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Abstract 

We present in this paper a mixed Lienard type equation of physical importance. 

The equation can exhibit sinusoidal periodic solution. As a result, it can be used 

to model harmonic and isochronous periodic oscillations of dynamical systems. 
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Introduction 

As many dynamical systems exhibit periodic behavior, the problem of finding 

periodic solutions for nonlinear differential equations generated an attractive 

research field interesting pure and applied mathematics and physics. These 

dynamical systems in physics have been often described by conservative 

Lienard type equations 

   0)( =+ xhx&&                                                                                                         (1) 

where the overdot stands for derivative with respect to time and )(xh  is a 

nonlinear function of x . One of the most widely used Lienard type equation, is 

the so-called conservative cubic Duffing equation where 3)( xxxh βα += . Such 

an equation can model soft and hard nonlinear behavior of spring arising in 

several material systems. In this way the cubic Duffing equation has been used 

extensively to describe amplitude-dependent frequency feature of nonlinear 

dynamical systems, nonlinear resonances and other phenomena that could not be 

explained by the linear harmonic oscillator equation obtained for 0=β [1]. The 

conservative cubic Duffing equation, as such, has been mentioned for a long 

time as a conservative nonlinear oscillator. In this case, such an oscillator can 

only have bounded periodic solutions. However, in some recently papers [2, 3] 

the authors have shown that the cubic Duffing equation can exhibit unbounded 
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periodic solutions so that this equation is, in fact, a pseudo-oscillator [2, 3]. 

Another shortcoming in modeling periodic oscillations of mechanical systems is 

that the conservative cubic Duffing equation does not contain nonlinear 

dissipative terms characterizing these systems. It is known that, real world 

mechanical systems are characterized simultaneously by inertial, geometrical 

and damping nonlinearity properties [4-7]. As shown in [4-7] using the Bauer 

rheodynamics theory, an adequate and satisfactory second-order differential 

equation to describe mechanical vibrating systems is of the form of the mixed 

Lienard type equation 

0)()()( 2 =+++ xhxxxxux &&&& ϑ                                                                                  (2) 

where ),(),( xxu ϑ  and )(xh are arbitrary functions of .x  As such, the mathematical 

problem to solve is to find the functions ),(),( xxu ϑ  and )(xh that ensure periodic 

solutions of the equation (2). In this perspective several authors studied the 

equation (2) from different approaches [8-11]. In [8] the authors used nonlocal 

transformation to investigate the equation (2). Using the modified Prelle-Singer 

approach the authors in [9] studied the equation (2) to give some integrable 

cases in connection with two dimensional Lotka-Volterra system. Tiwari and 

coworkers investigated the Lie point symmetries of the equation (2) in [10]. In 

[11] the authors studied the inverse problem of the mixed Lienard type equation 

(2). However, no sinusoidal periodic solution has been exhibited by these 

authors [8-11] in their studies in the context of the equation (2). As can be seen 

from the above, the simultaneous presence of several types of nonlinearity 

makes very difficult the possibility to find exact sinusoidal or periodic solutions 

of an equation of type (2). Despite this complexity of equations of type (2), 

Adjaï and coworkers [12] succeeded to identify the functions )(xu , )(xϑ  and 

)(xh  that secure exact and general periodic solution to the equation (2) for the 

first time. The authors [12] in the context of the selected functions )(xu , )(xϑ  

and )(xh , obtained exact sinusoidal and isochronous periodic solutions for the 

equation (2). In this perspective the question to ask is whether there is another 

choice of functions )(xu , )(xϑ  and )(xh  ensuring the existence of sinusoidal or 

periodic solutions of the equation (2). In the present work, the objective is to 

show the existence of other expressions of functions )(xu , )(xϑ  and )(xh  that 

ensure exact and sinusoidal periodic solutions for the equation (2). We review in 

this regard the theory of integrable mixed Lienard type differential equations 

introduced by Monsia and coworkers [13-16] recently in the literature (section 



3 

 

2) and exhibit the sinusoidal periodic solution of the equation (2) according to 

the appropriate selected functions )(xu , )(xϑ  and )(xh  (section 3). We finally 

present a conclusion for the work. 

2- Theory of integrable mixed Lienard type equations 

Let us briefly review the theory of integrable mixed Lienard type equations 

introduced recently in the literature by Monsia and his group [13-16]. Under 

differentiation with respect to time, the first integral 

bxxfaxxg =+ l
& )()(                                                                                           (3) 

where l , b  and a  are constants, )(xg   and )(xf  are functions of x , and the dot 

over a symbol stands for derivative with respect to time, allows one to secure the 

class of Lienard type equations 
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where prime means differentiation with respect to the variable x . Substituting 

the equation (3) into the fourth term of the equation (4) yields the class of mixed 

Lienard type equations 
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Using the equation (5), the substitution of  lxxg =)( , secures the class of mixed 

Lienard type equations 
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Now, making 0=b , yields the mixed Lienard type equation 
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with the corresponding first integral 

 0)()( =+ l
& xxfaxxg                                                                                              (8) 

that is 

0)( =+ xfax&                                                                                                  (9) 
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where 0)( ≠= lxxg . From the equation (9) one can ensure the general solution of 

the mixed Lienard type equation (7) by the quadrature 

  ( ) ∫=+−
)(xf

dx
Kta                                                                                         (10) 

where K  is a constant of integration. As can be seen there are several 

expressions of )(xf  to ensure explicit and general periodic solutions of the 

equation (7). However, there is only an expression of 22)( xxf −= β , to obtain 

immediately the desired sinusoidal periodic solution of the equation (7). Thus, 

using 22)( xxf −= β , the equation (7) becomes 
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where β  is an arbitrary parameter, such that 
x

xu
l

=)( , 
x

x
ax

22
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−

=
β

ϑ l  and 

xaxh 2)( = . In this context, after integrating the integral in the equation (10) one 

can obtain 

  ( )Kta
x

+−=






−

β
1sin                                                                                         (12) 

from which the exact and sinusoidal periodic solutions of (11) can be expressed 

as 

 ( )[ ]Ktatx +−= sin)( β                                                                                       (13) 

where  0<β . The solution (13) is identical to the solution of the linear harmonic 

oscillator equation 

  02 =+ xax&&                                                                                                    (14) 

where the amplitude of oscillations is taken equal to 0>β− . As such, the 

equation (11) has the same exact sinusoidal periodic solution with the mixed 

Lienard type equation solved in [12] while the two equations are quite different. 

Conclusion 

We present a remarkable mixed Lienard type equation in this paper. We have 

successfully shown that this equation can exhibit sinusoidal periodic solution. In 
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this way, it can be used to model harmonic and isochronous oscillations of 

nonlinear oscillators. 
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