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1. Introduction 

The concept of "Topology" is one of the most important mathematical topics and has wide 

applications in many applied sciences and mathematical subjects. A frame is a set admitting two 

operations analogous to maximum and minimum operations, with two elements as its supremum 

and infimum accompanied by few circumstances. In order to obtain an even larger framework to 

work on, in topological arguments, the operations in frames seem to be good candidates to be 

replaced by the notions of union and intersection of sets. L-topological space is using the maps 

from a set X to a frame L.  

The concept of an ideal in a topological space was first introduced by Kuratowski in 1966 [3], 

and Vaidyanathswamy in 1945 [4]. They also defined local functions in an ideal topological 

space. Further, Hamlett and Jankovic in 1990 [5], studied the properties of ideal topological 

spaces and introduced another operator called ψ-operator. They have also obtained a new 

topology from the original ideal topological space. Using the local function, they defined a 
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Kuratowski closure operator in the new topological space. In this paper, we introduce the notion 

of L-ideal in L-set theory. Also we introduce the concept of L-local function. These concepts are 

discussed with a view to find new L-topologies from the original one. The basic structure, 

especially a basis for such generated L-topologies also studied here. The notion of L-

compatibility of L-ideals with L-topologies is introduced and some equivalent conditions 

concerning this topic are established here. Moreover, by using L-local function we introduce L-

operator ψ satisfying ψ(AL) = 1X – (1X – AL)*, for each AL ⊆ LX and we discuss some 

characterizations this L-operator by use L-open sets. 

2. Preliminaries 

Definition 2.1. [1] A lattice (L, ˅, ˄) would be called bounded, if there exists elements 0 and 1 

in L, such that for each a ∈ L one has a ˅ 0 = a and a ˄ 1 = a. This obviously implies that the 

members 0 and 1 are unique, as well as, for each a ∈ L one has 0 ≤ a ≤ 1. 

Definition 2.2. [1] A bounded lattice (L, ˅, ˄, 0, 1), abbreviated by L, is called complete, if an 

arbitrary joint and arbitrary meet of its elements exist. 

Definition 2.3. [1] A frame is a complete bounded lattice L in which the arbitrary distribution 

law is hold for its elements, i.e. the equality x ˄ (˅y∈Y  y) = ˅y∈Y (x ˄ y), is valid for x ∈ L 

and for an arbitrary subset Y of L. It can be verified easily that one has x ˅ (˄y∈Y  y) = 

˄y∈Y (x ˅ y),                                                                                                        in a frame L. 

Definition 2.4. [1] Let (L, ˅, ˄, 0, 1) be a frame and X be a non-empty set. We denote by 0X and 

1X the constant maps sending elements of X to 0 and 1, respectively. Particularly, one has 0X, 1X 

∈ LX. For f, g ∈ LX, we define f ≤ g if and only if for each x ∈ X one has f(x) ≤ g(x). 

Definition 2.5. [2] Let X be a set and τL = { Sα} α∈I be a collection of L-maps of X, i.e. { Sα} α∈I 

⊆ LX, such that 

(i) 0X, 1X ∈ τL. 

(ii) For a non-empty collection { Sα} α∈J in τL, one has ˅α∈J  Sα ∈ τL.  

(iii) The meet of a finite collection of members of τL belongs to τL. 
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Then, the couple (X, τL) will be called a L-topological space and the members of τL are the L-

open sets of this L-topological space. The complement of the L-open set is called L-closed set. 

We call a set U in X open if  χU ∈ τL and closed if χUc ∈ τL. 

Definition 2.6. [2] Let (X, τL) be a L-topological space and let AL ⊆ LX. Then the L-interior and 

the L-closure of AL in (X, τL) defined as int(AL) = ˅{UL: UL≤ AL, UL∈ τL} and cl(AL) = ˄{FL: 

AL ≤ FL, FL is a L-closed set} respectively. From definition, int(AL) is a L-open set and cl(AL) is 

a L-closed set. 

Definition 2.7. [2] Let X be an L-topological space and Y be a subset of X. The family of maps 

{( Uα)\Y :  Uα ∈ τL} impose a L-topological structure on Y . We call this topology, the L-

subspace topology on Y. 

Definition 2.8. [2] An L-open set UL ∈ τL is called a L-neighborhood of x ∈ X, if χ{x} ≤ UL. The 

collection NL(x) of all L-neighborhoods of x is called the L-neighborhood system of x. An L-

open subset UL contains an L-open subset VL if VL ≤ UL. 

Definition 2.9. [2] Let X be a non-empty set and let τL
1 and τL

2 be L-topologies on X such that τL
1 

≤ τL
2. Then we say that τL

2 is stronger (finer) than τL
1 or τL

1 is weaker (coarser) than τL
2. Two L-

topologies τL
1 and τL

2 on X are called equivalent if τL
1 is finer than τL

2 and τL
2 is finer 

than τL
1. 

Definition 2.10. [2] An L-topology basis is a set βL ⊆ LX such that  

(i) ˅ Bα∈β
L

   Bα = 1X.  

(ii) For all B1 and B2 in βL we have B1˄B2 = ˅Bγ, where Bγ ∈ βL. 

If βL is L-topology basis, then the set τL
βL = {˅Bγ : Bγ ∈ βL } is called the L-topology generated 

by βL. Obviously any L-topological space admits a L-topological basis. 

3. L-Ideal and L-Ideal Topological Spaces 

Definition 3.1. Let X be a set and IL = { Eα} α∈I be a collection of L-maps of X, i.e. { Eα} α∈I ⊆ 

LX, such that 

(i) E1 ∈ IL and E2 ≤ E1 implies E2 ∈ IL (heredity). 
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(ii) E1 ∈ IL and E2 ∈ IL implies E1˅E2 ∈ IL (finite additivity). 

Then, IL is called a L-ideal on X. 

Definition 3.2. A L-topological space (X, τL) with a L-ideal IL on X is called L-ideal topological 

space and denoted as (X, τL, IL). 

Definition 3.3. Let (X, τL, IL) be a L-ideal topological space and let AL be a collection of L-maps 

of X, i.e. AL⊆ LX. Then AL
∗ (τL, IL) = {χ{x} ∈ LX : AL˄ UL IL, for all UL∈NL(x)} is called L-

local function of AL with respect to IL and τL. We denote simply AL
∗  for AL

∗ (τL, IL). 

Example 3.1. The simplest L-ideal on X are 0X and 1X. Then IL = 0X  AL
∗  = clL(AL), for any 

AL⊆ LX and IL = 1X  AL
∗  = 0X. 

Theorem 3.1. Let (X, τL, IL) be a L-ideal topological space and let AL, BL ⊆ LX. Then 

i)  0X
∗   = 0X. 

ii) If AL≤ BL then AL
∗   ≤ BL

∗  

iii) If IL
1 ≤ IL

2 then AL
∗ (IL

2) ≤ AL
∗ (IL

1) 

iv) AL
∗  = cl(AL

∗ ) ≤ cl(AL) 

v) (AL
∗ )* ≤ AL

∗  

vi) AL
∗   is a L-closed set 

vii) AL
∗  ˅ BL

∗   = (AL˅BL)* 

viii) (AL˄BL)* ≤ AL
∗ ˄BL

∗     

ix) If UL∈τL, then UL˄AL
∗  = UL˄(UL˄AL)* ≤ (UL˄AL)* 

x) If EL∈ IL, then EL
∗  = 0X. 

Proof. i) This is obvious from the definition of L-local function. 

ii) Let A ≤ B and let χ{x} ∈ AL
∗   then AL˄ULIL, for all UL∈NL(x). By hypothesis we get 

BL˄ULIL, then χ{x} ∈ BL
∗ . Therefore AL

∗  ≤ BL
∗ . 
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iii) Let IL
1 ≤ IL

2  from definition of L-local function, AL
∗ (IL

2) ≤ AL
∗ (IL

1). 

iv) For any L-ideal on X, we know 0X ≤ IL, therefore by (iii) and Example.3.1, for any AL⊆ LX 

then AL
∗ (IL) ≤ AL

∗ (0X) = cl(AL). Suppose χ{x} ∈ cl(AL
∗ ) then for all UL∈NL(x), AL

∗ ˄UL≠ 0X there 

exists χ{y} ∈ AL
∗ ˄UL such that for all VL∈NL(y) then AL˄VLIL. Since UL˄VL∈NL(y) then 

AL˄(UL˄VL)IL which leads to AL˄ULIL for all UL∈NL(x). Therefore χ{x} ∈ AL
∗  . Hence cl(AL

∗ )  

≤ AL
∗  while the other inclusion follows directly. Hence AL

∗  = cl(AL
∗ ) ≤ cl(AL). 

v) From (iv), (AL
∗ )* ≤ AL

∗ . 

vi) Clear from (iv).  

vii) We have AL ≤ AL˅BL and BL ≤ AL˅BL. Then from (ii), AL
∗  ≤ (AL˅BL)* and BL

∗≤ (AL˅BL)*. 

Hence AL
∗ ˅BL

∗  ≤ (AL˅BL)*. Now let χ{x} ∈ (AL˅BL)*. Then (UL˄AL)˅( UL˄BL) = UL˄(AL˅BL) 

IL. Therefore, UL˄ALIL or UL˄BLIL for all UL∈NL(x). This implies that χ{x}∈ AL
∗   or χ{x}∈ 

BL
∗ , that is χ{x} ∈AL

∗  ˅BL
∗ . Therefore, we have (AL˅BL)* ≤ AL

∗  ˅ BL
∗ .  Hence, we obtain AL

∗  ˅ BL
∗   = 

(AL˅BL)*.  

viii) We have AL˄BL ≤ AL and AL˄BL ≤ BL. Then from (ii), (AL˄BL)* ≤ AL
∗   and (AL˄BL)* ≤ BL

∗ . 

Hence (AL˄BL)* ≤ AL
∗  ˄BL

∗  .  

ix) Let VL ∈ τL and χ{x} ∈ VL˄AL
∗ . Then χ{x} ∈ VL and χ{x} ∈ AL

∗ . Since VL ∈ τL then UL∈ NL(x) 

such that χ{x}∈ UL. Then UL˄VL∈ NL(x) and UL˄(VL˄AL) = (UL˄VL)˄ALIL. Then χ{x} ∈ 

(AL˄VL)* and hence we obtain VL˄AL
∗ ≤ (AL˄VL)*. Moreover VL˄AL

∗ ≤ VL˄(VL˄AL)*, by (ii) 

(AL˄VL)*≤ AL
∗  and VL˄(AL˄VL)* ≤ VL˄AL

∗ . Therefore, VL˄ AL
∗ = VL˄(AL˄VL)* ≤ (AL˄VL)*.  

x) Let χ{x} ∈ EL
∗ . Then for all UL∈ NL(x), EL

∗˄ULIL. But since EL∈IL, EL˄UL∈IL for all UL∈ 

NL(x). This is a contradiction. Hence EL
∗  = 0X.     

Theorem 3.2. Let (X, τL) be a L-topological space with L-ideals IL
1  and IL

2 on X and AL⊆ LX. 

Then, AL
∗ (IL

1˄IL
2) = AL

∗ (IL
1)˅AL

∗ (IL
2).         

Proof. By Theorem 3.1(iii) we have AL
∗ (IL

1) ≤ AL
∗ (IL

1˄IL
2) and AL

∗ (IL
2) ≤ AL

∗ (IL
1˄IL

2). Therefore, we 

obtain AL
∗ (IL

1)˅AL
∗ (IL

2) ≤ AL
∗ (IL

1˄IL
2). Now, let χ{x} ∈ AL

∗ (IL
1˄IL

2). Then, for all UL∈ NL(x), UL˄AL  
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IL
1˄IL

2 and hence UL˄ALIL
1 or UL˄ALIL

2. This shows that χ{x}∈ AL
∗ (IL

1) or χ{x} ∈ AL
∗ (IL

2). 

Therefore, we have χ{x}∈ AL
∗ (IL

1)˅AL
∗ (IL

2). This shows that AL
∗ (IL

1˄IL
2) ≤ AL

∗ (IL
1)˅AL

∗ (IL
2). Then, we 

obtain AL
∗ (IL

1˄IL
2) = AL

∗ (IL
1)˅AL

∗ (IL
2). 

Definition 3.4. Let (X, τL, IL) be a L-ideal topological space and let AL⊆ LX. Then                   

cl*(AL) = AL˅AL
∗  is a called L-closure operator. 

Theorem 3.3. Let (X, τL, IL) be a L-ideal topological space and let AL, BL⊆ LX. Then  

i) cl*(0X) = 0X 

ii) AL ≤ cl*(AL)  

iii) cl*(AL˅BL) = cl*(AL)˅cl*(BL)   

iv) cl*(AL) = cl*(cl*(AL)). 

Proof. i) cl*(0X) = 0X
∗  ˅ 0X, by Theorem 3.1.(i)  then cl*(0X) = 0X.                                                     

ii) AL ≤ AL˅ AL
∗ = cl*(AL). 

iii) cl*(AL˅BL) = (AL˅BL)˅(AL˅BL)* = (AL˅BL)˅(AL
∗ ˅BL

∗) = (AL˅AL
∗ )˅( BL˅BL

∗). Hence 

cl*(AL˅BL) = (AL˅AL
∗ )˅( BL˅BL

∗) = cl*(AL) ˅cl*(BL). 

iv) cl*(cl*(AL)) = cl*(AL˅AL
∗ ) = (AL˅AL

∗ )˅(AL˅AL
∗ )* = (AL˅AL

∗ )˅(AL
∗ ˅(AL

∗ )*) = AL˅AL
∗ = cl*(AL). 

Theorem 3.4. Let (X, τL, IL) be a L-ideal topological space and let AL, BL⊆ LX. Then   

i) If AL ≤ BL, then  cl*(AL) ≤ cl*(BL)   

ii) cl*(AL˄BL)  ≤ cl*(AL)˄cl*(BL). 

Proof. This is obvious by Theorem 3.1.(ii), (viii). 

Theorem 3.5. Let (X, τL, IL) be a L-ideal topological space. Then τL
∗ (IL) ={AL⊆ LX: cl*(AL

c ) = 

AL
c } is L-topology on X and finer than τL. When there is no ambiguity we will write τL

∗ for τL
∗ (IL).  

Proof. This is obvious by Theorem 3.1, and Theorem 3.3. Again by Theorem 3.1,(iv), we have   

AL
∗  ≤ cl(AL), then AL˅AL

∗  ≤ AL˅ cl(AL) = cl(AL), then cl*(AL) ≤ cl(AL). Hence τL finer than τL
∗ . 

Example 3.2. Let (X, τL, IL) be a L-ideal topological space and let AL⊆ LX. If IL = {0X}, then     

τL = τL
∗ (IL). In fact, if χ{x} ∈ cl(AL), then, UL˄AL≠ 0X for all UL∈ NL(x) then UL˄AL{0X }= IL 
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then  χ{x}∈ AL
∗ . Hence χ{x}∈ AL˅AL

∗ = cl*(AL) then cl(AL) ≤ cl*(AL) but by Theorem 3.5. cl*(AL) ≤ 

cl(AL). Hence cl*(AL) = cl(AL). Consequently, τL = τL
∗ (0X). 

Theorem 3.6. Let (X, τL) be a L-topological space with L-ideals IL
1  and IL

2 on X. Then 

If IL
1 ≤ IL

2, then τL
∗ (IL

1) ≤ τL
∗ (IL

2). 

Proof. Straightforward. 

Theorem 3.7. Let (X, τL, IL) be a L-ideal topological space. Then βL(IL,τL) = {UL-EL: UL∈ τL , 

EL∈IL}is a L-basis for τL
∗ .  

Proof. Since 0X ∈ IL, then UL- 0X = UL ∈ τL and τL ≤ βL from which it follows that 1X = ˅βL 

(recall that L-open sets is forms a L-topology). Also βL
1, βL

2 ∈ βL, and EL
1, EL

2 ∈ IL, we have βL
1 = 

UL
1

 - EL
1 and βL

2= UL
2

 - EL
2, where UL

1, UL
2 ∈ τL. Then βL

1˄βL
2 = (UL

1
 - EL

1)˄(UL
2

 - EL
2) = (UL

1˄(1X - EL
1)) 

˄(UL
2˄(1X - EL

2)) = (UL
1 ˄ UL

2) - (EL
1 ˅ EL

2) ∈ βL. 

4. L-compatibility of L-topological spaces 

Definition 4.1.[5] Let (X, τ, I) be an ideal topological space. We say the topology τ is compatible 

with the ideal I, denoted τ ∼ I, if the following holds for every A⊆ X: if for all x ∈ A there exists 

U∈N(x) such that U∩A∈I, then A∈I, where N(x) denotes the open neighbourhood system at x. 

Definition 4.2. Let (X, τL, IL) be a L-ideal topological space. We say the L-topology τL is L-

compatible with the L-ideal IL, denoted τL∼IL, if the following holds for all AL⊆ LX: if for all 

χ{x} ∈ AL there exists UL∈NL(x) such that UL˄AL∈ IL, then AL∈ IL. 

Theorem 4.1. Let (X, τL, IL) be a L-ideal topological space. The following properties are 

equivalent 

i)  τL∼IL, 

ii) If AL⊆ LX has a L-cover of L-open sets each of whose intersection with AL is in IL, then 

AL∈IL,                                                                                                                                                       

iii) For all AL⊆ LX, AL˄AL
∗   = 0X implies that AL∈ IL,                                                                     

iv) For all AL⊆ LX, AL- AL
∗  ∈ IL, 

v) For all AL⊆ LX, if AL contains no nonempty subset BL with BL ≤ BL
∗ , then AL ∈ IL. 

Proof. i) ⇒ ii) The proof is obvious.  

ii) ⇒ iii) Let AL⊆ LX and let χ{x} ∈ AL. Then χ{x}  AL
∗  and there exists UL∈NL(x) such that    
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UL˄AL∈ IL. Therefore, we have AL ≤ ˅{UL : χ{x} ∈ UL} and UL∈NL(x)  and by (ii) AL∈IL. 

iii) ⇒ iv) For any AL⊆ LX, AL- AL
∗  ≤ AL and (AL- AL

∗ )˄(AL- AL
∗ )* ≤ (AL- AL

∗ )˄AL
∗  = 0X.                     

By (iii), AL- AL
∗  ∈ IL.  

iv) ⇒ v) By (iv), for all AL⊆ LX, AL- AL
∗  ∈ IL. Let AL- AL

∗  = EL ∈ IL, then AL = EL˅( AL˄AL
∗ ) and 

by Theorem 3.1(vi), AL
∗  = EL

∗˅(AL˄AL
∗ )*  = (AL˄AL

∗ )*  because Theorem 3.1(x). Therefore, we 

have AL˄AL
∗  = AL˄(AL˄AL

∗ )* ≤ (AL˄AL
∗ )* and AL˄AL

∗  ≤ AL. By the assumption AL˄AL
∗  = 0X and 

hence AL = AL- AL
∗  ∈ IL. 

v) ⇒ i) Let AL⊆ LX and assume that for all χ{x}∈ AL, there exists UL∈NL(x) such that UL˄AL∈ IL. 

Then AL˄AL
∗  = 0X. Since (AL- AL

∗ )˄(AL˄AL
∗ )* ≤ (AL- AL

∗ )˄AL
∗  = 0X, AL- AL

∗  contains no nonempty 

subset BL with BL ≤ BL
∗  . By (v), AL- AL

∗ ∈ IL and hence AL= AL˄(1X - AL
∗ ) = AL- AL

∗  ∈ IL. 

Theorem 4.2. Let (X, τL, IL) be a L-ideal topological space. If τL is L-compatible with L-ideal 

IL, then the following properties are equivalent 

i) For all AL⊆ LX , AL˄AL
∗  = 0X implies that AL

∗  = 0X, 

ii) For all AL⊆ LX , (AL- AL
∗ )* = 0X, 

iii) For all AL⊆ LX , (AL˄AL
∗ )* = AL

∗ .  

Proof. First, we show that (i) holds if τL is L-compatible with L-ideal IL. Let AL⊆ LX and AL˄AL
∗  

= 0X. By Theorem 4.1(iii) AL ∈ IL and by Theorem 3.1(x) AL
∗  = 0X. 

i) ⇒ ii) Assume that for all AL⊆ LX, AL˄AL
∗  = 0X implies that AL

∗  = 0X. Let BL = AL- AL
∗ , then 

BL˄BL
∗=(AL-AL

∗ )˄(AL- AL
∗ )* =(AL˄(1X -AL

∗ ))˄(AL˄(1X -AL
∗ ))*≤(AL˄(1X -AL

∗ ))˄(AL
∗ ˄(1X -AL

∗ )*) = 0X. 

By (i), we have BL
∗  = 0X. Hence (AL- AL

∗ )* = 0X.  

ii) ⇒ iii) Assume for all  AL⊆ LX, (AL- AL
∗ )* = 0X.  AL = (AL- AL

∗ )˅(AL˄AL
∗ ), then                        

AL
∗  = (AL- AL

∗ )* ˅(AL˄AL
∗ )* =(AL˄AL

∗ )* . 

iii) ⇒ i) Assume for all AL⊆ LX,  AL˄AL
∗  = 0X  and (AL˄AL

∗ )* = Ap∗
. This implies that AL

∗  = 0X. 

Theorem 4.3. Let (X, τL, IL) be a L-ideal topological space. Then the following properties are 

equivalent 

i) τL˄ IL = 0X, 

ii) If EL ∈ IL, then int(EL) = 0X, 

iii) For all UL ∈ τL, UL ≤ UL
∗ , 

iv) 1X = 1X
∗ . 
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Proof. i) ⇒ ii) Let τL˄ IL = 0X and EL ∈ IL. Suppose that χ{x} ∈ int(EL). Then there exists UL ∈ 

τL such that χ{x} ∈ UL≤ EL. Since EL ∈ IL and hence 0X ≠ {χ{x}} ≤ UL ∈ τL˄ IL. This is contrary 

that τL˄ IL = 0X. Therefore, int(EL) = 0X.  

ii) ⇒ iii) Let χ{x} ∈ UL. Assume χ{x}  UL
∗  then there exists VL ∈ τL such that UL˄VL∈ IL. By (ii),        

χ{x} ∈ UL˄VL = int(UL˄VL) = 0X. Therefore χ{x} ∈ UL
∗ . Hence UL ≤ UL

∗ . 

iii) ⇒ iv) Since 1X is L-open, then 1X = 1X
∗ .  

iv) ⇒ i) 1X = 1X
∗  = {χ{x} ∈ LX: UL˄1X = UL IL for all UL ∈ NL(x)}. Hence τL˄ IL = 0X. 

5. L-open set L-operator ψ  

Definition 5.1. Let (X, τL, IL) be a L-ideal topological space. An L-operator ψ is defined as 

follows; for all AL⊆ LX, ψ(AL) ={ χ{x} ∈ LX: there exists UL ∈ NL(x) such that UL– AL ∈ IL}. We 

observe that ψ(AL) = 1X – (1X – AL)*. The behaviors of the L-operator ψ has been discussed in the 

following theorem. 

Theorem 5.1. Let (X, τL, IL) be a L-ideal topological space and let AL, BL ⊆ LX. Then 

(i) ψ(AL) is L-open set, 

(ii) int(AL) ≤ ψ(AL), 

(iii) If AL≤ BL, then ψ(AL) ≤ ψ(BL), 

(iv) ψ(AL˄BL) = ψ(AL)˄ψ(BL), 

(v) ψ(AL˅BL) = ψ(AL)˅ψ(BL), 

(vi) If UL∈τL, then UL ≤ ψ(UL), 

(vii) ψ(AL) ≤ ψ((ψ(AL)), 

(viii) ψ(AL) = ψ(ψ(AL)) if and only If (1X – AL)* = ((1X – AL)*)*, 

(ix) If (AL – BL)˅( BL – AL) ∈ IL, then ψ(AL) = ψ(BL), 

(x) If EL∈IL, then ψ(EL) = 1X – 1X
∗  , 

(xi) If EL∈IL, then ψ(AL– EL) = ψ(AL), 

(xii) If EL∈IL, then ψ(AL˅EL) = ψ(AL).     

Proof. i) This follows from Theorem 3.1(ii). 

ii) From definition of ψ L-operator, ψ(AL) =1X – (1X – AL)*. Then 1X – cl(1X – AL) ≤1X – (1X 

– AL)* = ψ(AL). Hence int(AL) ≤ ψ(AL). 
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iii) Let AL ≤ BL, then (1X – BL) ≤ (1X – AL). Then from Theorem 3.1(ii), (1X – BL)* ≤ (1X – AL)* 

then ψ(AL) ≤ ψ(BL).  

iv) ψ(AL˄BL)  = 1X –(1X –(AL˄BL))* = 1X –((1X – AL)˄(1X – BL))*  = (1X – (1X – AL)*)˄(1X – (1X 

– BL)*) = ψ(AL)˄ψ(BL).                                                                                                                                           

v) ψ(AL˅BL) = 1X –(1X –(AL˅BL))* = 1X –((1X – AL)˅(1X – BL))*= (1X – (1X – AL)*)˅(1X – (1X 

– BL)*) = ψ(AL)˅ψ(BL).                                                                                                                                           

vi) Let UL∈τL. Then (1X – UL) is a L-closed set and hence cl(1X – UL) = (1X – UL). 

Then (1X – UL)* ≤ cl(1X – UL) = (1X – UL). Hence UL≤1X – (1X – UL)*, so UL ≤ ψ(UL). 

vii) From (i), ψ(AL) ∈τL, and from (vii), ψ(AL) ≤ ψ(ψ(AL)).   

viii) This follows from the facts: 

1. ψ (AL) =1X – (1X – AL)*.  

2. ψ(ψ(AL)) = 1X – (1X – (1X – AL)*)* = 1X – ((1X – AL)*)* .                                                                   

ix) Let (AL – BL)˅( BL – AL) ∈ IL, and let AL – BL = EL
1, BL – AL = EL

2. We observe that EL
1, EL

2 ∈ 

IL, by heredity, and BL= (AL – EL
1)˅EL

2. Thus ψ(AL) = ψ(AL – EL
1) = ψ((AL – EL

1)˅EL
2 ) = ψ(BL).                        

x) By Theorem 3.1(x) we obtain if EL∈ IL, then ψ(EL) = 1X – 1X
∗  . 

xi) This follows from Theorem 3.1(x) and ψ(AL – EL) = 1X – (1X – (AL – EL))* = 1X –((1X – AL) 

˅EL)* = 1X – (1X – AL)* = ψ(AL).  

xii) This follows from Theorem.3.1(x) and ψ(AL˅EL) = 1X – (1X – (AL˅EL))* = 1X – ((1X – AL) 

– EL)* = 1X – (1X – AL)* = ψ(AL).  

Theorem 5.2. Let (X, τL, IL) be a L-ideal topological space. If ƞL= {AL⊆ LX: AL≤ ψ(AL)}. Then 

ƞL is a L-topology on X. 

Proof. Let ƞL= {AL⊆ LX: AL≤ ψ(AL)}. By Theorem.3.1(i), 0X
∗  = 0X and ψ(1X) = 1X – (1X –1X)* =       

1X – 0X
∗  = 1X. Moreover, ψ(0X) = 1X – (1X – 0X)* = 1X – 1X  

∗ = 0X. Therefore, we obtain that 0X ≤ 

ψ(0X) and 1X ≤ ψ(1X) = 1X, and thus 0X and 1X ∈ ƞL. Now if AL, BL ∈ ƞL, then by Theorem 5.1                             

AL˄BL ≤ ψ(AL)˄ψ(BL) = ψ(AL˄BL) which implies that AL˄BL ∈ ƞL. If { Aα} α∈I ⊆ LX  such that 

{ Aα} α∈I ⊆ ƞL, then  Aα ≤ ψ( Aα) ≤ ψ(˅α∈I  Aα) for all α∈ I and hence ˅α∈I  Aα ≤ ψ(˅α∈I  Aα). 

This shows that ƞL is a L-topology.  
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