
On h-open sets and h-continuous functions

Fadhil Hussein Abbas

ORCID: https://orcid.org/0000-0002-2308-5292

fadhilhaman@gmail.com

Johannes Kepler University, Linz-Austria

MSC code: 54A40

January 25, 2021

Abstract

In this paper, we introduce a new class of open sets in a topo-
logical space (X, τ) called h-open sets. Also, introduce and study
topological properties of h-interior, h-closure, h-limit points, h-derived,
h-interior points, h-border, h-frontier and h-exterior by using the con-
cept of h-open sets. Moreover introduce the notion of h-continuous
functions, h-open functions, h-irresolute functions, h-totally continu-
ous functions, h-contra-continuous functions, h-homeomorphism and
investigate some properties of these functions and study some proper-
ties, remarks related to them.

Keywords: h-open sets; h-interior; h-closure; h-limit points; h-border;
h-frontier; h-exterior; h-continuous functions;h-open functions; h-irresolute
functions; h-homeomorphism; h-totally continuous functions; h-contra-continuous
functions.

1 Introduction and Preliminaries

The concept of open sets is an important concepts in topology and its appli-
cations. Levine [7] introduced semi-open set and semicontinuous function,
Njastad [8] introduced α-open set, Askander [15] introduced iopen set, i-
irresolute mapping and i-homeomorphism, Biswas [6] introduced semi-open
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functions, Mashhour, Hasanein, and El-Deeb [1] introduced α-continuous
and α-open mappings, Noiri [16] introduced totally (perfectly) continuous
function, Crossley [11] introduced irresolute function, Maheshwari [14] in-
troduced α-irresolute mapping, Beceren [13] introduced semi α-irresolute
functions, Donchev [4] introduced contra continuous functions, Donchev and
Noiri [5] introduced contra semi continuous functions, Jafari and Noiri [12]
introduced Contra-α-continuous functions, Ekici and Caldas [3] introduced
clopen-T1, Staum [10] introduced, ultra hausdorff, ultra normal, clopen reg-
ular and clopen normal, Ellis [9] introduced ultra regular, Maheshwari [13]
introduced s-normal space, Arhangel [2] introduced α-normal space.
For a subset A of a topological space (X, τ), the closure of A, the interior of A
with respect to τ are denoted by Cl(A) and Int(A) respectively. The comple-
ment of A is denoted by Ac. A subset A of a topological space (X, τ) is said
to be clopen set, if A is open and closed. This work consists of two sections.
In section one we will introduce and study a new class of open sets which is
called h-open set and introduce the notions of h-interior, h-closure, h-limit
points, h-derived, h-interior points, h-border, h-frontier and h-exterior by
using the concept of h-open sets, and study their topological properties.
In section two we will present the notion of h-continuous functions, h-open
functions, h-irresolute functions, h-totally continuous functions, h-contra-
continuous functions, h-homeomorphism and investigate some properties of
these functions and study some properties, remarks related to them.

Definition 1.1. A function f : (X, τ) −→ (Y, σ) is said to be

1. totally-continuous if f−1(U) is clopen set in X for every open set U in
Y.

2. contra-continuous if f−1(U) is closed set in X for every open set U in
Y.

2 h-open sets

In this section, we introduce a new class of open sets which is called h-
open set and introduce the notions of h-interior, h-closure, h-limit points,
h-derived, h-interior points, h-border, h-frontier and h-exterior by using the
concept of h-open sets, and study their topological properties.

Definition 2.1. A subset A of the topological space (X, τ) is said to be h-
open set if for every non-empty set U in X, U 6= X and U ∈ τ , such that
A ⊆ Int(A ∪ U). The complement of the h-open set is called h-closed. We
denote the family of all h-open sets of a topological space (X, τ) by τh.
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Example 2.1. Let X = {a, b, c, d}, τ = {Ø, X, {a}, {a, b}, {a, c}, {a, b, c}}.
Then τh = {Ø, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {b, c, d}}.

Example 2.2. Let X = {a, b, c}, τ = {Ø, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}.
Then τh = {Ø, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}.

Remark 2.1. From Example.2.1, and Example.2.2. Note that τ ⊆ τh.

Theorem 2.1. Every open set in any topological space (X, τ) is h-open set.

Proof. Let (X, τ) be any topological space and let A ⊆ X be any open set.
Therefore, A = Int(A) ⊆ Int(A ∪ U) for every non-empty set U 6= X and
U ∈ τ . Thus, A is h-open set.

Remark 2.2. The converse of the Theorem.2.1, need not be true as shown
in the following example.

Example 2.3. In Example.2.1, {b}, {c}, {b, c} and {b, c, d} are h-open sets
but not open sets.

Theorem 2.2. Let (X, τ) be a topological space and let A, B be two h-open
sets. Then

1. A ∩B is h-open set.

2. A ∪B is h-open set.

Proof. 1) Let A and B be two h-open sets. Then from Definition.2.1, A ⊆
Int(A∪U) and B ⊆ Int(B∪U) for every non-empty set U 6= X, U ∈ τ . Then
A∪B ⊆ Int(A∪U)∪Int(B∪U) ⊆ Int((A∪U)∪(B∪U)) = Int((A∪B)∪U).
Therefore A ∪B is h-open set.
2) Let A and B be two h-open sets. Then from Definition.2.1, A ⊆ Int(A∪U)
and B ⊆ Int(B ∪ U) for every non-empty set U 6= X, U ∈ τ . Then
A ∩ B ⊆ Int(A ∪ U) ∩ Int(B ∪ U) = Int((A ∪ U) ∩ (B ∪ U)) = Int(((A ∪
U) ∩ B) ∪ ((A ∪ U) ∩ U)) ⊆ Int((A ∩ B) ∪ U). Therefore A ∩ B is h-open
set.

Definition 2.2. Let (X, τ) be a topological space and let A ⊆ X. The h-
interior of A is defined as the union of all h-open sets in X content in A,
and is denoted by Inth(A). It is clear that Inth(A) is h-open set for any
subset A of X.

Proposition 2.1. Let (X, τ) be a topological space and let A ⊆ B ⊆ X.
Then
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1. Inth(A) ⊆ Inth(B).

2. Inth(A) ⊆ A.

3. A is h-open if and only if A = Inth(A).

Definition 2.3. Let (X, τ) be a topological space and let A ⊆ X. The h-
closure of A is defined as the intersection of all h-closed sets in X containing
A, and is denoted by Clh(A). It is clear that Clh(A) is h-closed set for any
subset A of X.

Proposition 2.2. Let (X, τ) be a topological space and let A ⊆ B ⊆ X.
Then

1. Clh(A) ⊆ Clh(B).

2. A ⊆ Clh(A).

3. A is h-closed if and only if A = Clh(A).

Definition 2.4. Let (X, τ) be a topological space and let A ⊆ X. A point
x ∈ X is said to be h-limit point of A if it satisfies the following assertion:

(∀G ∈ τh)(x ∈ G ⇒ G ∩ (A\{x}) 6= Ø).

The set of all h-limit points of A is called the h-derived set of A and is
denoted by Dh(A).
Note that for a subset A of X, a point x ∈ X is not a h-limit point of A if and
only if there exists a h-open set G in X such that x ∈ G and G∩(A\{x}) = Ø
or, equivalently, x ∈ G and G ∩ A = Ø or G ∩ A = {x} or, equivalently,
x ∈ G and G ∩A ⊆ {x}.

Theorem 2.3. Let (X, τ) be a topological space and let A be a subset of X.
Then the following are equivalent

1. (∀G ∈ τh)(x ∈ G ⇒ A ∩G 6= Ø).

2. x ∈ Clh(A).

Proof. (1) ⇒(2) If x /∈ Clh(A), then there exists a h-closed set F such that
A ⊆ Fand x /∈ F . Hence G = X − F is a h-open set such that x ∈ G and
G ∩A = Ø. This is a contradiction, and hence (2) is valid.
(2) ⇒(1) Straightforward.

Theorem 2.4. Let (X, τ) be a topological space and let A ⊆ B ⊆ X. Then
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1. Clh(A) = A ∪Dh(A).

2. A is h-closed if and only if Dh(A) ⊆ A.

3. Dh(A) ⊆ Dh(B).

4. Dh(A) ⊆ D(A).

5. Clh(A) ⊆ Cl(A).

Proof. 1) Let x /∈ Clh(A). Then there exists a h-closed set F in X such that
A ⊆ F and x /∈ F . Hence G = X − F is a h-open set such that x ∈ G
and G ∩ A = Ø. Therefore x /∈ A and x /∈ Dh(A), then x /∈ A ∪ Dh(A).
Thus A∪Dh(A) ⊆ Clh(A). On the other hand, x /∈ A∪Dh(A) implies that
there exists a h-open set G in X such that x ∈ G and G ∩ A = Ø. Hence
F = X − G is a h-closed set in X such that A ⊆ F and x /∈ F . Hence
x /∈ Clh(A). Thus Clh(A) ⊆ A ∪ Dh(A). Therefore Clh(A) = A ∪ Dh(A).
For (2), (3), (4) and (5) the proof is easy.

Example 2.4. Let X = {a, b, c} with topology, τ = {Ø, X, {a}, {a, b}}.
Then we have the followings

1. τ ⊆ τh = {Ø, X, {a}, {b}, {a, b}, {b, c}}.

2. IfA = {a, c}, then D(A) = {c} and Dh(A) = Ø.

3. IfB = {a, b}, then D(B) = {b, c} and Dh(B) = {c}.

Theorem 2.5. Let τ1 and τ2 be topologies on X such that τh
1
⊆ τh

2
. For

any subset A of X, every h-limit point of A with respect to τ2 is a h-limit
point of A with respect to τ1.

Proof. Let x be a h-limit point of A with respect to τ2. Then G∩(A\{x}) 6=
Ø for every G ∈ τh

2
such that x ∈ G. But τh

1
⊆ τh

2
so, in particular,

G ∩ (A\{x}) 6= Ø for every G ∈ τh
1
such that x ∈ G. Hence x is a h-limit

point of A with respect to τ1.

Remark 2.3. The converse of the Theorem.2.5, need not be true as shown
in the following example.

Example 2.5. X = {a, b, c}, τ1 = {Ø, X, {a}} and τ2 = {Ø, X, {a}, {a, b}.
Then τh

1
= {Ø, X, {a}, {b, c} and τh

2
= {Ø, X, {a}, {b}, {a, b}, {a, c}, {b, c}.

Not that τh
1
⊆ τh

2
and b is a h-limit point of A = {a, b} with respect to τ1,

but it is not a h-limit point of A with respect to τ2.
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Theorem 2.6. If τ is the indiscrete (resp. discrete) topology on a set X,
then τh is indiscrete (resp. discrete) topology on X.

Proof. Straightforward.

Theorem 2.7. If A is a subset of a discrete topological space (X, τ), then
Dh(A) = Ø.

Proof. Let x ∈ X. Recall that every subset of X is open, and so h-open. In
particular, the singleton set G = {x} is h-open. But x ∈ G and G ∩ A =
{x} ∩A ⊆ {x}. Hence x is not a h-limit point of A, and so Dh(A) = Ø.

Theorem 2.8. Let (X, τ) be a topological space and let A, B subsets of X.
If A is h-closed, then Clh(A ∩B) ⊆ A ∩ Clh(B).

Proof. If A is h-closed, then Clh(A) = A and so Clh(A ∩ B) ⊆ Clh(A) ∩
Clh(B) ⊆ A ∩ Clh(B).

Lemma 2.1. Let (X, τ) be a topological space and let A subset of X. Then
A is h-open if and only if there exists an open set U in X such that A ⊆
U ⊆ Cl(A).

Proof. Straightforward.

Lemma 2.2. The intersection of an open set and a h-open set is a h-open
set.

Proof. Let A be an open set in X and B a h-open set in X. Then there
exists an open set U in X such that B ⊆ U ⊆ Cl(B). It follows that
A ∩ B ⊆ A ∩ U ⊆ A ∩ Cl(B) ⊆ Cl(A ∩ B). Now since A ∩ U is open, it
follows from Lemma.2.1, that A ∩B is h-open.

Definition 2.5. Let (X, τ) be a topological space and let A ⊆ X. Then
bh(A) = A\Inth(A) is called the h-border of A, and the set Frh(A) =
Clh(A)\Inth(A) is called the h-frontier of A.
Note that if A is a h-closed subset of X, then bh(A) = Frh(A).

Example 2.6. Let X = {a, b, c} with topology τ = {Ø, X, {b}, {b, c}}, τh =
{Ø, X, {b}, {c}, {a, c}, {b, c}}. If A = {a, b}, then Inth(A) = {b}, bh(A) =
{a} and so Clh(A) = {a, b}, Frh(A) = {a}. If we take A = {b, c}, then
Inth(A) = {b, c}, bh(A) = Ø and so Clh(A) = X, Frh(A) = {a}.

Theorem 2.9. Let (X, τ) be a topological space and let A ⊆ X. Then

1. A = Inth(A) ∪ bh(A).
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2. Inth(A) ∩ bh(A) = Ø.

3. A is a h-open set if and only if bh(A) = Ø.

4. bh(Inth(A)) = Ø.

5. Inth(bh(A)) = Ø.

6. bh(bh(A)) = bh(A).

7. bh(A) = A ∩ Clh(X\A).

8. bh(A) = A ∩Dh(X\A).

Proof. (1) and (2). Straightforward.
(3) Since Inth(A) ⊆ A, it follows from Proposition.2.1(3) that A is h-open
⇔ A = Inth(A) ⇔ bh(A) = A\Inth(A) = Ø.
(4) Since Inth(A) is h-open, it follows from (3) that bh(Inth(A)) = Ø.
(5) If x ∈ Inth(bh(A)), then x ∈ bh(A) ⊆ A and x ∈ Inth(A). Since
Inth(bh(A)) ⊆ Inth(A). Thus x ∈ bh(A) ∩ Inth(A) = Ø, which is a con-
tradiction. Hence Inth(bh(A)) = Ø.
(6) Using (5), we get bh(bh(A)) = bh(A)\Inth(bh(A)) = bh(A).
(7) bh(A) = A\Inth(A) = A\(X\Clh(X\A)) = A ∩ Clh(X\A).
(8) Applying (7) and Theorem.2.4 (1), we have bh(A) = A ∩ Clh(X\A) =
A ∩ ((X\A) ∪Dh(X\A)) = A ∩Dh(X\A).

Lemma 2.3. Let (X, τ) be a topological space and let A ⊆ X. Then A a
h-closed if and only if Frh(A) ⊆ A.

Proof. Assume that A is h-closed. Then Frh(A) = Clh(A)\Inth(A) =
A\Inth(A) ⊆ A. Conversely suppose that Frh(A) ⊆ A Then Clh(A)\Inth(A) ⊆
A and so Clh(A) ⊆ A Since Inth(A) ⊆ A. Noticing that A ⊆ Clh(A), we
have A = Clh(A).

Definition 2.6. Let (X, τ) be a topological space and let A ⊆ X. Then
Exth(A) = Inth(X\A) is called the h-exterior of A.

Example 2.7. Let X = {a, b, c} with topology τ = {Ø, X, {a}, {a, b}}, τh =
{Ø, X, {a}, {b}, {a, b}, {b, c}}. If A = {a, c}, then we have Exth(A) = {b}.

Theorem 2.10. Let (X, τ) be a topological space and let A ⊆ B ⊆ X. Then

1. Exth(A) is h-open.

2. Exth(A) = X\Clh(A).
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3. If A ⊆ B, then Exth(B) ⊆ Exth(A).

4. Exth(A ∪B) ⊆ Exth(A) ∩ Exth(B).

5. Exth(A ∩B) ⊇ Exth(A) ∪ Exth(B).

6. Exth(X) = Ø, Exth(Ø) = X.

7. Exth(A) = Exth(X\Exth(A)).

8. X = Inth(A) ∪ Exth(A) ∪ Fr
h
(A).

Proof. (1) and (2) straightforward.
(3) Assume that A ⊆ B. Then Exth(B) = Inth(X\B) ⊆ Inth(X\A) =
Exth(A).
(4) Exth(A∪B) = Inth(X\(A∪B)) = Inth((X\A)∩(X\B)) ⊆ Inth(X\A)∩
Inth(X\B) = Exth(A) ∩ Exth(B).
(5) Exth(A∩B) = Inth(X\(A∩B)) = Inth((X\A)∪(X\B)) ⊇ Inth(X\A)∪
Inth(X\B) = Exth(A) ∪ Exth(B).
(6) Straightforward.
(7) Exth(X\Exth(A)) = Exth(X\Inth(X\A)) = Inth(X\A) = Exth(A).
(8)Straightforward.

3 h-continuous functions and h-Homeomorphism

In this section, we introduce new classes of functions called h-continuous
functions, h-open functions, h-irresolute functions, h-totally continuous func-
tions, h-contra-continuous functions, h-homeomorphism and study some
properties of these functions.

Definition 3.1. A function f : (X, τ) → (Y, σ) is said to be h-continuous,
if f−1(U) is h-open set in X for every open set U in Y.

Example 3.1. Let X = Y = {a, b, c}, τ = {Ø, X, {a}, {c}, {a, c}}, τh =
{Ø, X, {a}, {c}, {a, c}} and σ = {Ø, Y, {a, c}}. Clearly, the identity function
f : (X, τ) → (Y, σ) is h- continuous.

Theorem 3.1. Every continuous function is h-continuous.

Proof. Let f : (X, τ) → (Y, σ) be continuous function and U be any open
subset in Y. Since, f is continuous, then f−1(U) is open set in X. Since,
every open set is h-open set by Theorem.2.1, then f−1(U) is h-open set in
X. Therefore, f is h-continuous.
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Remark 3.1. The converse of the Theorem.3.1, need not be true as shown
in the following example.

Example 3.2. Let X = {a, b, c} and Y = {1, 2, 3}, τ = {Ø, X, {b}}, τh =
{Ø, X, {b}, {a, c}}, σ = {Ø, Y, {1}, {2, 3}}. A function f : (X, τ) → (Y, σ)
is defined by f({a}) = {2}, f({b}) = {1}, f({c}) = {3}. Clearly, f is a
h-continuous, but f is not continuous.

Theorem 3.2. If f : (X, τ) → (Y, σ) is h-continuous and g : (Y, σ) → (Z, η)
is continuous, then g ◦ f : (X, τ) → (Z, η) is h-continuous.

Proof. Let f : (X, τ) → (Y, σ) be h-continuous and g : (Y, σ) → (Z, η) be
continuous . Let U be an open set in Z. Since, g is continuous, then g−1(U) is
an open set in Y. Since, f is h-continuous, then f−1((g−1(U)) = (g◦f)−1(U)
is h-open set in X. Therefore, g ◦ f : (X, τ) → (Z, η) is h-continuous.

Definition 3.2. A function f : (X, τ) → (Y, σ) is said to be h-open, if f(U)
is h-open set in Y for every open set U in X.

Example 3.3. Let X = Y = {a, b, c}, τ = {Ø, X, {b, c}}, σ = {Ø, Y, {a}}
and σh = {Ø, Y, {a}, {b, c}}. Clearly, the identity function f : (X, τ) →
(Y, σ) is h-open.

Theorem 3.3. Every open function is h-open.

Proof. Let f : (X, τ) → (Y, σ) be open function and U be any open set in
X. Since, f is open, then f(U) is open set in Y. Since, every open set is
h-open set by Theorem.2.1, then f(U) is h-open set in Y. Therefore, f is
h-open.

Remark 3.2. The converse of the Theorem.3.3, need not be true as shown
in the following example.

Example 3.4. In Example.3.3, the identity function f : (X, τ) → (Y, σ) is
h-open but not open.

Theorem 3.4. If f : (X, τ) → (Y, σ) is open and g : (Y, σ) → (Z, η) is
h-open, then g ◦ f : (X, τ) → (Z, η) is h-open.

Proof. Let f : (X, τ) → (Y, σ) be open and g : (Y, σ) → (Z, η) is a h-open.
Let U be an open set in X. Since, f is an open, then f(U) is an open set in
Y. Since, every open set is h-open set by Theorem.2.1, then f(U) is h-open
set in Y. Since, g is a h-open, then (g ◦ f)(U) = g(f(U)) is a h-open set in
Z. Therefore, g ◦ f : (X, τ) → (Z, η) is h-open.
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Definition 3.3. A function f : (X, τ) → (Y, σ) is said to be h-irresolute, if
f−1(U) is h-open set in X for every h-open set U in Y.

Example 3.5. Let X = Y = {a, b, c}, τ = {Ø, X, {b}, {b, c}}, τh = {Ø, X, {b},
{c}, {a, c}, {b, c}}, σ = {Ø, Y, {b}} and σh = {Ø, Y, {b}, {a, c}}. Clearly, the
identity function f : (X, τ) → (Y, σ) is h-irresolute.

Theorem 3.5. Every continuous function is h-irresolute.

Proof. Let f : (X, τ) → (Y, σ) be a continuous function and U be any h-
open set in Y. Since, f is a continuous, then Then f−1(U) is open set in X.
Hence, h-open set in X by Theorem.2.1. Therefore, f is h-irresolute.

Remark 3.3. The converse of the Theorem.3.5, need not be true as shown
in the following example.

Example 3.6. Let X = Y = {a, b, c}, τ = {Ø, X, {a}, {a, c}}, τh = {Ø, X, {a},
{c}, {a, c}, {b, c}}, σ = {Ø, Y, {a}, {c}, {a, c}} and σh = {Ø, Y, {a}, {c}, {a, c}}.
Clearly, the identity function f : (X, τ) → (Y, σ) is h-irresolute, but f is not
continuous function.

Theorem 3.6. Every h-irresolute function is h-continuous.

Proof. Let f : (X, τ) → (Y, σ) be h-irresolute function and U be any open
set in Y. Since, every open set is h-open set by Theorem.2.1. Since, f is
h-irresolute, then f−1(U) is h-open set in X. Therefore f is h-continuous.

Remark 3.4. The converse of the Theorem.3.6, need not be true as shown
in the following example.

Example 3.7. Let X = Y = {a, b, c}, τ = {Ø, X, {a}}, τh = {Ø, X, {a}, {b, c}},
σ = {Ø, Y, {b, c}} and σh = {Ø, Y, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Clearly,
the identity function f : (X, τ) → (Y, σ) is h-continuous, but f is not h-
irresolute.

Theorem 3.7. The composition of two h-irresolute function is also h-irresolute.

Proof. Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) be any two h-
irresolute. Let U be any h-open in Z. Since, g is h-irresolute, then g−1(U) is
h-open set in Y. Since, f is h-irresolute, then f−1(g−1(U)) = (g ◦ f)−1(U)
is h-open in X. Therefore, g ◦ f : (X, τ) → (Z, η) is h-irresolute.

Theorem 3.8. If f : (X, τ) → (Y, σ) is h-irresolute and g : (Y, σ) → (Z, η)
is h-continuous, then gof : (X, τ) → (Z, η) is h-irresolute.
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Proof. Let f : (X, τ) → (Y, σ) is h-irresolute and g : (Y, σ) → (Z, η) is h-
continuous. Let U be any open in Z. Then U is h-open set by Theorem.2.1.
Since, g is h-continuous, then g−1(U) is h-open set in Y. Since, f is h-
irresolute, then f−1(g−1(U)) = (g ◦ f)−1(U) is h-open in X. Therefore,
g ◦ f : (X, τ) → (Z, η) is h-irresolute.

Definition 3.4. A bijective function f : (X, τ) → (Y, σ) is said to be h-
homeomorphism if f is h-continuous and h-open function.

Theorem 3.9. If f : (X, τ) → (Y, σ) is homomorphism, then f is h-
homomorphism.

Proof. Since, every continuous function is h-continuous by Theorem.3.1.
Also, since every open function is h-open by Theorem.3.3. Further, since f
is bijective. Therefore, f is h-homomorphism.

Remark 3.5. The converse of the Theorem.3.9, need not be true as shown
in the following example.

Example 3.8. Let X = Y = {a, b, c}, τ = {Ø, X, {a, c}}, τh = {Ø, X, {a}, {b},
{c}, {a, b}, {a, c}, {b, c}}, σ = {Ø, Y, {b, c}} and σh = {Ø, {a}, {b}, {c}, {a, b},
{a, c}, {b, c}}. Clearly, the identity function f : (X, τ) → (Y, σ) is h-
homomorphism, but it is not homomorphism.

Definition 3.5. A function f : (X, τ) → (Y, σ) is said to be h-totally con-
tinuous, if f−1(U) is clopen set in X for every h-open set U in Y.

Example 3.9. Let X = Y = {a, b, c}, τ = {Ø, X, {a}, {b, c}}, σ = {Ø, Y, {a}}
and σh = {Ø, Y, {a}, {b, c}}. Clearly, the identity function f : (X, τ) →
(Y, σ) is h-totally continuous function.

Theorem 3.10. Every h-totally continuous function is totally continuous.

Proof. Let f : (X, τ) → (Y, σ) be h-totally continuous and U be any open set
in Y. Since, every open set is h-open set by Theorem.2.1, then U is h-open
set in Y. Since, f is h-totally continuous function, then f−1(U) is clopen set
in X. Therefore, f is totally continuous.

Remark 3.6. The converse of the Theorem.3.10, need not be true as shown
in the following example.

Example 3.10. Let X = Y = {a, b, c}, τ = {Ø, X, {a}, {b, c}}, σ = {Ø, Y, {b, c}}
and σh = {Ø, Y, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Clearly, the identity func-
tion f : (X, τ) → (Y, σ) is totally continuous function but it is not h-totally
continuous.
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Theorem 3.11. Every h-totally continuous function is h-irresolute.

Proof. Let f : (X, τ) → (Y, σ) be h-totally continuous and U be h-open
set in Y. Since, f is h-totally continuous function, then f−1(U) is clopen
set in X, which implies f−1(U) open, it follow f−1(U) is h-open set in X.
Therefore, f is h-irresolute.

Remark 3.7. The converse of the Theorem.3.11, need not be true as shown
in the following example.

Example 3.11. In Example.3.5, the identity function f : (X, τ) → (Y, σ)
is h-irresolute but not h-totally continuous.

Theorem 3.12. The composition of two h-totally continuous function is
also h-totally continuous.

Proof. Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) be any two h-totally
continuous. Let U be any h-open in Z. Since, g is h-totally continuous, then
g−1(U) is clopen set in Y, which implies f−1(U) open set, it follow f−1(U) is
h-open set. Since, f is h-totally continuous, then f−1(g−1(U)) = (g◦f)−1(U)
is clopen in X. Therefore, g ◦ f : (X, τ) → (Z, η) is h-totally continuous.

Theorem 3.13. If f : (X, τ) → (Y, σ) be h-totally continuous and g :
(Y, σ) → (Z, η) be h-irresolute, then g ◦ f : (X, τ) → (Z, η) is h-totally
continuous.

Proof. Let f : (X, τ) → (Y, σ) be h-totally continuous and g : (Y, σ) →
(Z, η) be h-irresolute. Let U be h-open set in Z. Since, g is h-irresolute,
then g−1(U) is h-open set in Y. Since, f is h-totally continuous, then
f−1((g−1(U)) = (g ◦ f)−1(U) is clopen set in X. Therefore, g ◦ f : (X, τ) →
(Z, η) is h-totally continuous.

Theorem 3.14. If f : (X, τ) → (Y, σ) is h-totally continuous and g :
(Y, σ) → (Z, η) is h-continuous, then g ◦ f : (X, τ) → (Z, η) is totally con-
tinuous.

Proof. Let f : (X, τ) → (Y, σ) be h-totally continuous and g : (Y, σ) →
(Z, η) is h-continuous. Let U be open set in Z. Since, g is h-continuous,
then g−1(U) is h-open set in Y. Since, f is h-totally continuous, then
f−1((g−1(U)) = (g ◦ f)−1(U) is clopen set in X. Therefore, g ◦ f : (X, τ) →
(Z, η) is totally continuous.

Definition 3.6. A function f : (X, τ) → (Y, σ) is said to be h-contra-
continuous if f−1(U) is h-closed set in X for every open set U in Y.
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Example 3.12. Let X = Y = {a, b, c}, τ = {Ø, X, {a}, {a, b}}, σ =
{Ø, Y, {a}} and τh = {Ø, X, {a}, {b}, {a, b}, {b, c}}. Clearly, the identity
function f : (X, τ) → (Y, σ) is a h-contra-continuous.

Theorem 3.15. Every contra-continuous function is h-contra-continuous.

Proof. Let f : (X, τ) → (Y, σ) be contra-continuous function and U any
open set in Y. Since, f is contra-continuous, then f−1(U) is closed sets in
X. Since, every closed set is h-closed set, then f−1(U) is h-closed set in X.
Therefore, f is h-contra-continuous.

Remark 3.8. The converse of the Theorem.3.15, need not be true as shown
in the following example.

Example 3.13. In Example.3.12, the identity function f : (X, τ) → (Y, σ)
is h-contra-continuous but not contra-continuous.

Theorem 3.16. Every totally continuous function is h-contra-continuous.

Proof. Let f : (X, τ) → (Y, σ) be totally continuous and U be any open
set in Y. Since, f is totally continuous function, then f−1(U) is clopen set
in X, and hence closed, it follows h-closed set. Therefore, f is h-contra-
continuous.

Remark 3.9. The converse of the Theorem.3.16, need not be true as shown
in the following example.

Example 3.14. In Example.3.12, the identity function f : (X, τ) → (Y, σ)
is h-contra-continuous but not totally continuous.
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