
If r is the dimension of the direction set, then the computing time is o(r) times the work1

needed to evaluate the gradient.
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Abstract. Hamiltonian Markov Chain Monte Carlo is one of the established methods to
conduct a Bayesian simulation. This method uses evaluations of the probability density
and its gradient at particular variables. This present paper describes how to incorporate
information from second derivatives that relate to a direction set, and describes how to
modify the simulation accordingly.

1. Introduction

Hamiltonian Markov Chain Monte Carlo (MCMC) is a Bayesian simulation method that
barrows a track mapping technique for dynamical systems that employs the
Hamiltonian (see Neal 2011). This method uses the gradient of the log of a posterior
distribution that is made to correspond to a potential energy function, and maps a path
that is modulated by a momentum vector that corresponds to a kinetic energy function.
That is, a Bayesian simulation is made to follow Newtonian dynamics, and at the end of
the track is a potential simulant that is either accepted or rejected according to a
protocol for the Metropolis algorithm. The connection between Bayesian statistics and
dynamical systems looks abstractly stilted, upon first appraisal. However, it’s a well
justified simulation method to sample from a posterior distribution. 

The Hamiltonian simulation only needs the log of the posterior distribution (ignoring the
constant term), and its gradient, that are evaluated at particular variables. Second
derivatives are not needed, but second derivatives can be evaluated by forward and
backward differentiation (Griewank 2000). If n is the number of parameters, then
calculating all second derivatives requires an order n, or o(n), times the computing time
needed to evaluate the gradient. Given that some of the second derivatives can be
evaluated cheaply in a direction set , a method that incorporates some second1

derivatives in a Hamiltonian simulation is justified and is the subject of the present
paper. 

Section 2 describes some definitions that follow Neal (2011). Section 3 describes the
differential equations for the Hamiltonian dynamic that is modified to include second
derivatives for a direction set. Section 4 describes how to solve the differential
equations, and concluding remarks are made in Section 5.

Understand that known implementations of Hamiltonian simulation already employ
analytical solutions like those in Section 4, or use the log-Gaussian distribution to
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approximate the potential energy function where by implication second derivatives are
used already (see Neal 2011, Section 5.5.1.2). However, what is minimally original in
the present paper is the use of second derivatives representing a direction set that
changes dynamically within the confines of Hamiltonian MCMC. The present paper
establishes the feasibility of a Hamiltonian simulation that uses some second
derivatives that are calculated for a general probability density while using the efficient
method of backward differentiation.

2. Definitions

The momentum vector, denoted by p, is an n×1 vector of momentums. The position
vector, denoted by q, is also an n×1 vector but contains positions that are matched one-
to-one with the elements of p. The matching of p to q is enforced by the Hamiltonian
dynamic, which will be described shortly.

The kinetic energy function is denoted by K(p)=(2m) ×p I p, where m is the mass-1 T

constant. There are more general versions of K(p) that can be used, such as  
K(p)=½p M p where M is a symmetric and positive definite mass matrix, but theT -1

present discussion is limited to the simple version.

The potential energy function is denoted by U(q) and represents the negative log of a
nominated probability density function, where the elements of the position vector are
taken as the random variables.

What will be taken as known, and computable, about U(q) will be first and some second

kderivatives that are evaluating at q=q , representing a step k. So the gradient of the 
potential energy function, denoted by LU(q), is not known as a free function of q, its
only known as a constant vector at step k but a constant that can change for different
steps. Likewise, the selected second derivatives are only available as calculated
quantities that are evaluated at step k, and other steps. It’s the function LU(q) that
feeds into the Hamiltonian system that determines the dynamic, but these impacts must
be approximated using known quantities rather than the actual gradient function, and
approximated as part of the chosen method of discretization.

3. The Hamiltonian Dynamic

The time driven Hamiltonian dynamic is determined by the following system of
differential equations (see Neal, 2011, for more details), given initial conditions.



k k k kIf HW = H W and H is symmetric with rank r, then H = H W[W H W] W H .2 T -1 T

In Section 3.4 of Smith (2000).3
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k kGiven values of p and q at step k, denoting these by p  and q , the challenge remains

k+1 k+1to use the above dynamic to approximate p  and q  for some time corresponding to

k+1 kt =t +,. With LU(q) treated as a constant at step k, the approximation might take the
standard path and move to discretization by using Euler’s method with leapfrog
adjustments. However, the method considered in the present discussion will investigate
approximating LU(q) by a linear function representing first and second derivatives,
leading to a possible analytical solution to the Hamiltonian dynamic. With analytical

k+1 k+1solution in hand, p  and q  are computed for step k+1 thus finishing step k and
moving on to repeat the process.

The linear approximation of LU(q) might involve Taylor’s expansion, while using all first
and second derivatives, and this option is presented below.

kThis approximation should work well in a small neighborhood around q . However,
evaluating all n(n+1)/2 second derivative might prove expensive, and so a less
demanding linear approximation can be sough that involves a direction set W,
representing an n×r matrix with r<n. The columns of W define a basis that span over a
vector space that represent the permitted directions where information on second
derivatives is to be employed. Restricting an approximate Hessian matrix  to be rank r2

forces the linear approximation to become the following.

 

k kBoth the gradient LU(q ) and H W can be evaluated efficiently by backward

kdifferentiation. The evaluation of H W only involves r passes through the recursion list
for backward differentiation; simply initialize the q-array (at step-1)  with the columns of3

kW in turn, and out (in the s-array at step 4) will come the particular column of H W. A
recommended assignment of W is presented in Section 5, where r=2 and makes the
calculations frugal.

The Hamiltonian dynamic can now all be represented by the following system of non-
homogeneous linear differential equations, of which a solution must be sought.
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Solutions follow in the wake of a singular value decomposition that is described in
Section 4.

The Hamiltonian MCMC starts with momentums selected from a multivariate normal
distribution with mean vector null and variance matrix m×I. The position vector, q, is
first initialized making it and p the “current value” of x. These starting points are used to
move down the path defined by the Hamiltonian dynamic, several iterative steps. The
final value for x at the end of the path is either selected or rejected, according to an
acceptance/rejection rule based on the Metropolis method. If the value is rejected, the
current value (that initialized the path) is added to the simulation results. Otherwise the
new value at the end of the path is taken as the current value and added to the
simulation results. Lastly, the algorithm returns to the start by selecting new
momentums (keeping the current value for spatial coordinates q), and the Hamiltonian
dynamic is repeated making a new path. It’s the collected values for q, ignoring p, that
represent samples from the posterior distribution.

4. Efficient Calculation of the Exact Solution

An exact solution can be calculated for the differential equations (1). Understand that
“exactness” is not intended to imply that the Hamiltonian dynamic is a perfect
calculation because the gradient vector, LU(q), is still approximated by a linear
equation. Its only that the differential equations have an analytical solution that

k+1 kgenerates x  from the starting values given by x , which is a small step represented by

k+1 kthe time differential , = t  - t  . The analytic solutions for different k are used as part of
a discretization that maps out the Hamiltonian dynamic as an approximation.

Equation (1) represents two partitions, of which the top partition is the following.

(2)
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Both sides of (2) can be differentiated with respect to t to give these equations,

,

and these can now be plugged back into the bottom partition of (1) to find the reduced
differential equations where p has been removed:

(3)

2 21The arrays a  and B  represent partitions of a and B in (1), and going forward the

2 21subscripts will be dropped to simplify notation; i.e., a Z a , B Z B .

The equations (3) represent a system of non-homogeneous second-order differential
equations, coming with standard solutions. What is needed to extrapolate these

k+1 k kequations to step k+1, to determine q , are the initial values at k, namely q  and p /m

k k(or q N=Mq/Mt evaluated at q ). 

The calculation proceeds by diagonalizing the symmetric matrix B=PDP  whereT

P P=PP =I and D is a diagonal matrix, which in principle can be very difficult.T T

Fortunately, because B is greatly reduced rank (r<<n) and has special structure, its
singular value decomposition can be computed very efficiently.

k kLet L be the Cholesky decomposition of the r×r matrix, W H W, i.e., LL =W H W.T T T

kCompute Y where Y =L W H , and noting that the inversion of L is avoided by usingT -1  T

forward-substitution. Note that YY =B. The rectangular n×r matrix, Y, is now subjectedT

to the QR-algorithm, and because r<<n the method based on Householder
transformations is likely preferred. This produces the n×n orthogonal matrix Q, where
Q Q=QQ =I, and the n×r rectangular matrix R, such that Y=QR, and where R has theT T

special structure indicated by (4).

(4)

In (4), V is define to be an upper triangular matrix, and everything below it in (4) is null.
The matrix Q is rarely formed explicitly, because its more efficient to form it implicitly as
a computation involving a series of rank-1 Householder transformations.

Given that B = QRR Q , the QR algorithm does most of the work of diagonalizing BT T



Actually, almost completely zeroed out.4

With (r-1)(r-2) Givens rotations an upper triangular matrix may transform into a bi-5

diagonal matrix. 

White space taken as zeroed out.6
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because RR  would be diagonal  except for the small r×r matrix, VV , located at theT 4 T

supper left corner. The last step is to find the orthogonal matrix Q , and the diagonal

s s s smatrix D , where Q D Q =VV . Because r is small, any proven method will beT T

applicable with only minor computing cost. However, VV  does not need to be explicitlyT

formed, because V can be diagonalized directly by the pre-multiplications and post-
multiplications that represent Givens rotations that lead to a bi-diagonal form  and5

ultimately diagonalization, and this is one tactic offered by the singular value
decomposition that’s applied to the rectangular matrix Y (e.g., Golub and Van Loan,
1996, Sections 5.4.4 and 5.4.5). Regardless of which methods are used, because r is
small the calculations are feasible. The sought diagonalization of B, where B=PDP , isT

now provided by the following specifications .6

By making the transformation of variables, q*=P q, equation (3) becomes (5).T

(5)

The equation (5) can now be solved for the i-th entry of the vector q*, one item at a

k k k k k+1 k+1time. Given q * and q *N (or P q N), at time t , updates q * and q *N are derived at timeT

k+1 k it  = t  + ,. These solutions are described in Figure 1, where {v}  is a function that

ipoints to the i-th entry of a vector v, or where {D}  is a function that points to the i-th

k+1 k+1diagonal of the diagonal matrix D. Once q * and q *N are fully estimated, they are

k+1 k+1 k+1 k+1transformed into q  = Pq * and q N=Pq *N, completing step k and preparing the
way for step k+1.
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Figure 1. Solutions to Differential Scalar Equation; for i=1, 2, ... n.

Equation   

                                                  

Case D=0

                                                    

Case D>0
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Figure 1 continued.

Case D<0
                                     

Conclusion

                                                  

5. Conclusions

Up to now, little has been offered on how to select directions to be placed in the matrix
W that lead to second directional derivatives. At step k, the most prominent directions

kthat impact the Hamiltonian dynamic are the gradient direction, LU(q ), and the

kmomentum direction, or g N. Both of these directions will be available prior to the
calculation of second derivatives, and hence its recommended to place these directions
in W.

In the case that K(p)=½p M p, rather than (2m) ×p I p, the system (1) that leads to (3)T -1 -1 T

can be transformed by introducing the Cholesky decomposition of M, i.e., where LL =MT

n×nfor L  lower triangular. With the change of variables, q** = L q, equation (3) becomes:T

(6)

To solve (6), the effort turns into diagonalizing the matrix L B L  , and may involve the-1 T -1

ksingular value decomposition of the rectangular matrix L H WL , and otherwise-1 T -1

n×n r×rfollowing the methods in Section 4. Note than L  and L  are different matrices.



Keeping one set unchanged and allowing the other set to change, depending on half-step.7

With the step-dependent vector a and matrices P and D available in reverse order (with8

checkpointing), where step k returns from its high value back to 1, the functions of Figure 1

k+1 k+1 k kbecome available where q  and -q ' map in reverse back to q  and -q '. With reversibility, q
and q' at the end of the Hamiltonian path return to their initial values when q' is negated (before
and after).
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Without experience, its an open question if using information on some second
derivatives compares well with the more established leapfrog method (see Neal 2011,
Section 5.2.3.3) that uses only first derivatives. Nevertheless, it may be possible to
adapt the new approach to make leapfrog-like steps by some unexplored method, e.g.,

k+1 k+1by introducing half-steps where q and q N are updated in turn, or by alternating the

k+1 i k+1 iupdates  for {q *}  and {q *N}  but only for all i where D=0 (refer to Figure 1).7

However, it is worth noting that all three transformations in Figure 1 are volume
preserving, and represent using an approximate Hamiltonian as permitted by Neal
(2011, Section 5.5.5), and therefore its unclear if any leapfrog-like modification is
warranted. Indeed, all the proposed calculations in Section 4 are volume preserving and
reversible . In any regard, the new method is just a tool that is available, and can be8

adapted for use with all the other established tools.

Lastly, there are alternative ways to approximate a Hessian matrix, H, that lead to linear
equations that may substitute for Taylor’s expansion, and also possibly find utility in

kHamiltonian MCMC. If as before, HW=H W, but additionally H=A+ZZ , for a symmetricT

matrix A that is nominated, and for some n×r matrix Z that may have columns of entirely

kimaginary numbers, then provided that W H W - W AW is non-singular the followingT T

result holds.

When A is a null matrix, the result generates what was already described in footnote 2.
If A="I, the special structure of H permits it rapid diagonalization, though the details are
more involved. Perhaps with an appropriate selection of the parameter ", this may find
application with Hamiltonian MCMC where the matrix H is now non-singular, or close to
it. It is worth noting that both the Hessian, and its inverse, can be approximated this way
given side conditions that relate second derivatives to a direction set. Such
approximations for the inverse Hessian matrix find use in quasi-Newton iteration that’s
part of optimization.
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