f(y|x, ξT )g(x) with respect to a measure Mz = l ×Mx,

where ξT = ξ0+ζ/
√

T (ξ0 and ζ in Rm), with T being sample size and Mx being the measure

related to g(x). Additionally, the f(y|x, ξ0) is continuous in y for almost all x.
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Let E(·|ξ) =
∫ ·f(y|x, ξ)g(x)dMz, and E(·) = E(·|ξ0). Also, Define ϕτ (r) := (−1)I(r<0)k|τ−

I(r < 0)||r|k−1.

Assumption 2. There exists an open set Ξ containing ξ0 such that for almost all z,

the conditional density f(y|x, ξ) is continuous in ξ on Ξ. Also, E(xϕτ (y − x′β(τ))|ξ) is

continuously differentiable in ξ on Ξ.

Assumption 3. There is a constant c > 0 and a measure function θ(z) that satisfies

supξ∈Ξ f(y|x, ξ) ≤ θ(z) and

∫
θ(z)g(x)dMz < +∞,

∫
|z|k+2+cθ(z)g(x)dMz < +∞, for 1 < k ≤ 2.

Assumption 4. For 1 < k ≤ 2,

inf
x∈Rp

inf
b∈B

∫ +∞

−∞
|y − x′b|k−2f(y|x, ξ)dy = c1 > 0,

∫ +∞

−∞
|y − x′b|k−2θ(z)dy < c2,

where c1 and c2 are independent on x, and B is an arbitrary compact subset of Rp.

Assumption 5. The E(xx′) is nonsingular.

Remark 3.2. Assumptions 1, 2, and 5 are similar to Assumptions 1, 2, and 4 in

Newey and Powell (1987). Assumption 3 is more weaker than Assumption 3 in Newey and

Powell (1987). Assumption 4 is a typical condition for the kth power expectile regression,

which can be satisfied for common data generating processes, such as yt = g(xt, β)+εt, where

g(xt, β) is the function of xt and parameter β, and εt obeys the exponential distribution

family or the Student t distribution.
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For a vector of weights (τ1, · · · , τn)′, let η̂ := vec(β̂(τ1), · · · , β̂(τn)) denote the vector

of ALS estimators and let η̃ := vec(β̃(τ1), · · · , β̃(τn)) be the population counterpart (the

distribution corresponds to the density f(y|x, ξ0)g(x) with respect to a measure Mz =

l ×Mx). For u(τ) := y − x′β̃(τ), w(τ) := |τ − I(u(τ) < 0)|, define

Dj := E(k(k − 1)w(τj)|u(τj)|k−2xx′), D = diag(D1, · · · , Dn);

Vji := E(ϕτj
(u(τj))ϕτi

(u(τi))xx′), V = (Vji)(j, i = 1, · · · , n);

Kj := ∂E(−ϕτj
(u(τj))x|ξ0)/∂ξ, K := (K ′

1, · · · , K ′
n)′.

Theorem 3.2. If Assumptions 1-5 are satisfied, then for each τ in (0, 1), a unique

solution β̃(τ) to the equation

E((−1)1−I(y−x′β<0)|τ − I(y − x′β < 0)||y − x′β|k−1x) = 0

exists, where the expectation is calculated with respect to f(y|x, ξ0)g(x). Also,

√
T (η̂ − η̃))

d−→ N(D−1Kζ, D−1V D−1).

In order to make the result feasible, the asymptotic variance matrix need to be esti-

mated. Let ût(τ) := yt − x′tβ̂(τ), ŵt(τ) := |τ − I(ût(τ) < 0)|, define

D̂j := k(k − 1)
T∑

t=1

ŵt(τj)|ût(τj)|k−2xtx
′
t/T, D̂ = diag(D̂1, · · · , D̂n);

V̂ji :=
T∑

t=1

ϕτj
(ût(τj))ϕτi

(ût(τi))xtx
′
t)/T, V̂ = (V̂ji)(j, i = 1, · · · , n).

Theorem 3.3. Based on Assumptions 1-5, we have the following result

D̂−1V̂ D̂−1 P−→ D−1V D−1.
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Remark 3.3. Obviously, Theorem 3.2 and Theorem 3.3 are generalizations of Theorem

3 and Theorem 4 of Newey and Powell (1987), respectively. The main results in Jiang et

al. (2019) are only very special cases of our Theorem 3.2.

Combining our setting and the context of Koenker and Bassett (1982), we below prove

the mean and covariance of the limit distribution in Theorem 3.2 converges to those of the

limit distribution in Theorem 3.1 in Koenker and Bassett (1982), which displays that there

is an inherent relation among the quantile regression, the expectile regression, and the kth

power expectile regression. We need the related natation and conditions as follows.

Assumption 6. We consider the i.i.d. data zt = (yt, x
′
t)
′(t = 1, 2, . . . , T ). The data

generating process is

y = x′β +
(
1 + x′

γ0√
T

)
ε,

where γ0 is a constant vector in Rp the error ε has the distribution function Fε with the

density fε being continuous and strictly positive. For all υ, 0 < Fε(υ) < 1. x′t is independent

of ε with the density g(x) with respect to µx. The qε(τ) denotes the τ quantile of ε.

Assumption 7.

fε(x)x → 0, as x → ±∞, (fε(x)|x|k−1 → 0, as x → ±∞).

Assumption 8.

∫ +∞

−∞
|x|k−1f ′ε(x)dx < c.

In Theorem 3.4 and its proof, let ET (·), E(·), and ET (·|γ) denote the expectations

calculated with respect to the densities fε((y − x′β)/(1 + x γ0√
T
))(g(x)/(1 + x γ0√

T
)), fε(y −
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x′β)g(x), and fε((y − x′β)/(1 + xγ))(g(x)/(1 + xγ)), respectively. The other notation is

the same as Theorem 3.1. Denote

D̃j := E(k(k − 1)w(τj)|u(τj)|k−2xx′), D̃ = diag(D̃1, · · · , D̃n);

Ṽji := E(ϕτj
(u(τj))ϕτi

(u(τi))xx′), Ṽ = (Ṽji)(j, i = 1, · · · , n);

K̃j := ∂E(−ϕτj
(u(τj))x|0)/∂γ, K̃ := (K̃ ′

1, · · · , K̃ ′
n)′.

Theorem 3.4. Suppose Assumption 6 and Assumptions 2-5 are satisfied. then for

each τ in (0, 1) and k in (1, 2], a unique solution β̃(τ) to the equation

E((−1)1−I(y−x′β<0)|τ − I(y − x′β < 0)||y − x′β|k−1x) = 0

exists. Then (i) a similar result as in Theorem 3.2 holds, i.e.,

√
T (η̂ − η̃))

d−→ N(D̃−1K̃γ0, D̃
−1Ṽ D̃−1).

(ii) furthermore, if Assumptions 7 and 8 hold, when k → 1, we have element wise conver-

gence, D̃−1K̃γ0 → K̄, D̃ → D̄, and Ṽ → V̄ , where

D̄j := fε(qε(τj))E(xx′), D̄ = diag(D̄1, · · · , D̄n);

V̄jk := (min(τj, τk)− τjτk)E(xx′), V̄ = (V̄jk)(j, k = 1, · · · , n);

K̄j := qε(τj)γ0, K̄ := (K̄ ′
1, · · · , K̄ ′

n)′.

Remark 3.4. Theorem 3.4 demonstrates that, for k → 1, the mean and covariance

of the asymptotic distribution of the estimators for 1 < k ≤ 2 can converges to those of the

asymptotic distribution in Theorem 3.1 in Koenker and Bassett (1982). This illuminating

result implies that we could estimate the covariance matrix D̄−1V̄ D̄−1 of quantile regression

by estimator D̂−1V̂ D̂−1 in Theorem 3.3 letting k as small as possible.
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Remark 3.5. The kth power expectile regression could be also of interest in other

problems except testing for homoskedasticity and conditional symmetry. For example, we

can estimate regression percentiles by the kth power expectile regression through the same

procedure as Efron (1991) estimated regression percentiles by regression expectiles. Con-

cretely, suppose the data is {yt, x
′
t}, t = 1, . . . , T , x′t are the 1 × p covariate vectors, and

yt are scaler responses. We first obtain enough kth power expectile regression lines, like

the expectile regression lines in Figure 2 of Efron (1991). We then select a line in them

as the α quantile regression line such that the ratio of the number of data below the line

to T is α. We are motivated by two reasons: One is that the asymptotic variances of the

kth power expectile regression is smaller in many distribution cases, see Fig. 2 in Jiang

et al. (2019); the other is that the kth power expectile regression is computationally easy,

especially estimating the variances.

Remark 3.6. In practice, we can adopt different approaches to obtain the optimal

k. If we are interesting in parameters estimation, we reach the optimal k, for fixed τ , in

a grid research such that the eigenvalues of the corresponding asymptotic variance matrix

estimate in Theorem 3.3 are as small as possible. If we focus on forecast, we can use the

cross validation method. Testing is closely related to parameters estimating, we can use the

first approach to select the optimal k.

4 Test statistics and the asymptotic theory

We examine testing for homoskedasticity and conditional symmetry of the error distribution

using the kth power expectile regressions. In order to conform to the setting of Koenker

and Bassett (1982) and Newey and Powell (1987), we give the following assumptions.
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Assumption 9. Let the data generating process be

yt = x′tβ0 + ut (9)

with

ut = σtεt, σt = 1 + x′tξTh + I(εt > 0)x′tξTs, (10)

where ξTh = ζh/
√

T , ξTs = ζs/
√

T , ζh and ζs are p-dimensional constant vectors, T is

sample size and εt is i.i.d. and symmetrically distributed around zero. Furthermore, εt is

independent of xt and has the c.d.f. Fε(r) with a continuous density fε(r).

Assumption 10. The xt has a compact support set. Moreover, there are positive and

finite constants C and c such that

fε(r) ≤ C

1 + |r|k+3+c
.

Consider the general linear hypothesis

H0 : Hη̃ = m. (11)

When testing heteroscedasticity, we let m = 0 and

H = ∇h ⊗Υ,

where ‘⊗’ denotes the Kronecker product, ∇h is an (n− 1)× n matrix with representative

element ∇h
ij = δij − δi(j−1) (δij is Kronecker delta), and Υ = [0, Ip−1] (here and below I

denotes a unit matrix). Suppose weights (τ1, . . . , τn) satisfy τ1 < . . . < τn. According to

Remark 4 in Jiang et. al (2019), Hη̃ = 0 implies homoskedasticity in the linear model (9).
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When testing conditional symmetry, we suppose i∗ is the median of (1, · · · , n) where n

is odd, and

τi∗ =
1

2
, τi = 1− τ2i∗−i, 0 < i < i∗. (12)

At the moment, letting m = 0 and

H = ∇s ⊗Υ,

where ∇s = [I(m−1)/2,−2e(m−1)/2, I(m−1)/2], and Υ = Ip, Hη̃ = 0 suggests the conditional

symmetry of yt on xt in the linear model (9) according to Theorem 2.1.

In order to test (11), using estimators in Theorem 3.2 and Theorem 3.3, we construct

the test statistics TS as follows.

TS = T (Hη̂ −m)′(HD̂−1V̂ D̂−1H ′)−1(Hη̂ −m). (13)

In order to present the limit distribution of TS, we introduce some new pieces of nota-

tion, where known notation is explained in section 3.2. Let Ω denote the matrix with

representative element $jk, where

$jk := c(τj, τk)/(l(τj)l(τk)), (j, k = 1, . . . , n),

c(τj, τk) := E(ϕτj
(u(τj))ϕτk

(u(τk))),

l(τj) := E(k(k − 1)ω(τj)|u(τj)|k−2).

Write L := E(xtx
′
t) and

υ1∗ = (υ1(τ1)/l(τ1), . . . , υ1(τn)/l(τn)), υ2∗ = (υ2(τ1)/l(τ1), . . . , υ2(τn)/l(τn)),
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where

υ1(τ) := −k(k − 1)

(
(1− τ)

∫ µ(k,τ)

−∞
(µ(k, τ)− r)k−2rfε(r)dr

+τ

∫ ∞

µ(k,τ)

(r − µ(k, τ))k−2rfε(r)dr

)
,

υ2(τ) := −k(k − 1)

(
(1− τ)

∫ max(µ(k,τ),0)

0

(µ(k, τ)− r)k−2rfε(r)dr

+τ

∫ ∞

max(µ(k,τ),0)

(r − µ(k, τ))k−2rfε(r)dr

)
,

and µ(k, τ) is the kth power expectile of εt.

Theorem 4.1. Let Assumptions 1, 5, 9, and 10 be satisfied. If H0 is satisfied when

ξ := (ξ′Th, ξ
′
Ts)

′ = 0, Ω is nonsingular, and H is of full row rank with rank being r(H), TS

converges in distribution to a noncentral chi-squared random variable with r(H) degrees of

freedom and noncentrality parameter

(υ1∗ ⊗ ζh + υ2∗ ⊗ ζs)
′H ′(H(Ω⊗ L−1)H ′)−1H(υ1∗ ⊗ ζh + υ2∗ ⊗ ζs). (14)

Corollary 4.1. For H = ∇h⊗Υ and ζs = 0, (14) reduces to κh
kp·(Υζh)

′(ΥL−1Υ′)−1(Υζh)

with

κh
kp := (∇hυ1∗)′(∇hΩ(∇h)′)−1(∇hυ1∗).

For H = ∇s ⊗Υ and ζh = 0, (14) reduces to κs
kp · (Υζs)

′(ΥL−1Υ′)−1(Υζs) with

κs
kp := (∇sυ2∗)′(∇sΩ(∇s)′)−1(∇sυ2∗).
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5 Comparisons of the local efficiencies

We will compare in detail our proposed tests based on the kth power expectile regression

(test III) with the tests based on the quantile regression by Koenker and Bassett (1982)

(test I) and the tests based on expectile regression by Newey and Powell (1987) (test II) in

term of local efficiencies. The data for simulation study are generated by letting the error

term obey the contaminated normal distribution and the Student t distribution.

5.1 Testing under the contaminated normal error

We set εt in (10) obeying the contaminated normal distribution with the density:

fε(r) = (1− ϑ)ϕ(r) + (ϑ/%)ϕ(r/%), (15)

where ϑ is the proportion of contamination and % is the scale. Its kurtosis function and

related partial derivatives are

K(ϑ, %) =
3(1− ϑ) + 3ϑ%4

((1− ϑ) + ϑ%2)2
,

∂K(ϑ, %)

∂ϑ
=

3(%2 − 1)(%2 − 1 + ϑ− ϑ%4)

((1− ϑ) + ϑ%2)3
, (16)

∂K(ϑ, %)

∂%
=

12ϑ%(1− ϑ)(%2 − 1)

((1− ϑ) + ϑ%2)3
. (17)

It is well-known that the bigger the kurtosis value of a distribution is, the heavier its tail

becomes. The family of contaminated normal distributions are often selected as heavier-

tailed alternatives to strictly normal errors, used by Tukey (1960), Koenker and Bassett

(1982), Newey and Powell (1987), among others. We can show easily that Assumption 10
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is satisfied for the contaminated normal distributions. Under this error setting, the local

efficiencies of tests of homoskedasticity and symmetry are exhibited by computing Pitman’s

asymptotic relative efficiencies (AREs).

5.1.1 Testing heteroskedasticity

We suppose ζs = 0 when testing heteroskedasticity. Under the linear restriction (11),

Corollary 4.1 demonstrates that the statistics of test III converges to the noncentral chi-

squared random variable in distribution with r(H) degrees of freedom and noncentrality

parameter κh
kp · (Υζh)

′(ΥL−1Υ′)−1(Υζh) where

κh
kp := (∇hυ1∗)′(∇hΩ(∇h)′)−1(∇hυ1∗). (18)

According to Theorem 4.1 in Koenker and Bassett (1982), Corollary 1 in Newey and Powell

(1987), the asymptotic distributions for tests I and II are the same as test III, except for

different noncentrality parameters. The noncentrality parameter for the quantile regression

is κh
QR · (Υζh)

′(ΥL−1Υ′)−1(Υζh) where

κh
QR := (∇hµ(1, τ))′(∇hΣQR(∇h)′)−1(∇hµ(1, τ)), (19)

µ(1, τ) is the quantile vector, ΣQR is the asymptotic covariance matrix of the vectors of

quantile regression estimators. The noncentrality parameter for the expectile regression is

κh
ER · (Υζh)

′(ΥL−1Υ′)−1(Υζh), where

κh
ER := (∇hµ(2, τ))′(∇hΣER(∇h)′)−1(∇hµ(2, τ)), (20)

µ(2, τ) is the expectile vector, and ΣER is just the Ω in (18) for k = 2.

We examine the efficiency of test III through considering the case of n = 2, τ = (τ1, τ2)
′

and τ1 = 1 − τ2, 0.5 < τ2 < 1. Tests I and II employ the same setting. Since the three
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tests have the similar limit distributions with the same degrees of freedom, the desired

AREs reduce to the ratios of noncentrality parameters, which turn out to be κh
kp/κ

h
QR and

κh
kp/κ

h
ER. For different proportion of contamination ϑ and scale % that take values in sets

{0.05, 0.1, · · · , 0.5} and {2, 3, 4, 5}, respectively, we obtain in a grid research the optimal

combination of k and τ , on which the κh
kp reaches its maximum, see the heteroskedasticity

panel in Table 1. Under the same setting of proportion of contamination and scale as

above, Newey and Powell (1987) gave the optimal weights for tests I and II, see their Table

1. As can be seen in our Table 1, the optimal τ values are between 0.54 and 0.97; the

optimal k values are between 1.2 and 1.9. At each fixed contamination level, the optimal

k values decrease as scale % increases; but the optimal weight τ values vary little except at

contamination levels of 0.45 and 0.5. Both optimal τ values and optimal k values decrease

firstly and then increase as contamination level ϑ increases for each fixed scale. The averages

of the optimal τ and k values are 1.60 and 0.75, respectively.

In our paper, we use the optimal weights (in our Table 1 for test III and Newey and

Powell’s Table 1 for tests I and II) across different combinations of % and ϑ to calculate

values of κh
kp κh

QR and κh
ER using R codes, see columns 3-5 in Table 2. Table 2 shows that

for the fixed ϑ, κh
kp, κh

QR and κh
ER all decrease as % increases. In other words, as the tail

thickness of the error distribution is a strictly monotone increasing function of % by (17),

κh
kp κh

QR and κh
ER all decrease as the tail thickness of the data distribution increases (i.e.,

the data set which contain more and more fairly large outliers). Since the tail thickness of

the error distribution is a concave function of ϑ according to (16), for fixed %, κh
kp κh

QR and

κh
ER almost decrease firstly and then increase as ϑ increases, except for cases of % = 2, 3 in

which κh
QR is the strictly decreasing function of ϑ.

The third column in Table 3 lists the AREs of test III relative to test II, which show
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31/41 of the ARE values larger than 1. By and large, test III is superior to test II. For

% = 1, i.e., the standard normal error, while it is well known test II is the most efficient

method, there is an efficiency loss of only one percent when using instead test III with

k = 1.9. Given ϑ, the AREs increase as % increases, except at the level of 0.5. At the fixed

ϑ, the superiority intensity, if test III is superior to test II, increases with increasing %.

The phenomenon is mainly due to the fact that both κh
kp and κh

ER decrease as % increases,

but the rate of the former is smaller than the latter, see columns 3 and 4 in Table 2.

Another phenomenon is that, under fixed %, the AREs increase firstly and then decrease

as ϑ increases due to the different rates at which the κh
kp and the κh

ER change over ϑ.

The fourth column in Table 3 lists the AREs of test III relative to test I, which proclaim

test III dominates overall test I. At the fixed ϑ, the superiority intensity decreases with

increasing % in 0.05 ≤ ϑ ≤ 0.40, and increases firstly and then decreases in 0.45 ≤ ϑ ≤ 0.50.

5.1.2 Testing symmetry

We suppose ζh = 0 when testing symmetry. Under the linear restriction (11), Corol-

lary 4.1 demonstrates the test statistics of test III asymptotically obeys the noncentral

chi-squared distribution with r(H) degrees of freedom and noncentrality parameter κs
kp ·

(Υζs)
′(ΥL−1Υ′)−1(Υζs), where

κs
kp = (∇sυ2∗)′(∇sΩ(∇s)′)−1(∇sυ2∗). (21)

Similarly, tests I and II have the same asymptotic distribution as above except for different

noncentrality parameter. The noncentrality parameter for test I is κs
QR·(Υζs)

′(ΥL−1Υ′)−1(Υζs)

where

κs
QR = (∇sη+)′(∇sΣQR(∇s)′)−1(∇sη+), (22)
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with η+ = max{0, µ(1, θ)} where “0” is a zero vector with the same dimension as the

quantile vector µ(1, θ), ΣQR is the same as in (19). The noncentrality parameter for test

II is κs
ER · (Υζs)

′(ΥL−1Υ′)−1(Υζs) where

κs
ER = (∇sµ∗)′(∇sΣER(∇s)′)−1(∇sµ∗), (23)

ΣER is the same as in (20), and µ∗ is a vector with typical element

µ∗(θ) =

(
θ

∫ ∞

0

sfε(s)ds + (1− 2θ)

∫ max{0,µ(2,θ)}

0

sfε(s)ds

)

/(θ(1− Fε(µ(2, θ))) + (1− θ)Fε(µ(2, θ))).

In the above expression θ is the weight in the expectile loss function and µ(2, θ) is the θ

expectile of the error distribution.

We use the same setting of the proportion of contamination ϑ and the scale % as in

the above subsection. According to (12), for convenience, we choose only three weights:

1− τ , 1/2, and τ , i.e., θ = (1− τ, 1/2, τ) to construct test statistics. Let ∇s ≡ (1,−2, 1)′.

Similarly, to obtain AREs, we only need to calculate κs
kp/κ

s
QR and κs

kp/κ
s
ER. Newey and

Powell (1987) listed in their Table 2 the optimal weights for tests I and II. We still let

ϑ and % take its values in sets {0.05, 0.1, · · · , 0.5} and {2, 3, 4, 5}, respectively, and under

each couple (ϑ, %) pick out the optimal combination of k and τ such that the κs
kp achieves

its maximum at this combination, see the symmetry part in Table 1. Table 1 shows that

these optimal τ values are between 0.54 and 0.90; the optimal k values are between 1.2

and 1.9. At each fixed contamination level, the optimal k values decrease as % increases

when 0.05 ≤ ϑ ≤ 0.25; the optimal k values converge to 1.9 when ϑ converges to 0.5 or

% converges to 2. Both optimal τ values and optimal k values decrease firstly and then

increase as ϑ increases for each fixed scale value. The averages of the optimal τ and k

values are 1.74 and 0.65, respectively.
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Similarly, we use the optimal weights (in our Table 1 for test III and Newey and Powell’s

Table 2 for tests I and II) for different combinations of % and ϑ to obtain values of κs
kp κs

QR

and κs
ER and collect the results in columns 6-8 in Table 2. Results state for the fixed ϑ

value, κs
kp, κs

QR, and κs
ER all decrease as % increases in most of the cases. That is to say

that κs
kp κs

QR and κs
ER decrease as the tail thickness of the data distribution increases. For

fixed %, κh
kp κh

QR and κh
ER approximately decrease firstly and then increase as ϑ increases,

but the variations are very slight.

The fifth column in Table 3 contains the AREs of test III relative to test II, which

exhibit that there are 25/41 of the values larger than 1. The maximum and minimum

of these AREs are 1.4601 and 0.9576. In general, test III performs better than test II.

Similarly to the test of homoskedasticity, the AREs depend on ϑ and %. Specially, when

% = 1, i.e., the standard normal error, test II is still the most efficient, but there is an

efficiency loss of less than two percent when employing instead test III with k = 1.9. The

proportion of AREs, which are lager than 1 increases as % increases. The main reason of

the phenomenon is that both the κs
kp and the κs

ER decrease as % increases, but the former

does at a slower rate, see columns 6 and 7 in Table 2.

The last column in Table 3 contains the AREs of test III relative to test I, which suggest

test III dominates test I. The superiority extent decreases with increasing %.

Overall, we reveal two interesting phenomena: One is that test III outweighs test I,

which does not depend on the parameter values of the contaminated normal distribution

and the particular null hypothesis; another is that test III becomes more powerful than

test II when the tail of the error distribution becomes heavier, which does not depend on

the particular null hypothesis, too.
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5.2 Testing under the Student t distribution error

In the section, let εt in (10) obey the Student t distribution, which is the frequently-used

heavy-tailed distribution, and let the degrees of freedom df of the Student t distribution

vary in the set {3, 4, 5, 6, 7, 8, 9, 10}. We examine how the local efficiencies of three test

methods change with df . We use formulas (18)-(23) to calculate noncentrality parameters.

The results are contained in Table 4, which provides the optimal k-values and weights for

test III as well the optimal weights for tests I and II.

As seen, the optimal k increases with df ; the change of optimal weights has not clear

trend; κh
kp increases with df . About tests I and II, the optimal weight increases with df ;

both κh
ER and κh

QR increase with df . Figures 1 and 2 display the change of AREs of test III

to tests I and II. The local efficiencies of test III is better than tests I and II. The AREs

of test III to test II decreases with df while AREs of test III to test I do not decreases

with df . Especially, when df = 3, i.e., the Student t distribution has much heavy tail, the

proposed method has obvious advantages. The results in the Student t distribution error

case are accordant with those in the contaminated normal error case.

Simulations explicitly exhibit that the kth power expectile method is more powerful

than the quantile method in any commonly-used errors, more powerful than the expectile

method in the heavy-tailed errors, and as well as the expectile method in the errors that are

approximately standard normal. This is an interesting and important finding. In practice,

we can adopt approaches in Remark 3.6 to select the optimal k-values and weights for the

kth power expectile regression method.
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Table 2. κh
kp κh

QR, κh
ER, κs

kp κs
QR, and κs

ER in the noncentrality parameters for tests of

homoskedasticity and symmetry,
% ϑ κh

kp κh
ER κh

QR κs
kp κs

ER κs
QR

2 0.05 1.6316 1.6259 1.2092 0.2693 0.2743 0.2376

0.10 1.4987 1.4827 1.1340 0.2611 0.2669 0.2279

0.15 1.4178 1.4012 1.0729 0.2962 0.2637 0.2198

0.20 1.3655 1.3533 1.0219 0.2550 0.2627 0.2130

0.25 1.3382 1.3263 0.9785 0.2548 0.2633 0.2071

0.30 1.3161 1.3139 0.9413 0.2554 0.2649 0.2020

0.35 1.3125 1.3125 0.9113 0.2571 0.2672 0.1980

0.40 1.3196 1.3196 0.8867 0.2594 0.2702 0.1949

0.45 1.3340 1.3340 0.8682 0.2623 0.2736 0.1928

0.50 1.3549 1.3549 0.8566 0.2656 0.2773 0.1920

3 0.05 1.3788 1.2261 1.1395 0.2425 0.2388 0.2279

0.10 1.2076 1.0379 1.0234 0.2265 0.2213 0.2117

0.15 1.1039 0.9570 0.9327 0.2167 0.2141 0.1983

0.20 1.0345 0.9227 0.8584 0.2131 0.2124 0.1871

0.25 0.9883 0.9137 0.7921 0.2136 0.2142 0.1771

0.30 0.9631 0.9206 0.7417 0.2460 0.2185 0.1681

0.35 0.9575 0.9385 0.6950 0.3083 0.2245 0.1602

0.40 0.9699 0.9650 0.6548 0.2247 0.2319 0.1531

0.45 0.9984 0.9984 0.6203 0.2305 0.2405 0.1468

0.50 1.0379 1.0379 0.6084 0.2914 0.2501 0.1515

4 0.05 1.2569 0.9271 1.1034 0.2316 0.1983 0.2223

0.10 1.0793 0.7554 0.9694 0.2119 0.1750 0.2033

0.15 0.9658 0.7001 0.8671 0.1979 0.1677 0.1878

0.20 0.8851 0.6875 0.7841 0.1885 0.1675 0.1744

0.25 0.8304 0.6961 0.7147 0.1844 0.1710 0.1625

0.30 0.7961 0.7177 0.6554 0.1851 0.1771 0.1520

0.35 0.7854 0.7483 0.6036 0.1899 0.1851 0.1424

0.40 0.7970 0.7862 0.5578 0.1960 0.1947 0.1335

0.45 0.8302 0.8302 0.5410 0.2031 0.2057 0.1352

0.50 0.8800 0.8800 0.6081 0.2113 0.2182 0.1520

5 0.05 1.1916 0.7143 1.0818 0.2254 0.1618 0.2193

0.10 1.0081 0.5796 0.9377 0.2036 0.1395 0.1983

0.15 0.8907 0.5485 0.8301 0.1876 0.1345 0.1816

0.20 0.8056 0.5518 0.7433 0.1754 0.1361 0.1672

0.25 0.7441 0.5716 0.6705 0.1675 0.1411 0.1544

0.30 0.7023 0.6018 0.6087 0.1653 0.1483 0.1429

0.35 0.6847 0.6395 0.5550 0.1679 0.1571 0.1323

0.40 0.6958 0.6833 0.5073 0.1744 0.1674 0.1228

0.45 0.7641 0.7641 0.5410 0.1820 0.1791 0.1348

0.50 0.8558 0.8558 0.6081 0.1905 0.1924 0.1518
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Table 3. Ratio of local efficiencies of the proposed test to the quantule/expectile

regression tests when using optimal k and optimal weights
% ϑ κh

kp/κ
h
ER κh

kp/κ
h
QR κs

kp/κ
s
ER κs

kp/κ
s
QR

1 · · · · · · 0.9892 1.4665 0.9834 1.1476

2 0.05 1.0034 1.3492 0.9818 1.1331

0.10 1.0108 1.3215 0.9782 1.1453

0.15 1.0117 1.3214 1.1232 1.3475

0.20 1.0090 1.3363 0.9705 1.1973

0.25 1.0089 1.3675 0.9679 1.2303

0.30 1.0016 1.3982 0.9643 1.2646

0.35 1.0000 1.4402 0.9619 1.2981

0.40 1.0000 1.4881 0.9598 1.3309

0.45 1.0000 1.5365 0.9584 1.3603

0.50 1.0000 1.5817 0.9576 1.3832

3 0.05 1.1245 1.2100 1.0152 1.0642

0.10 1.1635 1.1800 1.0233 1.0700

0.15 1.1534 1.1834 1.0122 1.0928

0.20 1.1211 1.2051 1.0029 1.1387

0.25 1.0817 1.2476 0.9970 1.2064

0.30 1.0462 1.2985 1.1261 1.4636

0.35 1.0201 1.3775 1.3737 1.9250

0.40 1.0051 1.4811 0.9688 1.4676

0.45 1.0000 1.6095 0.9583 1.5706

0.50 1.0000 1.7059 1.1650 1.9230

4 0.05 1.3557 1.1390 1.1681 1.0421

0.10 1.4288 1.1133 1.2106 1.0419

0.15 1.3794 1.1137 1.1795 1.0538

0.20 1.2874 1.1288 1.1253 1.0805

0.25 1.1929 1.1619 1.0779 1.1341

0.30 1.1092 1.2146 1.0451 1.2178

0.35 1.0495 1.3011 1.0261 1.3341

0.40 1.0138 1.4288 1.0067 1.4675

0.45 1.0000 1.5344 0.9874 1.5023

0.50 1.0000 1.4469 0.9685 1.3899

5 0.05 1.6682 1.1014 1.3931 1.0279

0.10 1.7391 1.0751 1.4601 1.0270

0.15 1.6235 1.0729 1.3941 1.0330

0.20 1.4601 1.0839 1.2885 1.0493

0.25 1.3015 1.1096 1.1871 1.0847

0.30 1.1669 1.1536 1.1147 1.1563

0.35 1.0707 1.2337 1.0686 1.2684

0.40 1.0182 1.3716 1.0419 1.4207

0.45 1.0000 1.4123 1.0157 1.3501

0.50 1.0000 1.4072 0.9901 1.2551
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Figure 1: AREs of the proposed method to the expectile/quantile method when testing

heteroscedasticity.

6 Conclusion

This paper develops the theory of the kth power expectile regression and proposes tests

of homoskedasticity and conditional symmetry based on this regression method. Results

suggest that the proposed tests perform more efficiently than the expectile/quantile regres-

sion test, especially in testing heteroskedasticity. No matter what the null hypothesis is,

the priority should be given to the kth power expectile regression when the data distribu-

tion have a very heavy tail. These merits are attributed to the fact that the asymptotic

variances of the kth power expectile regression are very small under heavy-tailed distri-

butions. Although the theory of the kth power expectile regression is provided for the

i.i.d. data case, it can be readily extended to the dependent data case because it is built

on the easily-checked comments conditions. We can also consider other models, such as
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Figure 2: AREs of the proposed method to the expectile/quantile method when testing

symmetry.

generalized linear models and high-dimensional sparse models using the kth power expec-

tile regression or its non-parameter statistics version. Belloni and Chernozhukov (2011)

and Gu and Zou (2016) considered the applications in high-dimensional sparse models of

the quantile regression and the expectile regression, respectively. We believe that the kth

power expectile regression could exhibit more merits in high-dimensional sparse models,

which may be a future study.

7 Appendix A: The proofs of main results

Proof of Theorem 2.1. Denote the kth power expectile of u by δ(τ), i.e., δ(τ) =

argminlE(Qτ (u − l) − Qτ (u)). The first order condition for this minimization problem
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shows that δ(τ) is the solution to

1− τ

τ
=

∫∞
δ(τ)

(x− δ(τ))k−1dFu(x)
∫ δ(τ)

−∞ (δ(τ)− x)k−1dFu(x)
. (24)

The equation (24) has a unique solution according to Theorem 1 in Jiang et al. (2019),

and can be rewritten as

1− (1− τ)

1− τ
=

∫∞
−δ(τ)

(x− (−δ(τ)))k−1dFu(x)
∫ −δ(τ)

−∞ (−δ(τ)− x)k−1dFu(x)
.

So the solution uniqueness deduces δ(τ) = −δ(1 − τ). Similarly, for the regression case,

β̃(k, τ) satisfies equation

E((−1)1−I(y−x′β̃(k,τ)<0)x|y − x′β̃(k, τ)|k−1|τ − I(y − x′β̃(k, τ) < 0)|) = 0. (25)

The item (iii) of Theorem 1 in Jiang et al. (2019) implies that

y − x′β̃(k, τ) = u + x′β0 − x′β̃(k, τ) = u− δ(τ)

= u + δ(1− τ) = u + x′β̃(k, 1− τ)− x′β0

= y − x′(2β0 − β̃(k, 1− τ)).

So, the left-hand side of (25) is equal to

E((−1)1−I(y−x′(2β0−β̃(k,1−τ))<0)x|y − x′(2β0 − β̃(k, 1− τ))|k−1

·|τ − I(y − x′(2β0 − β̃(k, 1− τ)) < 0)|).

The solution uniqueness makes sure β̃(k, τ) + β̃(k, 1− τ) = 2β0. ¤
Proof of Theorem 3.1. We first need two lemmas.

Lemma 1. If Conditions A-B are satisfied, for a compact set Θ, we have that

sup
b∈Θ

∣∣∣∣∣
1

T

T∑
t=1

Qτ,k(yt − x′tb)−
1

T

T∑
t=1

E(Qτ,k(yt − x′tb))

∣∣∣∣∣
a.s.−→ 0, as n →∞.
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Lemma 2. If Conditions A-C and E are satisfied, 1
T

∑T
t=1 E(Qτ,k(yt−x′tb)) has unique

global minimum β̃(k, τ).

The existence and uniqueness of β̃(k, τ) in Theorem 3.1 is obtained using Lemma 2. As

Condition A implies Assumption B. 1 and Assumption B.1.i in Bates and White (1985),

using their Theorem 2.2 we obtain the existence of β̂(k, τ). Furthermore, Lemma 1 and

Lemma 2 show that Assumption B.1.ii and Assumption B.1.iii in Theorem 2.2 of Bates

and White (1985) are satisfied hence

β̂(k, τ)
a.s.−→ β̃(k, τ) as T →∞. (26)

The following is based on the classical Glivenco-Cantelli argument. Let ε be any positive

constant, and n ∈ N , and pick out n+1 τ -values by continuity τl = τ0 ≤ τ1 ≤ . . . ≤ τn = τh,

which makes sure that max1≤i≤n{|τi− τi−1|} < ε. By the continuity of β̃(k, τ), we can find

τ ∗i and τ∗i such that β̃(k, τ ∗i ) = supτ∈[τi−1,τi]
{β̃(k, τ)} and β̃(k, τ∗i) = infτ∈[τi−1,τi]{β̃(k, τ)}.

For τ ∈ [τi−1, τi], we have that

|β̂(k, τ)− β̃(k, τ)| ≤ |β̂(k, τ ∗i )− β̃(k, τ∗i)|
≤ |β̂(k, τ ∗i )− β̃(k, τ ∗i )|+ |β̃(k, τ ∗i )− β̃(k, τ∗i)|.

So

sup
τ∈[τl,τh]

|β̂(k, τ)− β̃(k, τ)| ≤ max
1≤i≤n

|β̂(k, τ ∗i )− β̃(k, τ ∗i )|+ C1ε,

where the second term in the right-hand side is due to the uniform continuity of β̃(k, τ)

with respect to τ for fixed k. By (26), for any n ∈ N ,

lim sup
T→∞

sup
τ∈[τl,τh]

‖β̂(k, τ)− β̃(k, τ)‖ ≤ lim sup
T→∞

max
1≤i≤n

|β̂(k, τ ∗i )− β̃(k, τ ∗i )|+ C1ε

= C1ε a.s.
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The arbitrariness of ε deduces that

sup
τ∈[τl,τh]

‖β̂(k, τ)− β̃(k, τ)‖ a.s.−→ 0 as T →∞ for fixed k.

Using the same argument as the above, we can also prove that

sup
k∈K

‖β̂(k, τ)− β̃(k, τ)‖ a.s.−→ 0 as T →∞ for fixed τ.

The proof is completed. ¤
Proof of Theorem 3.2. We only present the proof for the case n = 1, as the argument for

the case n > 1 is similar. We first focus on the case ζ = 0 and consider the minimum β̃(τ)

of E(Qτ,k(yt − x′tb)). Noting, when ζ = 0, Assumptions 1, 3, 4, and 5 imply Assumptions

A, B, C, and E, the existence and uniqueness of β̃(τ) is established by Lemma 2. There

exist constants c1 and c2 such that Qτ,k(yt − x′tb) ≤ |zt|k(c1 + c2|b|k). Combining this and

Assumptions 2 and 3, using Lemma A1 of Newey (1985) yields that

sup
b∈Υ

|(1/T )
T∑

t=1

Qτ,k(yt − x′tb)− E(Qτ,k(yt − x′tb))| P→ 0,

where Υ is a bounded open set containing β̃(τ). So Lemma A in Newey and Powell (1987)

makes sure β̂(τ) = argminRp((1/T )
∑T

t=1 Qτ,k(yt−x′tb)) exists with probability approaching

one and β̂(τ)
P→ β̃(τ).

We then provide the proof of the asymptotic normality. Let ET (·) := E(·|ξT ). By the

arguments similar to those in the proof of Theorem 3.1, we write Qτ,k(·) as Qτ (·), and have

that ET (Qτ (y−x′β)) is twice continuously differentiable in β for large enough T . Moreover,

λT (β) = ∂ET (Qτ (y − x′β))/∂β = ET (g(β)), g(β) = −ϕτ (y − x′β)x

∂λT (β)/∂β = ∂2ET (Qτ (y − x′β))/∂β∂β′ = k(k − 1)ET (xx′|τ − I(y < x′β)||y − x′β|k−2).
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By the continuity of Qτ (y − x′β) in β, the continuity of f(y|x, ξ) in ξ, and Assumption 3,

the dominated convergence theorem makes sure that ET (Qτ (y− x′β)) converges uniformly

to E(Qτ (y−x′β)) on any compact neighborhood M of β̃(τ). We, therefore, show that there

is a sequence β̃T (τ) that minimizes ET (Qτ (y−x′β)) on M such that limT→∞ β̃T (τ) = β̃(τ),

and that for large enough T ,

0 = λT (β̃T (τ)) = ET (g(β̃T (τ))). (27)

Using the continuity of f(y|x, ξ) in ξ, Assumptions 3 and 4, the dominated convergence

theorem also implies that ∂λT (β)/∂β converges uniformly on M to ∂G(k, β, τ)/∂β, where

∂G(k, β, τ)/∂β = k(k − 1)E

(
xx′

(
τ

∫ +∞

x′β
(y − x′β)k−2f(y|x, ξ0)dy

+(1− τ)

∫ x′β

−∞
(x′β − y)k−2f(y|x, ξ0)dy

))
.

Noting that limT→∞ β̃T (τ) = β̃(τ) and ∂G(k, β, τ)/∂β is nonsingular with respect to β in

a compact set (see the argument in the proof of Lemma 2), there exist positive constants

c and c′ such that for T large enough

|β − β̃T (τ)| < c ⇒ |λT (β)| > c′|β − β̃T (τ)|. (28)

The (i) item of (N-3) of Huber (1967) is satisfied. Now let η(β, d) = sup|α−β|≤d |g(α)−g(β)|.
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Write

η(β, d) = sup
|α−β|≤d

|(−1)1−I(y−x′α<0)k|τ − I(y − x′α < 0)||y − x′α|k−1x

−(−1)1−I(y−x′β<0)k|τ − I(y − x′β < 0)||y − x′β|k−1x|
= k|x| sup

|α−β|≤d

|(−1)1−I(y−x′α<0)|τ − I(y − x′α < 0)||y − x′α|k−1

−(−1)1−I(y−x′β<0)|τ − I(y − x′β < 0)||y − x′β|k−1|
= k|x|( sup

|α−β|≤d

|I(y − x′α < 0, y − x′β < 0)(1− τ)((x′α− y)k−1 − (x′β − y)k−1)|

+ sup
|α−β|≤d

|I(y − x′α ≥ 0, y − x′β ≥ 0)τ((y − x′α)k−1 − (y − x′β)k−1)|

+ sup
|α−β|≤d

|I(y − x′α < 0, y − x′β ≥ 0)((1− τ)(x′α− y)k−1 + τ(y − x′β)k−1)|

+ sup
|α−β|≤d

|I(y − x′α ≥ 0, y − x′β < 0)(τ(y − x′α)k−1 + (1− τ)(x′β − y)k−1)|)
=: I1 + I2 + I3 + I4.

We have that, α̃ being between α and β,

I1 ≤ c2|x| sup
|α−β|≤d

|I(y − x′α < 0, y − x′β < 0)(x′α̃− y)k−2x′(α− β)|.

So,

ET (I1) ≤ c3E

(
|x|2

∫ x′α̃

−∞
(x′α̃− y)k−2f(y|x, ξT )dy

)
d

≤ c4E

(
|x|2

∫ +∞

−∞
|x′α̃− y|k−2θ(z)dy

)
d = O(d),

where the last equality is due to Assumptions 3 and 4. Using the same argument as for I1,

we have I2 = O(d). Furthermore

I3 ≤ c5|x| sup
|α−β|≤d

|I(y − x′α < 0, y − x′β ≥ 0)((1− τ)(x′α− y)k−1 + τ(y − x′β)k−1)|

≤ c6|x| sup
|α−β|≤d

|x′α− x′β| ≤ c7|x|2d.
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The second inequality comes from the fact that ar + br ≤ a+ b, for a, b > 0 and 0 < r < 1.

Thus Assumption 3 implies ET (I3) = O(d). Using the same argument as for I3, ET (I4) =

O(d). Additionally,

η2(β, d) =
(

sup
|α−β|≤d

|g(α)− g(β)|
)2

≤ k2|x|2 sup
|α−β|≤d

(((−1)1−I(y−x′α)|τ − I(y − x′α < 0)||y − x′α|k−1)2

+((−1)1−I(y−x′β)|τ − I(y − x′β < 0)||y − x′β|k−1)2 − 2(−1)I(y−x′α<0)+I(y−x′β<0)

|τ − I(y − x′α < 0)||τ − I(y − x′β < 0)||y − x′α|k−1|y − x′β|k−1)

≤ k2|x|2 sup
|α−β|≤d

(I(y − x′α < 0, y − x′β < 0)((1− τ)2(x′α− y)2(k−1)

+(1− τ)2(x′β − y)2(k−1) − 2(1− τ)2(x′α− y)k−1(x′β − y)k−1))

+k2|x|2 sup
|α−β|≤d

(I(y − x′α ≥ 0, y − x′β ≥ 0)(τ 2(y − x′α)2(k−1)

+τ 2(y − x′β)2(k−1) − 2τ 2(y − x′α)k−1(y − x′β)k−1))

+k2|x|2 sup
|α−β|≤d

(I(y − x′α < 0, y − x′β ≥ 0)((1− τ)(x′α− y)k−1 + τ(y − x′β)k−1)2)

+k2|x|2 sup
|α−β|≤d

(I(y − x′α ≥ 0, y − x′β < 0)(τ(y − x′α)k−1 + (1− τ)(x′β − y)k−1)2)

=: J1 + J2 + J3 + J4.

ET (J1) = ET

(
k2|x|2 sup

|α−β|≤d

(I(y − x′α < 0, y − x′β < 0)((1− τ)2((x′α− y)k−1

−(x′β − y)k−1)(x′α− y)k−1 + (1− τ)2((x′β − y)k−1 − (x′α− y)k−1)(x′β − y)k−1))
)

= ET (k2(k − 1)|x|2 sup
|α−β|≤d

|I(y − x′α < 0, y − x′β < 0)((1− τ)2(x′α̃1 − y)k−2x′(α− β)

(x′α− y)k−1 + (1− τ)2(x′α̃2 − y)k−2x′(β − α)(x′β − y)k−1))|
≤ c8E

(
|z|k+2

∫ +∞

−∞
(|x′α̃1 − y|k−2 + |x′α̃2 − y|k−2)θ(z)dz

)
d

= O(d),
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where α̃1 and α̃2 are between α and β, the second equality is based on the mean value

theorem, and the last one is due to Assumptions 3 and 4. The same argument deduces

ET (J2) = O(d). For 1 < k < 1.5,

ET (J3) = ET

(
k2|x|2 sup

|α−β|≤d

|I(y − x′α < 0, y − x′β ≥ 0)|((1− τ)(x′α− y)k−1

+τ(y − x′β)k−1)2
)

≤ c9ET

(
k2|x|2 sup

|α−β|≤d

|I(y − x′α < 0, y − x′β ≥ 0)|((x′α− y)k−1

+(y − x′β)k−1)2
)

≤ c10E(|x|2|x′(α− β)|) ≤ c11d = O(d),

where the first inequality is based on the fact ar + br ≤ c12(a + b)1/2, for 0 < r < 0.5,

a, b > 0 and Assumption 3. For 1.5 ≤ k ≤ 2,

ET (J3) ≤ c14ET

(
|x|2 sup

|α−β|≤d

|I(y − x′α < 0, y − x′β ≥ 0)||x′(α− β)|2k−2
)

≤ c15E(|x|2k)d2k−2 ≤ c15E(|x|k+2)d2k−2 = O(d),

where the first inequality is due to the concavity of the function xk−1, 1 < k ≤ 2. Using

the same argument, we have ET (J4) = O(d). Combining the bounds of Ii, Ji, i = 1, 2, 3, 4,

we obtain

ET (η(β, d)) = O(d), ET (η2(β, d)) = O(d). (29)

Combining (27), (28), and (29), Assumptions (N-1)-(N-4) of Huber (1967) are satisfied

uniformly in T . Furthermore, β̂(τ)
P→ β̃(τ) and βT (τ) → β̃(τ) imply β̂(τ) − βT (τ)

P→ 0.

Theorem 3 in Huber (1967) makes sure that

T∑
t=1

gt(βT (τ))/T +
√

TλT (β̂(τ)) = oP (1),
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where gt(βT (τ)) = −ϕτ (yt − x′tβT (τ))xt. A mean value expansion of λT (β̂(τ)) around β̃(τ)

provides

(∂λT (β̇(τ))/∂β)
√

T (β̂(τ)− β̃(τ)) = −
√

TλT (β̃(τ))−
T∑

t=1

gt(βT (τ))/
√

T + oP (1),

where β̇(τ) between β̂(τ) and β̃(τ) is the mean value. Combining continuity of ∂G(k, β, τ)/∂β

and uniform convergence of ∂λT (β)/∂β ensures ∂λT (β̇(τ))/∂β
P→ D. We can show that

results similar to (A.5), (A.6), and (A.7) in Newey (1985) hold with gt(βT (τ)) in place

of gT (θ0), so using the Lindberg-Feller central limit theorem and the Cramer-Wold device

yields that
∑T

t=1 gt(βT (τ))/
√

T converges to N(0, V ) in distribution. Using the argument in

the proof of Theorem 3 in Newey and Powell (1987), we have limT→∞−
√

TλT (β̃(τ)) = Kζ.

So using Slutsky’s Theorem can complete the proof. ¤
Proof of Theorem 3.3. By Slutsky’s Theorem, it is sufficient to show D̂j

P−→ Dj,

j = 1, 2, . . . , n and V̂ji
P−→ Vji, j, i = 1, 2, . . . , n. Hiding the j subscript, write

1

T

T∑
t=1

k(k − 1)xtx
′
tω̂t(τ)|ût(τ)|k−2 − 1

T

T∑
t=1

k(k − 1)xtx
′
tωt(τ)|ut(τ)|k−2

=
1

T

T∑
t=1

k(k − 1)xtx
′
tI(yt − x′tβ̂(τ) < 0, yt − x′tβ̃(τ) < 0)

·(1− τ)((x′tβ̂(τ)− yt)
k−2 − (x′tβ̃(τ)− yt)

k−2)

+
1

T

T∑
t=1

k(k − 1)xtx
′
tI(yt − x′tβ̂(τ) > 0, yt − x′tβ̃(τ) > 0)

·τ((yt − x′tβ̂(τ))k−2 − (yt − x′tβ̃(τ))k−2)

+
1

T

T∑
t=1

k(k − 1)xtx
′
tI(yt − x′tβ̂(τ) ≤ 0, yt − x′tβ̃(τ) ≥ 0)

·((1− τ)(x′tβ̂(τ)− yt)
k−2 − τ(yt − x′tβ̃(τ))k−2)
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+
1

T

T∑
t=1

k(k − 1)xtx
′
tI(yt − x′tβ̂(τ) ≥ 0, yt − x′tβ̃(τ) ≤ 0)

·(τ(yt − x′tβ̂(τ))k−2 − (1− τ)(x′tβ̃(τ)− yt)
k−2)

=: I1 + I2 + I3 + I4.

Letting ε = {sign(xi)εi}, i = 1, 2, . . . , p, we have, with probability approaching one,

I1,1(+ε) :=
1

T

T∑
t=1

k(k − 1)xtx
′
tI(yt − x′t(β̃(τ) + ε) < 0, yt − x′tβ̃(τ) < 0)

·(1− τ)(x′t(β̃(τ) + ε)− yt)
k−2

≤ 1

T

T∑
t=1

k(k − 1)xtx
′
tI(yt − x′tβ̂(τ) < 0, yt − x′tβ̃(τ) < 0)

·(1− τ)(x′tβ̂(τ)− yt)
k−2 =: I1,1

≤ 1

T

T∑
t=1

k(k − 1)xtx
′
tI(yt − x′t(β̃(τ)− ε) < 0, yt − x′tβ̃(τ) < 0)

·(1− τ)(x′t(β̃(τ)− ε)− yt)
k−2 =: I1,1(−ε)

Noting E(xtx
′
tI(yt−x′t(β̃(τ)±ε) < 0, yt−x′tβ̃(τ) < 0)(x′t(β̃(τ)±ε)−yt)

k−2) < ∞, Khintchine

law of large numbers yields that

I1,1(±ε)
P−→ k(k − 1)(1− τ)

·E(xtx
′
tI(yt − x′t(β̃(τ)± ε) < 0, yt − x′tβ̃(τ) < 0)(x′t(β̃(τ)± ε)− yt)

k−2).
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Similarly,

I1,2(+ε) :=
1

T

T∑
t=1

k(k − 1)xtx
′
tI(yt − x′t(β̃(τ) + ε) < 0, yt − x′tβ̃(τ) < 0)

·(1− τ)(x′tβ̃(τ)− yt)
k−2

≤ 1

T

T∑
t=1

k(k − 1)xtx
′
tI(yt − x′tβ̂(τ) < 0, yt − x′tβ̃(τ) < 0)

·(1− τ)(x′tβ̃(τ)− yt)
k−2 =: I1,2

≤ 1

T

T∑
t=1

k(k − 1)xtx
′
tI(yt − x′t(β̃(τ)− ε) < 0, yt − x′tβ̃(τ) < 0)

·(1− τ)(x′tβ̃(τ)− yt)
k−2 =: I1,2(−ε),

and similarly,

I1,2(±ε)
P−→ k(k − 1)(1− τ)

·E(xtx
′
tI(yt − x′t(β̃(τ)± ε) < 0, yt − x′tβ̃(τ) < 0)(x′tβ̃(τ)− yt)

k−2).

So, letting ε → 0, I1
P−→ 0. Using the same argument as the above, I2

P−→ 0.

For any positive δ, write J(x, δ) ≡ [x′β̃ − δ|x|, x′β̃ + δ|x|] and

ET [I(|uj(τ)| ≤ δ|x|)|x] =

∫

J(x,δ)

f(y|x, ξT )dy ≤
∫

J(x,δ)

θ(z)dy ≡ θδ(x).

Noting θ(z) is integrable in y with probability one, we have θδ(x) converges to zero mono-

tonically with δ by the monotone convergence theorem. According to the continuity of

f(y|x, ξ) in Assumption 3, I3 can be written almost surely as

I3 =
1

T

T∑
t=1

k(k − 1)xtx
′
tI(yt − x′tβ̂(τ) < 0, yt − x′tβ̃(τ) > 0)

·((1− τ)(x′tβ̂(τ)− yt)
k−2 − τ(yt − x′tβ̃(τ))k−2).
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Furthermore, using the preceding ε, with probability approaching one, we have

|I3| ≤ 1

T

T∑
t=1

k(k − 1)|xt|2I(yt − x′tβ̂(τ) < 0, yt − x′tβ̃(τ) > 0)

·((1− τ)(x′t(β̃(τ) + ε− yt))
k−2 + τ(yt − x′tβ̃(τ))k−2).

≤ 1

T

T∑
t=1

k(k − 1)|xt|2((1− τ)|x′t(β̃(τ) + ε)− yt|k−2 + τ |yt − x′tβ̃(τ)|k−2)

·I(|ut(τ)| ≤ |ε||xt|)
≤ E(k(k − 1)|xt|2θ|ε|(xt)((1− τ)|x′t(β̃(τ) + ε)− yt|k−2 + τ |yt − x′tβ̃(τ)|k−2))

+|ε|
≤ cE(|xt|2θ|ε|(xt)) + |ε|,

where the third inequality follow from Khintchine law of large numbers and the last in-

equality is based on the Assumption 4. Since E(|xt|2θ|ε|(xt)) + |ε| converges to zero with

|ε| by the monotone convergence theorem, we have I3
P−→ 0. Using the same argument, we

also have I4
P−→ 0. The triangle inequality yields

|D̂ −D| ≤ | 1
T

T∑
t=1

k(k − 1)xtx
′
tω̂t(τ)|ût(τ)|k−2 − 1

T

T∑
t=1

k(k − 1)xtx
′
tωt(τ)|ut(τ)|k−2|

+| 1
T

T∑
t=1

k(k − 1)xtx
′
tωt(τ)|ut(τ)|k−2| −D|. (30)

The first term in the right-hand side of inequality (30) converges to zero in probability

by combining Ii
P−→ 0, i = 1, 2, 3, 4, and the second term converges to zero according to

Khintchine law of large numbers. So we have D̂j
P−→ Dj. Focusing on V̂ji, it is easy to

show there are positive constants c16, c17, and c18 such that

|ϕτ (yt − x′tβ1)ϕθ(yt − x′tβ2)xtx
′
t)| ≤ |zt|2k(c16 + c17|β1|k−1 + c18|β2|k−1).
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Using the method in the proof of Theorem 2.2 in Newey (1985) can prove V̂ji
P−→ Vji. ¤

Proof of Theorem 3.4. The proof of (i) is the same as Theorem 3.2, for Assumption 6

easily induces Assumption 1. To prove (ii), it is sufficient to prove the case n = 1. It is

sufficient to prove that D̃ → D̄, Ṽ → V̄ , and D̃−1K̃γ0 → K̄, as k → 1. We mainly focus

on

(∂λT (β̇(τ))/∂β)
√

T (β̂(τ)− β̃(τ)) = −
√

TλT (β̃(τ))−
T∑

t=1

gt(βT (τ))/
√

T + oP (1), (31)

where β̇(τ) between β̂(τ) and β̃(τ) is the mean value. Write, fy being the density of y,

D̃ = E(k(k − 1)ω(τ)|u(τ)|k−2xx′)

= k(k − 1)E

(
xx′

∫

R

|τ − I(y − x′β̃(τ))||y − x′β̃(τ)|k−2fy(y)dy

)

= kE

(
xx′

(∫ ∞

0

(1− τ)fy(x
′β̃(τ)− z)dzk−1 +

∫ ∞

0

τfy(x
′β̃(τ) + z)dzk−1

))

= kE

(
xx′

(∫ ∞

0

(1− τ)fε

(
x′(β̃(τ)− β)− z

1 + x′ γ0√
T

)
1

1 + x γ0√
T

dzk−1

+

∫ ∞

0

τfε

(
x′(β̃(τ)− β) + z

1 + x′ γ0√
T

) 1

1 + x′ γ0√
T

dzk−1

))

∼ kE

(
xx′

(∫ ∞

0

(1− τ)fε(x
′(β̃(τ)− β)− z)dzk−1 +

∫ ∞

0

τfε(x
′(β̃(τ)− β) + z)dzk−1

))

= kE

(
xx′

(∫ ∞

0

(1− τ)fε(qε(τ)− z)dzk−1 +

∫ ∞

0

τfε(qε(τ) + z)dzk−1

))
,

where the ‘∼’ above is obtained by the dominated convergence theorem as T → ∞. Note
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that, as k → 1,

∫ ∞

0

((1− τ)fε(qε(τ)− z) + τfε(qε(τ) + z))dzk−1

= ((1− τ)fε(qε(τ)− z) + τfε(qε(τ) + z))zk−1|∞0
−

∫ ∞

0

zk−1d((1− τ)fε(qε(τ)− z) + τfε(qε(τ) + z))

= −
∫ ∞

0

zk−1d((1− τ)fε(qε(τ)− z) + τfε(qε(τ) + z))

→ −
∫ ∞

0

d((1− τ)fε(qε(τ)− z) + τfε(qε(τ) + z))

= fε(qε(τ)),

where the second equality is due to Assumption 7, and the ‘→’ is due to Assumption

8 and the dominated convergence theorem. So we have that D̃ → D̄ as k → 1 hence

∂λT (β̇(τ))/∂β → D̄. As k → 1,

Ṽjk → E(ϕτj
(u(τj))ϕτk

(u(τk))xx′)

= E(xx′E((−1)I(y−x′β̃(τj)<0)|τj − I(y − x′β̃(τj) < 0)|
(−1)I(y−x′β̃(τk)<0)|τk − I(y − x′β̃(τk) < 0)||x))

= E(xx′E((−1)I(ε<qε(τj))|τj − I(ε < qε(τj))|
(−1)I(ε<qε(τk))|τk − I(ε < qε(τk))|))

= (min(τj, τk)− τjτk)E(xx′) = V̄jk.

Assumption 3 and the dominated convergence theorem yield that

lim
k→1

−
√

TλT (β̃(τ)) =
√

TET ((−1)I(y−x′β̃(τ)<0)|τ − I(y − x′β̃(τ) < 0)|x). (32)

Letting γ := γ0√
T
, a mean value expansion of the right-hand side of (32) around zero shows
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that it can be written as, γ̃ is the mean value,

√
TE((−1)I(y−x′β̃(τ)<0)|τ − I(y − x′β̃(τ) < 0)|x)

+
√

T
∂(

∫
X×Y

(−1)I(y−x′β̃(τ)<0)|τ − I(y − x′β̃(τ) < 0)|fε(
y−x′β
1+x′γ ) g(x)

1+x′γ dydµx)

∂γ

∣∣∣∣∣
γ=γ̃

( γ0√
T

)

=
∂(

∫
X×Y

(−1)I(y−x′β̃(τ)<0)|τ − I(y − x′β̃(τ) < 0)|fε(
y−x′β
1+x′γ ) g(x)

1+x′γ dydµx)

∂γ

∣∣∣∣∣
γ=γ̃

γ0. (33)

Furthermore,

∂(
∫

X×Y
(−1)I(y−x′β̃(τ)<0)|τ − I(y − x′β̃(τ) < 0)|fε(

y−x′β
1+x′γ ) g(x)

1+x′γ dydµx)

∂γ

∣∣∣∣∣
γ=γ̃

=

∫

X×Y

(−1)I(y−x′β̃(τ)<0)|τ − I(y − x′β̃(τ) < 0)|
(
− f ′ε

(y − x′β
1 + x′γ̃

) y − x′β
(1 + x′γ̃)3

xx′ − fε

(y − x′β
1 + x′γ̃

) 1

(1 + x′γ̃)2
xx′

)
g(x)dydµx

= E

(
xx′

∫ ∞

−∞
(−1)I(y−x′β̃(τ)<0)|τ − I(y − x′β̃(τ) < 0)|

(
− f ′ε

(y − x′β
1 + x′γ̃

) y − x′β
(1 + x′γ̃)3

− fε

(y − x′β
1 + x′γ̃

) 1

(1 + x′γ̃)2

)
dy

)

=: E(xx′(I1 + I2)). (34)
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We have that

lim
T→∞

I1 =

∫ ∞

−∞
(−1)1+I(y−x′β̃(τ)<0)|τ − I(y − x′β̃(τ) < 0)|f ′ε(y − x′β)(y − x′β)dy

=

∫ x′β̃(τ)

−∞
(1− τ)f ′ε(y − x′β)(y − x′β)dy −

∫ ∞

x′β̃(τ)

τf ′ε(y − x′β)(y − x′β)dy

=

∫ qε(τ)

−∞
(1− τ)f ′ε(y)ydy −

∫ ∞

qε(τ)

τf ′ε(y)ydy

=

∫ qε(τ)

−∞
(1− τ)ydfε(y)−

∫ ∞

qε(τ)

τydfε(y)

= (1− τ)yfε(y)|qε(τ)
−∞ − (1− τ)

∫ qε(τ)

−∞
fε(y)dy − τyfε(y)|∞qε(τ) +

∫ ∞

qε(τ)

τfε(y)dy

= qε(τ)fε(qε(τ))−
∫ qε(τ)

−∞
fε(y)dy + τ, (35)

and

lim
T→∞

I2 =

∫ ∞

−∞
(−1)1+I(y−x′β̃(τ)<0)|τ − I(y − x′β̃(τ) < 0)|fε(y − x′β)dy

=

∫ qε(τ)

−∞
(1− τ)fε(y)dy −

∫ ∞

qε(τ)

τfε(y)dy =

∫ qε(τ)

−∞
fε(y)dy − τ. (36)

According the dominated convergence theorem, (32)-(36) deduce

lim
T→∞

lim
k→1

−
√

Tλ(β̃(τ)) = γ0qε(τ)fε(qε(τ))E(xx′).

According to (31) and ∂λT (β̇(τ))/∂β → D̄, as k → 1, we have that the expectation of
√

T (β̂(τ)− β̃(τ)) converges to γ0qε(τ), i.e., D̃−1K̃γ0 → K̄. ¤
Proof of Theorem 4.1. First we need to prove the asymptotic normality of η̂, and

the consistency of the related covariance matrix estimator like in Theorem 3.3. Then

the noncentral chi-square asymptotic distribution of TS follows naturally. It is sufficient
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to verify that conditions in Theorem 3.2 and Theorem 3.3 are satisfied. Denote I ≡
(−1/2, 1/2), and write, for ς in I,

1

1 + ς
fε

( u

1 + ς

)
≤ 2fε

( u

1 + ς

)
≤ 2C/(1 + |2u

3
|k+3+c).

There exists a 2p-dimension open neighborhood of zero, U0, such that, for ξ in U0, x′tξTh +

I(εt > 0)x′tξTs is an element of I with probability one. Noting that

f(y|x, ξ) =
1

1 + x′tξTh + I(εt > 0)x′tξTs

fε

(
y − x′β0

1 + x′tξTh + I(εt > 0)x′tξTs

)
,

the continuity of f(y|x, ξ) in y and ξ holds based the continuity of fε. When taking

θ(z) = 2C/(1+(2|y−x′β0|/3)k+3+c), we can show that domination conditions of Assumption

3 hold. The first inequality in Assumption 4 is satisfied if εt is not equal to∞ almost surely;

the last inequality is satisfied using the simple calculation. In the following, we prove the

continuous differentiability of E(xϕτ (y − x′β(τ))|ξ) and calculate noncentrality parameter

of the noncentral chi-squared distribution. The parameter in general can be written as

(HD−1Kζ)′(HD−1V D−1H ′)−1HD−1Kζ. (37)

Note that, for ξ := (ξ′Th, ξ
′
Ts)

′ = 0, u(τ) = yt − x′tβ̃(τ) = ut − µ(τ) is dependent of xt.

We have Dj = l(τj)L, hence D = diag(l(τ1), . . . , l(τn)) ⊗ L, and V = (c(τj, τk))n×n ⊗ L.

Using the matrix inversion law of Kronecker products, we have D−1V D−1 = Ω ⊗ L−1.
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Furthermore, E(−ϕ(u(τ))xt|ξ) = E(xtE(−ϕ(u(τ))|xt, ξ)), and, for µ(τ) > 0,

E(−ϕ(u(τ))|xt, ξ) = E((−1)1+I(ut<µ(τ))k|τ − I(ut < µ(τ))||ut − µ(τ)|k−1|xt, ξ)

= (1− τ)

∫ 0

−∞
k
(µ(τ)− r)k−1

ςth
fε

( r

ςth

)
dr

+(1− τ)

∫ µ(τ)

0

k
(µ(τ)− r)k−1

ςtp
fε

( r

ςtp

)
dr

−τ

∫ ∞

µ(τ)

k
(r − µ(τ))k−1

ςtp
fε

( r

ςtp

)
dr

= (1− τ)

∫ 0

−∞
k(µ(τ)− ςthr)

k−1fε(r)dr

+(1− τ)

∫ µ(τ)/ςtp

0

k(µ(τ)− ςtpr)
k−1fε(r)dr

−τ

∫ ∞

µ(τ)/ςtp

k(ςtpr − µ(τ))k−1fε(r)dr,

where ςth = 1 + x′tξTh, and ςtp = 1 + x′tξTh + x′tξTs. We have

∂(E(−ϕ(u(τ))|xt, 0))/∂ξ = (υ1(τ), υ2(τ))′ ⊗ xt,

which can be dominated by an integrable function, thus

∂(E(−ϕ(u(τ))xt|0))/∂ξ = (υ1(τ), υ2(τ))′ ⊗ L. (38)

For µ(τ) < 0, we still have the result of (38) by the similar argument. So the continuous dif-

ferentiability in Assumption 2 has been examined. We have D−1
j Kj = (υ1(τj)/l(τj), υ2(τj)/l(τj))⊗

Ip, and obtain (14) in Theorem 4.1 according to (37). ¤
Proof of Lemma 1. By Condition A, we have that Qτ,k(yt − x′tb)ft(yt|xt)gt(xt) is con-

tinuous in b ∈ Θ uniformly in t almost surely. The definition of Qτ,k(yt − x′tb) makes sure
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that it is measurable for each t and each b ∈ Θ. Condition B yields that

∫
sup

t≥1,b∈Θ
|Qτ,k(yt − x′tb)|ft(yt|xt)gt(xt)dMz,t

=

∫
sup

t≥1,b∈Θ
|τ − I(yt − x′tb)||yt − x′tb|kft(yt|xt)gt(xt)dMz,t

≤ c

∫
sup

t≥1,b∈Θ
(1 + ‖b‖)|zt|kft(yt|xt)gt(xt)dMz,t < ∞.

Define Q∗
τ,k(zt, b, r) := sup{Qτ,k(yt − x′tb̃), b̃ ∈ δ(b, r)} and Q∗τ,k(zt, b, r) := inf{Qτ,k(yt −

x′tb̃), b̃ ∈ δ(b, r)}, with δ(b, r) = {b̃ ∈ Θ, ‖b̃ − b‖ < δ}. We have {Q∗
τ,k(zt, b, r) ≤ y} =

{max{Qτ,k(yt − x′tb̃), b̃ ∈ δ(b, r) ∩ Qp} ≤ y}, Qp being the space of p-dimension rational

numbers, as Qτ,k(yt − x′tb̃) is the continuous function of b for any zt. Thus Q∗
τ,k(zt, b, r)

is a random variable and so do Q∗τ,k(zt, b, r) using the same argument. These show that

Assumptions A1, A2 and A6 in Andrews (1987) are satisfied, and then using his Corollary

3 can complete our proof. ¤
Proof of Lemma 2. Write M(b, τ, T ) := 1

T

∑T
t=1 E(Qτ,k(yt−x′tb)) and gt(b) := ∂E(Qτ,k(yt−

x′tb))∂b. Obviously, there are positive constants c and d such that gt(b) ≤ (c + d|b|)|zt|.
Hence gt(b) is controlled by an integrable function on a neighborhood of any b according

to Condition B. So we can calculate the derivative of gt(b) as follows.

∂M(b, τ, T )/∂b = =
k

T

T∑
t=1

E

(
xt

(
− τ

∫ ∞

x′tb
(y − x′tb)

k−1ft(y|xt)dy

+(1− τ)

∫ x′tb

−∞
(x′tb− y)k−1ft(y|xt)dy

))

=: GT (b).

Functions
∫∞

x′tb
(y − x′tb)

k−1ft(y|xt)dy and
∫ x′tb
−∞(x′tb − y)k−1ft(y|xt)dy are continuously dif-

ferentiable in b and their derivatives are controlled uniformly in xt and in b by integrable

52



functions. Thus the derivative of GT (b) is

∂GT (b)/∂b = =
k(k − 1)

T

T∑
t=1

E

(
xtx

′
t

(
τ

∫ ∞

x′tb
(y − x′tb)

k−2ft(y|xt)dy

+(1− τ)

∫ x′tb

−∞
(x′tb− y)k−2ft(y|xt)dy

))
. (39)

Condition C and (39) make sure that there is a positive constant c such that

∂GT (b)/∂b− ck(k − 1)
1

T

T∑
t=1

E(xtx
′
t)

is positive semi-definite for b ∈ B1 (a compact subset of Rp) and thus ∂GT (b)/∂b is positive

definite by Condition E for the same b. So, for b, b̃ ∈ B1,

M(b, τ, T )−M(b̃, τ, T ) = GT (b̃)′(b− b̃) + (b− b̃)′(∂GT (ḃ)/∂b)(b− b̃)

≥ GT (b̃)′(b− b̃) + mep|b− b̃|2, (40)

where ḃ is the mean value and me the minimum eigenvalue of ∂GT (ḃ)/∂b. The function

M(b, τ, T ) is convex as E(Qτ,k(yt − x′tb)) is convex with respect to b, and converges to

infinity as |b| → ∞. So there is a global minimum β̃(k, τ) and GT (β̃(k, τ)) = 0. Letting

b̃ = β̃(k, τ) and using reduction to absurdity (40) shows that the global minimum is also

unique one over Rp. ¤
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