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Abstract. Defining the principle of extremal action in concise mathe-
matical terms, it is shown that this principle does not hold what it phys-
ically promises. Instead, it is shown that Lagrange functions need to be
locally integrable (in an open region of space), in order that the Lagrange
equations strictly apply. The principle of extremal action therefore re-
duces to the condition of local integrability of the Lagrange function to
a (locally defined) Hamilton-Jacobi function.

1. (Euclidean) Lagrange Function
In current mathematics, the Lagrangrian is defined on a symplectic 2n-
dimensional manifold of 2-forms. That conceils from some basic problems
by the additional layer of a manifold structure; it seems worth to restrict
the problem domain to the simplest possible model, which is the global
(2n+1)-dimensional Euclidean space of time t, the n generalized momenta
p := (p1, . . . , pn), and the n generalized location coordinates q := (q1, . . . , qn).
(All results can later be expressed in straightfoward manner to tangent spaces
on these manifolds.)
With this, the classical action integral for a path ω : [t1, t2] 3 t 7→ q(t) ∈ Rn

is physically defined as

S(ω) := −
∫ t1

t0

(H(t, p(t), q(t))− p(t) · ˙q(t))dt, (1.1)

and the principle of extremal action is stated in the form that all dynamically
possible paths from (t0, q(t0)) to (t1, q(t1)) are to be extremals of the action
integral.

In order to get this physical definition also mathematically defined, we
need a proper topology on the space of time curves ω : [t0, t1] → Rn that
allows for a definition of a derivative of S : ω 7→ S(ω). The simplest one
would be vector space of all continuously differentiable curves ω : [0, 1] 3
t 7→ q(t) ∈ Rn, which is a Banachspace (i.e. complete normed space) with its
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natural norm ‖ω‖1 := sup0≤t≤1
(∣∣q(t)∣∣+

∣∣∣ d
dtq(t)

∣∣∣ ).
Sadly, the topology is a bit too strong to meet the physical requirements of
q(0) and q(1) being fixed endpoints, only. So things become more complicated:
The space of all continuously differentiable paths has two closed subspaces:
one is the space of all closed continuously differentiable paths, and the other
one its subspace of all continuosly differentiable closed paths that start and
end in the origin 0 ∈ Rn. We denote this 2nd subspace as C1

0(Rn). Then the
set of all continuous differentiable paths from [0, 1] in Rn with fixed endpoints
q(0) and q(1) is an affine Banachspace ω0 + C1

0(Rn), where ω0 is an arbitrary
continuously differentiable path from q(0) to q(1). We can then define the
differentiability of S : ω 7→ S(ω) to be:

Definition 1.1 (Differentiability). Let U be an open subset of ω0+C1
0(Rn)

and S : U → R be defined and continuous on U . Then S is defined to be
differentiable at ω ∈ U if and only if there exists a continuous linear operator
DS(ω) : C1

0(Rn)→ C1
0(Rn) such that for all η ∈ C1

0(Rn) with ω + η ∈ U and
‖η‖1 → 0: S(ω+ η) = S(ω) +DS(ω)η+ o(‖η‖1), where o(h) denotes the rest
term with the asymptotic condition o(h)

h → 0 as h→ 0.
DS(ω) is called derivative of S at ω. S is said to be extremal in ω, if S is
differentiable at ω and if its derivative is the zero operator.

2. Time Reversal
Definition 2.1 (Time Inversion). Given a time curve ω : [0, 1]→ Rn, the
time inverse T ω is defined as: T ω : [0, 1] 3 t 7→ ω(1− t) ∈ Rn.

Now, S : U → R is not an arbitrary mapping from U to R, but a path
integral of the Lagrange function along the path ω. Therefore, the following
holds:

Proposition 2.2. S(T ω) = −S(ω) and S(T ω|[s1,s2]) = −S(ω|[s1,s2]), where
ω|[s1,s2] denotes the restriction of ω to the open interval [s1, s2] for 0 < s1 <
s2 < 1 and S(T ω|[s1,s2]) its time inverse.

Corollary 2.3. Let S : U → R be differentiable at ω ∈ U . Then the derivative
is zero, that is: ω is extremal.

Proof. Because the derivative DS(ω) is a linear, continuous mapping, we
can split a small path η ∈ C1

0(Rn) into the sum η = η1 + · · · + ηn of its
n component projections, and DS(ω)η =

∑
k DS(ω)ηk is the commuting

sum of the path integrals each of the components. Each curve ηk is also
closed, starting and ending in the origin. Now, DS(ω)ηk might not be zero.
But because of the above corollary, the differentiability of S at ω implies the
differentiability of S at T ω with inverted derivative −DS(ω), which demands∫ 1

0 DS(ω)ηk = o(‖ηk‖1). �
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3. The Lagrange Equations
Let S be differentiable at ω. Then we know, it is extremal at ω, which is
usually written as δS(ω) = 0, and δ is called “virtual” displacement. Can we
derive the Langrange equations from that?
The answer is that this is true in the limit δ → 0, but for any δ 6= 0 a rest
term o(δ) needs to be added:

To get in line with the normal representation within physics, let’s replace
the momenta p by the (generalized) velocities q̇ and write L(q(t), q̇(t), t) :=
−H(t, p(t), q(t)) + p(t) · ˙q(t). Then the condition of extremality at a path ω

is usually written as: δ
∫

ω
L(q(t), q̇(t), t)dω = δ

∫ 1
0 L(q(t), q̇(t), t)dt = 0.

In the first step the differential δ is commuted with the time integral:

δ

∫ 1

0
Ldt =

∫ 1

0
δLdt.

Next, δL is written out as a sum of partial differentials: δL = ∂L
∂q ·δq+ ∂L

∂q̇ δq̇+
∂L
∂t δt, and then it is assumed that - given explicit time independence of L:

∂L

∂q̇
· δq̇ = d

dt

(
∂L

∂q̇
· δq
)
− d

dt

∂L

∂q̇
· δq.

And, indeed, if L and therefore the Hamiltonian function are explicitly time
independant, δt and δq commute, that is: a differential variation of δt followed
by a differential δq equals δq followed by δt. (Note, however, that under non-
conserved conditions δt and δq will generally not commute.)

There is however one major problem in the last step: The integration
is along the curve ω, where δ is zero. For any slight perturbation ω + η with
η 6= 0, the Lagrange equations will be off by a rest term of order o(η). To
derive these without rest term, however one needs∫ 1

0

(
∂L

∂q
· δq − d

dt

∂L

∂q̇
· δq
)
dt = 0

within a small open environment of ω which mandates that for each small
s > 0 there must exist an ε > 0, such that

∫ 1−s

s
Ldt is to be path independant

for all paths ω|[s,1−s] + η with η ∈ C1
0(Rn) and ‖η‖1 < ε. The union of ranges

of all the paths ω|[s,1−s] +η contains the ε-balls in Rn around each ω(t) ∈ Rn,
(t ∈ [s, 1−s]). And, since these ε-balls are convex, the conclusion is that within
these ε-balls L is integrable to a function, i.e.: it is locally integrable. Whether
L also also is globally integrable to a function in the whole environment of
the range of the paths ω|[s,1−s] + η, that depends on whether or not this
environment is globally convex or at least simply connected (as is well-known:
see [1]).

The following example shows the necessity of local integrability of the
Lagrange function:
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4. Example of a non-integrable Lagrange function with
paths of extremal action integrals

The Hamilton function of a free 2-dimensional mechanical system is given by
H = 1

2m (p2
1 + p2

2), so L = m
2 (q̇2

1 + q̇2
2), which - as any free n-dimensioinal me-

chanical sysytem - is known to be globally integrable, as S : R3 3 (t, q1, q2) 7→
−Et + p1q1 + p2q2 ∈ R is its (Hamilton-Jacobi) action function, where E
and p = (p1, p2) are its constant energy and momentum. Let’s write that
Lagrange function in polar coordinates (φ, r), where φin[0, 2π] is the angle
and r ∈ [0,∞) the radius, which then is: L = m

2

(
ṙ2 + rφ̇2

)
. Now, let’s

add to it the potential V = −r2φ, which introduces a curl around the ori-
gin, and consider the curve ω that goes in a straight line from q1 = −1/2
to q1 = 1/2 along the q1 axis. In polar coordinates, ω is the step function
ω : [0, 1/2) 3 t 7→ (π, 1/2 − t) and ω : [1/2, 1] 3 t 7→ (0, 1/2 − t). Integration
of V along an arc η1, say, from φ to φ + ∆φ at a fixes radius r1 > 0 gives
(1/2)r2

1(∆φ)2), therefore integration in the opposite direction η2 fom φ+ ∆φ
to φ at some smaller radius r0 < r1 adds −(1/2)r2

0(∆φ)2), while integration
along the closing pathes η3 and η4 from r0 to r1 at φ and from r1 to r0
at φ + ∆φ cancel eachother. Therefore, the path integral of V or L along
any piecewise continuously differentiable closed path in R2 will generally be
unequal zero (unless its interior is empty). Yet, for r1 → r0, the value is
o(r1 − ro), and integration along a circle at a distance r1 around the origin,
likewise gives 2π2r2

1, which again is o(r1). So, the path integrals of L and V
are differentiable at the straight line curve ω: although the path integration
of V along ω and ω+η with η ∈ C1

0(R2) might differ, the difference is o(‖η‖1)
as η → 0 in C1

0(Rn). Hence, according to infinitesimal calculus, δ
∫ 1

0 Ldt is
zero at ω.

5. Closedness of Differential Forms
Note that allowing the end points of the curves to vary either, will just sim-
plify the proofs as we can now express the differentiation of the path integrals
within the Banachspace of continuous differentiable curves ω : [0, 1] → Rn,
instead of dealing with affine Banachspaces, but other than that, the results
will carry over. Only the symbol of variation δ is commonly replaced by the
differential symbol d, and is then called “total differential”.

Albeit L is just a function, it can be rewritten as a differential 1-form
α, namely by the use of the Legendre “transformation”. L = pq̇ −H(t, p, q)
by taking its differentials: α := pḋq −H(t, p, q)dt. That way, if that form is
well-defined on a simply connected, or perhaps even convex open set Ω ⊂
Rn of location coordinates, and is integrable in there, which means that
path integration along piecewise continuously differentiable, closed paths ω :
[0, 1]→ Ω all vanish, then α is the exterior differential dS of an action function
S : [0, 1]×Ω 3 (t, q) 7→ S(t, q) ∈ R, and this function also is unique up to an
additive constant as well as eventually time and space dilatations t 7→ t− t0,
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q 7→ q − q0 of the time and space coordinates (in case of conserved energy
and momentum). And, if Ω is just open and not simply connected, then at
least we can find such a function within the open ε-balls around each q ∈ Ω.

Now, a differential form β, say, is said to be “closed”, if and only if its
exterior derivative dβ exists and vanishes, i.e.: dβ ≡ 0. And conversely, if β
is the exterior differential of another differential form θ, say, then β is called
“exact”.

That conjures up a peculiarity of the definition of closed forms: The
principle theorem of differential forms is Poincaré’s lemma, which states that
a differential form β on a simply connected region U ⊂ Rn, for which the
exterior derivative is well-defined and continous on U , is exact, if and only if
β is closed (see: [1]).

While a vanishing differential of a function f at some x0 is commonly
defined as (Df(x0))h = 0, where Df(x0) is the derivative of f at x0, meaning
that f(x0 + h) = f(x0) + o(h) for h → 0, the notion of external derivative
obviously understands it in that f(x0 + h) = f(x0) should hold for all h in
some ε-evironment of zero! Because otherwise, the above example of section
4 would disprove Poincaré’s lemma.

6. Summary
From a mathematical standpoint, the principle of extremal action should be
replaced by the more pristine principle of closedness of the exterior 1-form
p · ḋq−Hdt, to which the principle of extremal action runs up to, if only one
wants to derive the Lagrange equations from.
It allows to express the Lagrange equation in simpler terms:

Given any open ball B ⊂ Rn on which p·dq−Hdt is closed (and therefore
exact, i.e. integrable), then it integrates to an action function S : B → R, for
which

(i) p(t, q) = ∂S(t,q)
∂q for all t ∈ [0, 1] and q ∈ B,

(ii) E(t, q) = −∂S(t,q)
∂t for all t ∈ [0, 1] and q ∈ B, and

(iii) ṗ(t, q) = −F (t, q), where F := ∂E(t,q)
∂q for all t ∈ [0, 1] and q ∈ B,

where the last statement follows from ∂2S
∂t∂q = ∂2S

∂q∂t .
Above all, the closedness of p ·dq−Hdt is equivalent to the closedness of

±p ·dq±Hdt, and it’s likewise irrelevant physically, because of the symmetry
of time and space inversion (parity). As such, the form Hdt+p·dq will suffice.
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