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Abstract 

Maximum cut problem is a famous combinatorial problem, which its complexity has been heavily studied 

over the years. Among them is the efficient algorithm of Goemans and Williamson with an approximation 

factor roughly 1.13823 ≅
.

 (It is most often expressed as 0.878). Their algorithm combines 

semidefinite programming and a rounding procedure to produce an approximate solution to the maximum 

cut problem. In this paper, after introducing a new semidefinite programming formulation we present an 

improved randomized approximation with an approximation factor roughly 1.01241 ≅
.

 .  
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1. Introduction 

In complexity theory, the abbreviation NP refers to "nondeterministic polynomial", where a 

problem is in NP if we can quickly (in polynomial time) test whether a solution is correct. P and 

NP-complete problems are subsets of NP Problems. We can solve P problems in polynomial 

time while determining whether or not it is possible to solve NP-complete problems quickly 

(called the P vs NP problem) is one of the principal unsolved problems in Mathematics and 

Computer science.  

Due to the intractability of NP-complete problems, they were often addressed by using 

heuristic methods and approximation algorithms and as the field progressed, it became apparent 

that different NP-complete optimization problems have different approximation factors.  

In this paper, we consider the maximum cut (Max-Cut) problem which is a famous NP-

complete problem. It has been shown that it is NP-hard to approximate Max-Cut better than 

1.0625 ≅
.

 , and there is a belief that 1.13823 ≅
.

 may be the best polynomial-time 

approximation one can achieve if the Unique Games Conjecture (UGC) is true [2, 3]. Here, we 



want to show that a randomized 1.01241‒approximation for Max-Cut problem can be obtained 

based on Goemans-Williamson approach on a new semidefinite programming (SDP) relaxation.  

The rest of the paper is structured as follows. Section 2 is about the Max-Cut problem and 

introduces characteristics about vectors that have 120o angle to each other. In section 3, new SDP 

relaxation and new rounding procedure are introduced which lead to a randomized 

approximation algorithm for the Max-Cut problem with a performance ratio better than 1.01241. 

Finally, Section 4 concludes the paper. 

2. Max-Cut Problem  

In the mathematical discipline of graph theory, a cut in an undirected graph 𝐺 = (𝑉, 𝐸), is 

defined as a partition of the vertices of 𝐺 into two sets 𝑆 and 𝑉 − 𝑆. The size or the weight of a 

cut, denoted by 𝑊(𝑆;  𝑉 − 𝑆), is the number of the edges that connect vertices of one set to the 

vertices of the other. Trivially, one can define the Max-Cut problem as the problem of finding a 

cut in 𝐺 with maximum weight and it is a typical example of an NP-complete problem. Aside 

from its theoretical interest, the Max-Cut problem arises in many practical applications. This fact 

has encouraged considerable effort in finding good approximation solutions. 

Despite many attempts to design approximation algorithms for Max-Cut problem, the best-

known approximation ratio is 1.13823 and it is based on using SDP relaxation [1]. By assigning 

a unit vector 𝑣 ∈ ℝ  to each vertex 𝑖 ∈ 𝑉, a well known SDP formulation of the Max-Cut 

problem is as follows: 

max
. .

1 − 𝑣 𝑣

2
∈

(𝑆𝐷𝑃1) 

𝑣 𝑣 = 1                𝑖 ∈ 𝑉  

𝑣 𝑣 ∈ {−1, +1} 𝑖, 𝑗 ∈ 𝑉  

To get the SDP1 relaxation just let 𝑣 𝑣 ∈ [−1, +1]. The Goemans-Williamson algorithm [1] 

uses the solution of the SDP1 relaxation and cutting the optimal vectors 𝑣∗ with a random 

hyperplane through zero where everything on one side of the hyperplane is in one partition, and 

everything on the other side of the hyperplane is in the other.  

Interestingly, although the additional inequalities improve the SDP1 relaxation, they do not 

necessarily give rise to better approximation algorithms and so after the Goemans-Williamson 

rounding procedure, we are still left with a 1.13823-approximation algorithm. 



Next section deals with the major contribution of the paper which is a rounding procedure, 

based on a new SDP formulation of the Max-Cut problem. Before going on further, we start by 

considering the following characteristics about vectors with angles equal to 120o, which we call 

120-degree condition.  

Theorem 1. Suppose that there are 3 vectors V1, V2, V3∈ℝn which satisfy 120-degree 

condition; i.e. V1oV2 = V2oV3 = V3oV1 = 120o, where VioVj denote the angle between vectors Vi 

and Vj. Then, these vectors are coplanar. 

Proof. We know that two arbitrary vectors are always coplanar. Then, we can assume that 

the vectors V2 and V3 have been fixed on the 𝑥 𝑥  plane in coordinates 

𝑉 = √
0 ⋯ 0 and 𝑉 = √

0 ⋯ 0 , where 𝑉 = [𝑎 … 𝑎 ] . Then, 

it is sufficient to show that 𝑎 > 0, 𝑎 = 𝑎 = … = 𝑎 = 0.  

We have V1V2=V1V3= ‖𝑉 ‖. Hence, √
𝑎 − 𝑎 =

√
𝑎 − 𝑎  , and therefore 𝑎 = 0.  

Moreover, based on the length of a vector and the law of cosine on triangles we have: 

𝑉 𝑉⃗ =
3

4
+ (𝑎 +

1

2
) + 𝑎 + ⋯ + 𝑎  

𝑉 𝑉⃗ = (𝑎 + ⋯ + 𝑎 ) + (1) − 2 𝑎 + ⋯ + 𝑎 (1)cos (𝑉 𝑜𝑉 ) 

Therefore, cos(𝑉 𝑜𝑉 ) =
⋯

=   iff 𝑎 > 0, 𝑎 = 𝑎 = … = 𝑎 = 0 ■ 

Corollary 1. Let V1, V2, V3∈ℝn satisfy the 120-degree conditions, where ‖𝑉 ‖ = 1 (i=1,2,3). 

Then we have 𝑉 = − 𝑉 + 𝑉      1 ≤ 𝑙 ≠ 𝑝 ≠ 𝑞 ≤ 3. 

Corollary 2. Let V1, … , Vk∈ℝn satisfy the 120-degree conditions. Then we have 𝑘 ≤ 3. 

3. A new randomized approximation algorithms for Max-Cut problem 

We will now sketch a randomized 1.01241-approximation algorithm for Max-Cut problem, 

which is roughly similar to the Goemans-Williamson algorithm [1]. The main idea is to use a 

new SDP relaxation as follows, where we want to have a basis vector 𝑣  and two sets of vectors 

in which the 120-degree condition is satisfied between them as much as possible. 



max
. .

1 − 𝑣 𝑣

3
2∈

(𝑆𝐷𝑃2) 

𝑣 𝑣 = 𝑣 𝑣 = 1                𝑖 ∈ 𝑉, 𝑝 = 1,2,3 

𝑣 𝑣 = 𝑣 𝑣 = − 1
2                 𝑖 ∈ 𝑉, 1 ≤ 𝑝 ≠ 𝑞 ≤ 3 

𝑣 𝑣 , 𝑣 𝑣 ∈ {− 1
2 , +1} 𝑖, 𝑗 ∈ 𝑉, 𝑝 = 2,3 

Note that, based on the 120-degree equalities, the angles 𝑣 𝑜 𝑣  and 𝑣 𝑜 𝑣  are 120o 

(𝑖 ∈ 𝑉 ,    1 ≤ 𝑝 ≠ 𝑞 ≤ 3). Therefore, the vectors 𝑣 , 𝑣 ,  and 𝑣  are coplanar.  

Definition 1. Let 𝑃  denote the two-dimensional plane constructed based on the optimal 

vectors 𝑣 ∗, 𝑣 ∗,  and 𝑣 ∗ . 

Here, in an integral solution of the SDP2 relaxation, a cut set is composed of the edges 𝑖𝑗 ∈ 𝐸 

that their corresponding vectors 𝑣  and 𝑣  satisfy the 120o-condition; i.e. 𝑣  is picked coincide 

with the vector 𝑣  and 𝑣  is picked coincide with the vector 𝑣  , or vice versa. In other words, 

∀𝑖 ∈ 𝑆, ∀𝑗 ∈ 𝑉 − 𝑆: 𝑣 𝑣 = − 1
2 and ∀𝑖, 𝑗 ∈ 𝑆: 𝑣 𝑣 = 1 , ∀𝑖, 𝑗 ∈ 𝑉 − 𝑆: 𝑣 𝑣 = 1.  

After relaxing the constraints 𝑣 𝑣 , 𝑣 𝑣 ∈ {− 1
2 , +1} as 𝑣 𝑣 , 𝑣 𝑣 ∈ [− 1

2 , +1]  for 

𝑖, 𝑗 ∈ 𝑉 and 𝑝 = 2,3, we can solve the SDP2 relaxation. Let 𝑣
∗
, 𝑣∗  𝑖 ∈ 𝑉, 𝑝 = 1,2,3  is an 

optimal solution of it, and 𝑣   𝑖 ∈ 𝑉 are the projection of the vectors 𝑣∗  𝑖 ∈ 𝑉 onto the two-

dimensional plane 𝑃 ; See Figure 1. 

Theorem 2. Let 𝑣 = 𝑣′  + 𝑣"   , where 𝑣′  is the projection of vector 𝑣  onto the plane 𝑃  

and 𝑣"  is the projection of 𝑣  onto the normal vector of that plane. Then, the vector 𝑣   is placed 

between two vectors 𝑣 ∗ and 𝑣 ∗; See Figure 1. 

Proof. = 𝑣 ∗𝑣 = 𝑣 ∗𝑣′ + 𝑣 ∗𝑣" = 𝑣 ∗𝑣′ = ‖𝑣′ ‖cos (𝑣 ∗𝑜𝑣′ ) ≥ cos (𝑣 ∗𝑜𝑣′ ). In 

other words, the angle between 𝑣 ∗ and 𝑣′  is equal or greater than 120o and vector 𝑣   𝑖 ∈ 𝑉 is 

placed between two vectors 𝑣 ∗ and 𝑣 ∗ ■ 



 

Figure 1. The two-dimensional plane constructed by the vectors 𝑣 ∗
  𝑝 = 1,2,3 

and the projection of the optimal vectors 𝑣∗ onto it.   

We would now like to round the optimal solution of the SDP2 relaxation to obtain a 1.01241-

approximation solution for Max-Cut problem. To do this, it is sufficient to pick a random 

hyperplane 𝑟𝑣 = 0 passing through the origin which cuts two vectors 𝑣 ∗ and 𝑣 ∗. We can also 

pick the normal to that hyperplane to be a random vector 𝑟. Moreover, we will show that it is 

sufficient to introduce such a normal vector 𝑟 on the plane 𝑃  and between the vectors 𝑢  and 

𝑢 ; See Figure 1. Then, we can partition the 𝑣  vectors according to which side of the hyperplane 

𝑟𝑣 = 0 they lie.  

Theorem 3. Let 𝑟 be a vector on the plane 𝑃 . Then, the probability that two vectors 𝑣  and 

𝑣  are separated by the hyperplane 𝑟𝑣 = 0 equals to the probability that two vectors 𝑣′  and 𝑣′  

are separated by that hyperplane. 

Proof. Let 𝑣 = 𝑣′ + 𝑣"  , where 𝑣′  is the projection of vector 𝑣  onto the plane 𝑃  and 𝑣"  

is the projection of 𝑣  onto the normal vector of that plane. Then,  𝑟𝑣 = 𝑟𝑣′ + 𝑟𝑣" = 𝑟𝑣′  . In 

other words, 𝑣  and 𝑣  are placed on the opposite side of the hyperplane 𝑟𝑣 = 0 if and only if 𝑣′  

and 𝑣′  are placed on the opposite side of that hyperplane. Hence, the probability of splitting the 

vectors 𝑣  and 𝑣  by the hyperplane 𝑟𝑣 = 0 is equal to the probability of splitting the vectors 𝑣′  

and 𝑣′  by that hyperplane ■ 

It is obvious that by the construction of normal vectors 𝑟 on the plane 𝑃  (or more limited 

between the vectors 𝑢  and 𝑢 ) and introducing a hyperplane 𝑟𝑣 = 0, we can cover all of vectors 

𝑣′  and as a result, we can cover all of vectors 𝑣 . Then, we can pick a random vector 𝑟, inside 



the angle 𝑢 𝑜𝑢  and iterate through all the vertices to put 𝑖 ∈ 𝑆 if  𝑟𝑣 ≥ 0 and 𝑖 ∈ 𝑉 − 𝑆 

otherwise. To do this, we introduce 𝑢  as a positive linear combination of the vectors 𝑣 ∗ and 

𝑣 ∗ and  𝑢  as a positive linear combination of the vectors 𝑣 ∗ and 𝑣 ∗ where 𝑢 𝑜𝑣 ∗ =

𝑢 𝑜𝑣 ∗ = 30°, 𝑢 𝑜𝑣 ∗ = 𝑢 𝑜𝑣 ∗ = 90° . Then, we produce two positive-valued random 

variables 𝛼 and 𝛽 to introduce a (random) vector 𝑟 as 𝑟 = 𝛼𝑢 + 𝛽𝑢 .  

Now, let (𝑆; 𝑉 − 𝑆) be the cut obtained by the above rounding scheme. It is easy to see that 

the probability that edge 𝑖𝑗 ∈ 𝐸 is in the cut is =
( )

. Then, if 𝑋 denoted the number 

of edges crossing the cut, the expected weight of the cut is 𝔼[𝑋] = ∑ Pr (𝑖𝑗 ∈ 𝑐𝑢𝑡)∈ , which 

we want to compare against optimal values of SDP2 relaxation and Max-Cut problem. Hence, 

we have 𝔼[𝑋] = ∑ = ∑
( )

∈∈ ≥ 𝜌 ∑ ∈ = 𝜌𝑧∗ ≥ 𝜌𝑧∗  , which 

concludes that 𝜌∗ = 0.98775 ≤
∑ ( )∈

∑ ( )∈
 . This immediately implies that the proposed 

randomized algorithm will achieve an approximation ratio of 1.01241 ≅
.

 . 

Therefore, we have a randomized 1.01241-approximation algorithm for Max-Cut problem. 

The statement of the solution idea can be accomplished by the following algorithm. 

Algorithm (Input: Graph 𝑮 = (𝑽, 𝑬); Output: Vertices partitioning to 𝑺 and 𝑽 − 𝑺) 

Step 1. After relaxing the constraints 𝑣 𝑣 , 𝑣 𝑣 ∈ {− 1
2 , +1} as − 1

2 ≤ 𝑣 𝑣 , 𝑣 𝑣 ≤ +1, 

let 𝑣 ∗
, 𝑣∗  𝑖 ∈ 𝑉, 𝑝 = 1,2,3  is an optimal solution of the SDP2 relaxation. 

Step 2. Let 𝑢  be a linear combination of the vectors 𝑣 ∗ and 𝑣 ∗, and  𝑢  be a linear 

combination of the vectors 𝑣 ∗ and 𝑣 ∗, where 𝑢 𝑜𝑣 ∗ = 𝑢 𝑜𝑣 ∗ = 30°, 𝑢 𝑜𝑣 ∗ = 𝑢 𝑜𝑣 ∗ =

90° . 

Step 3. Introduce two positive-valued random variables 𝛼 and 𝛽, to produce a (random) 

vector 𝑟 as 𝑟 = 𝛼𝑢 + 𝛽𝑢 . Let 𝑆 = {𝑖|𝑟𝑣 ≥ 0} and 𝑉 − 𝑆 = {𝑖|𝑟𝑣 < 0}. 

Since any individual run of the algorithm might not produce a value of 0.98775𝑧∗  , in 

practice, one can repeats Step 3 several times and picks the best cut that was generated. 

Theorem 4. (Håstad (2001)) If there is an r-approximation algorithm for Max-Cut, where 

 𝑟 < = 1.0625 , then P = NP. 



Corollary 3. Due to proposing a randomized 1.01241‒approximation algorithm for Max-Cut 

problem, we can conclude that P=NP. 

4. Conclusions 

One of the open problems about the Max-Cut problem is the possibility of introducing a 

randomized approximation algorithm within any constant factor smaller than  . Here, we 

introduced a randomized 1.01241‒approximation algorithm for Max-Cut problem. In this 

manner, this approximation of Max-Cut problem to within a factor of 𝑟 = 1.01241 <  implies 

that P=NP.  

However, many results in complexity theory and computational optimization assume solidly 

based on the hypotheses P≠NP. But, now that we know P=NP, we should make fundamental 

modifications in many of the results discussed in literature. 
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