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Abstract

The availability of large amounts of computer-readable textual data and hardware that can
process the data has shifted the focus of knowledge projects towards deep learning architec-
ture. Natural Language Processing, particularly the task of Named Entity Recognition is
no exception. The bulk of the learning methods that have produced state-of-the-art results
have changed the deep learning model, the training method used, the training data itself
or the encoding of the output of the NER system. In this paper, we review significant
learning methods that have been employed for NER in the recent past and how they came
about from the linear learning methods of the past. We also cover the progress of related
tasks that are upstream or downstream to NER eg. sequence tagging, entity linking etc.
wherever the processes in question have also improved NER results.

Keywords: named entity recognition, sequence tagging, deep learning, conditional ran-
dom fields, bidirectional long short term memory, recurrent neural network, word embed-
ding

1. Introduction

‘Named Entity Recognition’ refers to the Natural Language Processing task of identifying
important objects (eg. person, organization, location) from text. Henceforth we will use
NER to refer to Named Entity Recognition and Classification. NER belongs to a general
class of problems in NLP called sequence tagging (Erdogan, 2010). Sequence Tagging NLP
tasks other than NER are Part of Speech (POS) tagging and chunking. We present a survey
of the latest research from the NER field. But a lot of the mentioned research pertains to
sequence labelling tasks other than NER as well. Hence we consider the mentioned research
as a comprehensive survey of sequence tagging with a focus on NER. Also, we show research
2006 onwards wherever possible since there has been a shift from linear or log-linear methods
(Nadeau and Sekine, 2007) to non-linear methods in the past decade. To the best of our
knowledge, NER pre-processing, training and evaluation methods have not been surveyed
extensively 2006 onwards.

The first section of the survey briefly covers the evolution of the deep learning framework
from linear techniques ie. the advantages and drawbacks of each with respect to training,
and performance in different domains, languages and applications. We cover around 150
well-cited English language papers from major conferences and journals. We do not claim
this review to be exhaustive or representative of all the research in all languages, but we
believe it gives a good estimate of the major research findings in the field.

Sections 2, 3 and 4 detail the computational techniques that have produced state-of-the-
art results at various stages of the neural network model in order. In particular, Sections 2
covers feature engineering at the input i.e., syntactical, morphological and contextual fea-
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tures. Moreover, Section 2 shows the impact of different distributed representation models
of the text on the NER task. There is also a discussion of the structured and unstructured
data used and additional preprocessing steps that have shown state-of-the-art NER results.
Section 3 discusses the model architecture used in NER including convolutional, recurrent
and recursive neural networks. Section 3 also shows the optimisation method, output tag
structure and evaluation methods and their impact on the performance of particular tech-
niques. Section 4 summarizes the performance of the discussed techniques on standard
datasets used to benchmark NER performance.

2. A Brief History

Researchers have produced a diverse set of techniques to solve the NER task over close to
30 years. (Rau, 1991) solved part of the NER task as we know it at present. However there
is previous research in Information Extraction that includes Named Entity Recognition in
a more constrained manner than its present form (Besemer and Jacobs, 1987; DeJong
et al., 1979; Dyer and Zernik, 1986; Grishman and Kittredge, 2014; Hobbs, 1986; Lytinen
and Gershman, 1986; ?; Young and Hayes, 1985). The initial NER research comprised of
hand-crafted rules-based linear models that were overfitted to a very specific structured text
corpus eg. military message sets, naval operation reports, M&A news (Jacobs and Rau,
1993) etc. The need for standardisation led to MUC-6 (Grishman and Sundheim, 1996),
HUB-4 (Chinchor et al., 1998), MUC-7 and MET-2 (Chinchor and Robinson, 1997), IREX
‘(Sekine and Isahara, 2000), CONLL (Sang and De Meulder, 2003), ACE (Doddington
et al., 2004) and HAREM (Santos et al., 2006). The Language Resources and Evalua-
tion Conference (LREC)1 has also been staging workshops and main conference tracks on
the topic since 2000. Supervised learning techniques trained on a large annotated corpus
produced state-of-the-art results for NER. The prominent supervised learning methods in-
clude Hidden Markov Models (HMM) (Bikel et al., 1997), Decision Trees (Sekine et al.,
1998), Maximum Entropy Models (ME) (Borthwick et al., 1998), Support Vector Machines
(SVM) (Asahara and Matsumoto, 2003), Conditional Random Fields (CRF) (Lafferty
et al., 2001; McCallum and Li, 2003). CRF in particular is one of the most effective NER
algorithms. The need in NER to train the probability of the output tags using many leading
and lagging non-local sequences makes a discriminative model like CRF more suitable com-
pared to generative models like HMM and stochastic grammar. Although ME models relax
the strong independence assumptions that the generative models make, they suffer from a
weakness called the label bias problem, wherein the model is biased towards states with few
outgoing transitions. CRF solves the problem by jointly considering the weights of different
features in all the states instead of normalising the transition probabilities at the state level.
(Sarawagi and Cohen, 2004) improved on the existing CRF model by formulating the semi-
CRF model that assigns labels to subsequences instead of individual entities without any
significant additional computational complexity. ‘(Passos et al., 2014) used their lexicon-
infused skip-gram model on public data to learn high-quality phrase vectors to plug into
a log-linear CRF system. Joint models of entity analysis ( multitask models) have shown
better results on individual tasks compared to models optimised solely for NER. (Durrett
and Klein, 2014) developed a structured CRF model that improves the performance of NER
( and also that of other entity analysis tasks) by training for 3 tasks eg. coreference resolu-
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tion (within-document clustering), named entity recognition (coarse semantic typing), and
entity linking (matching to Wikipedia en- tities). (Luo et al., 2015) proposed the JERL (
Joint Entity Recognition and Linking) model ie. semi-CRF model extended to capture the
dependency between NER and entity linking. Supervised learning methods hit a roadblock
because there is a limit to the structured text available for learning discriminative features.
This led to Semi-supervised learning methods that utilise the exponentially growing vol-
ume of unstructured text ie. webpages to derive contextual information in an unsupervised
manner from the seed annotated corpus ie. bootstrapping (Nadeau et al., 2006; Brin, 1998;
Collins and Singer, 1999; Yangarber et al., 2002; Riloff et al., 1999; Cucchiarelli and Velardi,
2001; Pasca et al., 2006). (Suzuki et al., 2011) proposed an unsupervised method to create
resourceful condensed feature representations from large scale unlabelled data to efficiently
train supervised NER systems while still maintaining state-of-the-art results derived from
existing higher dimensional semi-supervised solutions.

Figure 1: Diagram of the relationship between naive Bayes, logistic regression, HMMs,
linear- chain CRFs, generative models, and general CRFs (Sutton and McCal-
lum, 2006)

Unsupervised learning approach emerged mainly as the means to generate additional
features from the context of input words to use in conjunction with other NER methods
(Evans and Street, 2003; Cimiano and Völker, 2005; Shinyama and Sekine, 2004; Etzioni
et al., 2005). More recently, (Lin and Wu, 2009) got state-of-the-art results without us-
ing a gazetteer by instead performing k-means clustering over a private database of search
engine query logs to use the cluster features to train their CRF model. An exception to
the industry application of unsupervised learning technique is the clustering method using
lexical resources eg. Wordnet (Alfonseca and Manandhar, 2002) in order assign named
entity type from Wordnet itself (location¿country, act¿person etc.). There have been many
papers on employing neural networks to do NER in spite of the widespread adoption of
CRF for the purpose. (Ratinov and Roth, 2009) used non-local features, a gazetteer ex-
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tracted from Wikipedia, and Brown-cluster-like word representations in a perceptron model
(Freund and Schapire, 1999). Since multilayer feedforward neural networks are universal
approximators, such a neural network could also potentially solve the NER task. (Petasis
et al., 2000) used a feed-forward neural network with one hidden layer on NER and achieved
state-of-the-art results on the MUC6 dataset. They used gazetteer and POS tags as input
features. (Mikolov et al., 2013a) introduced the practise of using the skip-gram model or
the continuous bag of words (CBOW) model to create a well-behaving and concise vector
representation of words ie. word embeddings, upstream to the neural network model. (Col-
lobert and Weston, 2008) demonstrated the use of pre-trained word embeddings to train
a deep neural network to achieve state-of-the-art results in multiple NLP tasks including
NER without any additional syntactic features. We discuss word embeddings in further de-
tail in section 3. (Collobert et al., 2011) presented SENNA, which employs a deep FFNN
and word embeddings to achieve near state of the art results on NER among other NLP
sequence labelling tasks. (Santos et al., 2006) presented their CharWNN network, which
extends the neural network of (Collobert et al., 2011) with character level CNNs, and they
reported improved performance on Spanish and Portuguese NER. (Hammerton, 2003) at-
tempted NER with a single- direction LSTM network and a combination of word vectors
trained using self-organizing maps for lexical representation and principal component anal-
ysis for the orthogonal representation of POS and chunk tags. (Huang et al., 2015) used a
BLSTM with extensive feature engineering instead of character embeddings for the POS-
tagging, chunking, and NER tasks. (Chiu and Nichols, 2015) used a LSTM-CNN model
to detect character level and word level features without additional feature engineering for
NER. Their model is similar to the RNN-CNNs model introduced by (Labeau et al., 2015)
for German POS tagging but uses the advanced LSTM component compared to the RNN.
(Lample et al., 2016) showed a BLSTM-CRF model and a stack LSTM model (s-LSTM)
(Dyer et al., 2015) to perform the NER task by modeling the output tag dependency using
a simple CRF model or a transition model to create and label chunks of input text. Like
(Lample et al., 2016), (Yang et al., 2016) also used character level embeddings similar to
(Ling et al., 2015). (Yang et al., 2016) also used the deep hierarchical RNN (Cho et al.,
2014) for sequence tagging.

3. Features and Data

In this section we look at the input to the NER model. The primary input is the train-
ing data. In order to benchmark NER performance, researchers run their model on the
CoNLL-2002 and CoNLL- 2003 datasets (Sang, 2002; Sang and De Meulder, 2003) that
contain independent named entity labels for English, Spanish, German and Dutch. All
datasets contain four different types of named entities: locations, persons, organizations,
and miscellaneous entities that do not belong in any of the three previous categories. The
miscellaneous category is very diverse as it includes adjectives, like Indian, as well as events,
like 1000 Lakes Rally. In the CoNLL-2003 dataset, Named entity tagging of English and Ger-
man training, development, and test data, was done by hand at the University of Antwerp.
Almost all the research validates the hypothesis that NER systems perform better when
there is external data. The external knowledge that NER systems use are gazeteers and
unlabeled text.

4



3.1 Unlabelled Text

Recent successful semi-supervised systems (Ando and Zhang, 2005; Suzuki and Isozaki,
2008) have illustrated that unlabeled text can be used to improve the performance of NER
systems. (Ratinov and Roth, 2009) uses the implementation of the word class models
(Brown et al., 1992) in (Liang, 2005) to obtain word clusters from the Reuters 1996 dataset,
a superset of the CoNLL03 NER dataset. (Ratinov and Roth, 2009) produced unique bit
strings for each word based on its path from the root in the binary tree that the word class
algorithm produces. They multiplied the input features by 4 by path representations of
length 4,6,10 and 20 for every word.

(Qi et al., 2009) proposed an iterative Word Class Distribution Learning framework
and applied it to a sampled set of Wikipedia webpages. In contrast to self-training (eg.
bootstrapping) or co-training methods, the WCDL does not add self-assigned labels that
might be subject to learning bias if the model introduces incorrectly labelled examples to the
corpus. The WCDL iteratively re-trains a base classifier to build a class label distribution
for each word by normalising the predicted labels of the unlabelled corpus. The word class
distribution becomes a feature of the base classifier ( semi-supervised or supervised NER
system) instead of adding many self-annotations, thus making the WCDL highly scalable.

3.2 Gazeteers

An important question in NER research is to address the coverage and the disambiguation of
input words using a gazetteer ie. lists of words. There is ample evidence of the improvement
of NER performance with the use of high-quality and high-coverage gazetteers (Cohen
and Sarawagi, 2004; Torisawa et al., 2007; Toral and Munoz, 2006; Florian et al., 2003).
Wikipedia is a great source to construct gazetteers for NER for several reasons. (1) It is
manually updated regularly hence there is less chance of missing new information. (2) It
maps several variations of spelling or meaning to a relevant entry. For example, ‘Manchester’
not only refers to the English city of Manchester but also to the football club by the similar
name. (3) Wikipedia entries are manually mapped to categories. For example, the entry
about the city of Manchester is tagged as a city while Manchester City F.C. is tagged as a
football association.

Table 4 summarizes the results of the techniques for injecting external knowledge. Al-
though the additional features were from the superset of the CoNLL03 dataset and the
gazetteers were from Wikipedia, the extra features proved to be useful on all datasets. To
make the clusters more relevant to this domain, we adopted the following strategy: (1)
Construct the feature vectors for 20 million phrases using the web data (2) Run K-Means
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clustering on the phrases that appeared in the CoNLL training data to obtain K centroids
(3) Assign each of the 20 million phrases to the nearest centroid in the previous step.

[ys], [ys−1:s], [ys, wu]s+1
u=s−1, [ys−1:s, wu]s+1

u=s−1

[ys, sfx3u]s+1
u=s−1, [ys−1:s, sfx3u]s+1

u=s−1

{[ys, wtptu]s+1
u=s−1}

4
t=1, {[ys−1:s, wtp

t
u]
s+1
u=s−1}

4
t=1

[ys, wu−1:u]s+1
u=s, [ys−1:s, wu−1:u]s+1

u=s

{[ys, wtptu−1:u]
s+1

u=s
}3t=1, {[ys−1:s, wtp

t
u−1:u]

s+1

u=s
}3t=1

(1)

Here, s denotes a position in the input sequence; ys is a label that indicates whether
the token at position s is a named entity as well as its type; wu is the word at position
u; sfx3 is a word’s three-letter suffix. wtpt

4
t=1 are indicators of different word types; t=1

denotes punctuation, 2 denotes whether a word is upper cap, lower cap or all caps, 3
denotes a number, 4 denotes that the word has hyphen with different caps before and after
the token. Including word unigram features ( to capture abbreviated or partial form of
complete entities), (Lin and Wu, 2009) had 48 features.

3.3 Word Embeddings

Using pre-trained word embeddings has become a standard feature of NLP tasks includ-
ing NER. (Collobert et al., 2011) proposed a neural network architecture to construct
word-embeddings that forms the primary method to get vector representation of words for
training deep learning NLP models for NER. Word embeddings was pioneered by (Mikolov
et al., 2013a) who introduced the continuous bag-of-words and the skip-gram models to
build highly granular vector representation of words. Glove by (Pennington et al., 2014)
is another famous word embedding method which is based on word co-occurences. The
frequency matrix is factorised into a lower dimension by minimizing the reconstruction loss
after normalisation and smoothing the matrix. The (Mikolov et al., 2013a) method to
create word embeddings became widely adopted because this vector representation showed
compositionality. Compositionality corresponds to the property of linear semantic inference
eg. ‘Paris’-’France’ + ‘Italy’=’Rome’.

The CBOW and the continuous skip-gram are both log-linear language models but they
differ in a fundamental manner. The CBOW predicts the target word given its context.
However the continuous skip gram model predicts words before and after a target word
within a given window. The window of neighbouring words that is used as context for
the vector representation is a hyperparameter that needs to be optimised. Increasing the
window increases the accuracy of the language model but also increases the computational
complexity of factoring in distant words in the window. One of the main advantages of the
new log-linear models proposed by (Mikolov et al., 2013a) is that they eliminate the hidden
layer in feed-forward neural net language models thus reducing computational bottleneck of
the language model ie. an optimized single-machine implementation can train on more than
100 billion words in one day. (Mikolov et al., 2013b) further extended the original Skip-
gram model for faster training and better quality word representation. They introduced a
simple sub-sampling method to speed up the training process as well as ensure more accurate
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Figure 2: Diagram of the graph obtained from the vector representation of furniture and
data sense clusters related to the vector representation of the word ’table’ (eg.
ego network of ’table’) (Pelevina et al., 2017)

representation of less frequent words. The sub-sampling scheme is to discard each word wi
in the training set with probability computed by the formula P (wi) = 1−sqrt(/fractf(wi))

Where f(wi) is the frequency of the word wi and t is the chosen frequency threshold
(typically 10−5) above which words are sub-sampled significantly. Moreover, they replaced
the computationally inefficient softmax method in the output layer with 2 alternatives :1)
Hierarchical Softmax ( approximation of the full softmax) and 2) Noise Contrastive Esti-
mation (NCE). Negative Sampling or NCE was introduced by (Gutmann and Hyvärinen,
2012) and applied to language modeling by (Mnih and Teh, 2012).

There were caveats to extending the word embeddings to phrase embeddings ie. the
football club ‘Manchester City’ is not the same in meaning as the combination of the words
‘Manchester’ and ‘City’. Mikolov treated phrases as individual tokens in training the log-
linear language model. Other methods (Johnson and Zhang, 2015) have obtained the
n-gram representation from unlabelled data. Another issue with fixed word embeddings is
that it does not account for polysemy ie a single word can be represented by 2 different
vectors in 2 different contexts. Traditional word embedding methods such as Word2Vec
and Glove consider all the sentences where a word is present in order to create a global

7



vector representation of that word. However, a word can have completely different senses
or meanings in the contexts. For example, let’s consider these two sentences - 1) “The
enjoyed reading the novel over the weekend” 2) “Scientists have discovered a novel method
to treat cancer”. The word senses of ‘novel ’are different in these two sentences depending on
its context. Traditional word embedding methods like word2vec and glove provide the same
representation of ‘novel’ in both the contexts. (Upadhyay et al., 2017) used multilingual
data to add another dimension to multi-sense word embeddings. For example, the English
word bank, when translated to French provides two different words: banc and banque
representing financial and geographical meanings, respectively.

3.4 Character Embeddings

Character-level embeddings find usage in NER to capture the morphological features across
languages. Better results on morphologically rich languages are reported in certain NLP
tasks. (Santos and Guimaraes, 2015) applied character-level representations, along with
word embeddings for NER, achieving state-of-the-art results in Portuguese and Spanish
corpora. (Kim et al., 2016) showed positive results on building a neural language model
using only character embeddings. (Ma et al., 2016) exploited several embeddings, including
character trigrams, to incorporate prototypical and hierarchical information for learning pre-
trained label embeddings in the context of NER. Chinese is another morphologically rich
language in which character embeddings have shown better performance compared to word
embeddings for deep learning sequence labelling models (Zheng et al., 2013).

Word embeddings do not convey the semantic meaning and other internal information
that character embeddings provide. Hence character embeddings are able to deduce the
meaning of unknown words by mapping the meaning of such words to that of the com-
positional characters or sub-words. Therefore character embeddings solve the problem of
identifying out-of-vocabulary (OOV) words eg. words that are not present in the input
corpus for tasks like part-of-speech tagging and language modeling (Ling et al., 2015) or
dependency parsing (Ballesteros et al., 2015). Character embeddings provide a feasible
method to represent word types. Character embeddings have found widespread use as they
avoid the additional dimensions that are introduced to solve the OOV problem by strictly us-
ing word representations. Chen et al. (2015) shows that introducing character embeddings
to word embeddings in the Chinese language results in more informed word representation
eg. better results in word relatedness and analogical reasoning tasks. Character embeddings
also have the advantage of becoming relevant to the task, language and domain at hand
(Vosoughi et al., 2016; Saxe and Berlin, 2017). Bojanowski et al. (2017) tried to improve the
popular skip-gram method by representing words as bag-of-character n-grams. Therefore
their work solved the limitations of word embeddings with the efficient skip-gram model.
Their fastText library (Joulin et al., 2016, 2017) produces text classification models within
100kB without compromising on accuracy or speed. The typical architecture involved in
deriving word embeddings from characters initialises a character lookup table with random
representation of each character. The character embeddings of every character in the se-
quence then passes through forward and backward LSTMs. The character representations
from the biLSTM then concatenate with the word representation from a word lookup table.
The forward LSTM represents the suffix of the word while the backward LSTM represents
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Figure 3: Merging of the word and character embeddings of the word ’cat’ in a LSTM LM
(eg. language model) (Verwimp et al., 2017)

the prefix of the word. LSTM networks model long-range dependencies in temporal se-
quences better than traditional RNNs (Sak et al., 2014). However, LSTM networks do not
capture the semantic difference between the prefix and the suffix of a word that biLSTMs
do. Convolutional neural networks have also been proposed to discover position invariant
features of characters from words (?). Efficient word selection further tackles the issue of
non-compositional words or unknown words or ambiguous characters.

Apart from character embeddings, different approaches have been proposed for OOV
handling. (Herbelot and Baroni, 2017) provided an essential component of incremental
concept learning by initializing the unknown words as the greedy combination of the context
words and refining these words with a high learning rate. However, their approach is yet
to be tested on typical NLP tasks where the processing of context requires modulation.
Pinter et al. (2017) provided a character-based model that does not require re-training of
character embeddings from the original corpus thus saving processing time. This allowed
them to learn a compositional mapping form character to word embedding, thus efficiently
tackling the OOV problem.

Despite the ever growing popularity of distributional vectors, there are also limitations
of these vectors. For example, (Lucy and Gauthier, 2017) has recently tried to evaluate how
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well the word vectors predict the perceptual and conceptual features of distinct concepts,
using a semantic norms dataset that has been created by human participants as a bench-
mark. The authors have discovered severe limitations of distributional models in making
the fundamental understanding of the concepts behind the words. A possible direction for
mitigating these deficiencies will be grounded learning (Niekum et al., 2013).

3.5 Model Specification

3.5.1 Convolutional Neural Networks

CNNs found use in extracting feature vector representations from words (Collobert et al.,
2011) using a lookup table learned by backpropagation. CNNs therefore seemed to be the
natural choice in extracting higher order features from individual words in an input sequence
of variable length. There are 2 approaches : (1) window approach and (2) (convolutional)
sentence approach. The window approach assumes that the tag assigned to an individual
word depends on its context ( ie. words occurring before and after the given word). The
window approach is more suitable for sequence tagging tasks like NER.

f lθ = 〈LTW ([w]Tl )〉dwint =



〈W 〉l[w]t−dwin/2
.
.
.

〈W 〉l[w]t
.
.
.

〈W 〉l[w]t+dwin/2


(2)

f lθ = W lf l−1
θ + bl (3)

Here W l ∈ Rn
l
h×n

l−1
h and bl ∈ Rn

l
h are trained using backpropagation. Here nlh is a

hyper-parameter that indicates the number of hidden units in the lth layer. The fixed size
vector input can be passed through multiple linear transformation layers as shown above.
In order to capture the higher-order features from the input sequence, there are layers of
‘’hard” hyperbolic tangent functions. The “hard” hyperbolic tangent is computationally
efficient compared to the exact hyperbolic tangent function while preventing overfitting.
One caveat of the window feature is that the context of the words at the beginning and the
end of a sentence are not well-defined. Hence there are padding words half the size of the
window at both the beginning and the end of input sentences akin to the start and stop
indicators in sequence models.

[f lθ]i = HardTanh([f l−1
θ ]i) (4)
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Hardtanh(x) =


−1 if x < −1

x if − 1 ≤ x ≤ 1

1 if x > −1

(5)

The use of CNNs for sentence modeling traces back to (Collobert and Weston, 2008).
This work used multi-task learning to output multiple predictions for NLP tasks such as
POS tags, chunks, named-entity tags, semantic roles, semantically-similar words and a
language model. A look-up table was used to transform each word into a vector of user-
defined dimensions. Thus, an input sequence /s1 , s2 , ...sn / of n words was transformed
into a series of vectors /ws1 , ws2 , ...wsn / by applying the look-up table to each of its
words.

Figure 4: Example of a CNN architecture for medical text classification (Hughes et al.,
2017)

This can be thought of as a primitive word embedding method whose weights were
learned in the training of the network. In (Collobert et al., 2011), Collobert et al extended
their work to propose a general CNN-based framework to solve a plethora of NLP tasks.
Both these works triggered a huge popularization of CNNs amongst NLP researchers. Given
that CNNs had already shown their mettle for computer vision tasks, it was easier for people
to believe in their performance.

11



CNNs have the ability to extract salient n-gram features from the input sentence to
create an informative latent semantic representation of the sentence for downstream tasks.
This application was pioneered by (Collobert et al., 2011; Kalchbrenner et al., 2014; Kim,
2014) which led to a huge proliferation of CNN-based networks in the succeeding literature.
Below, we describe the working of a simple CNN-based sentence modeling network:

3.5.2 Recurrent Neural Network

Recurrent Neural Network (Elman, 1990) is another form of deep neural network architec-
ture. In general, CNNs are used to represent position-invariant functions (eg bag of words)
while RNNs represent a sequential architecture (eg. sentences, paragraphs etc.). It seems
obvious that RNNs would be more suitable for sequence modelling tasks like NER compared
to the hierarchical CNNs. While we saw that the window approach helps to tackle sequence
inputs in CNN, there is no way to model dependencies on context beyond that which is
fixed in cross-validation. RNNs help to capture dependencies on words or sentences beyond
the fixed range of CNNs. The simple RNN has no gating mechanism. RNN is a network
that is unfolded across time thus providing a spatial representation of memory. For a given
input, the RNN calculates a hidden state as follows:

[stθ,l]i = gθ,l([f
t
θ,l]i) (6)

[f tθ,l]i = W l[xtl ]i + [st−1
θ,l ]i (7)

Here [stθ,l]i is the hidden state at time t and layer l for the ith unit of the input sequence.

gθ,l is a nonlinear function ( eg. tanh etc.) at the layer which takes as input f tθ,l. [xtl ]i is

the ith unit ( word, sentence etc.) of the input sequence at time t and W l ∈ R
d
st
θ,l

×d
xt
l

are the weights that are learned through training. The hidden state in a simple RNN can
be considered its memory component. However, simple RNNs suffer from the vanishing
gradient problem that makes it difficult to learn the weights in the previous time steps
using backpropagation. Therefore simple RNNs are augmented with a gating mechanism
to overcome the convergence problem. RNN variants with gating mechanism that are most
popular in NER are long-short term memory (LSTM) and Gated Recurrent Units (GRUs).

3.5.3 Long Short Term Memory

The novelty of LSTM (Hochreiter and Schmidhuber, 1997) is that it is able to bridge long
time intervals (to quickly learn the slowly changing weights many time steps back eg. long
term memory) as well as preserve the recent inputs ( eg. short term memory). Moreover, the
LSTM architecture ensures constant re-weighting thus avoiding the explosion or vanishing
of error flow through the hidden states.

it = σ(xtU
i + ht−1W

i + bi) (8)

ft = σ(xtU
f + ht−1W

f + bf ) (9)
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ot = σ(xtU
o + ht−1W

o + bo) (10)

qt = tanh(xtU
q + ht−1W

q + bq) (11)

pt = ft × pt−1 + it × qt (12)

ht = ot × tanh(pt) (13)

LSTM has three gates: input gate it, forget gate ft and output gate ot that are outputs
of the sigmoid function over the input xt and the preceding hidden state ht−1. In order
to generate the hidden state at current step t, it first generates a temporary variable qt by
running the non-linear tanh function on the input xt and the previous hidden state ht−1.
The LSTM then calculates an updated history variable at time t pt as a linear combination
of the previous history state pt−1 and the current temporary variable qt scaled by the current
forget gate ft and the current input gate it respectively. Finally LSTM runs the tanh on pt
and scales it by the current output gate ot to get the updated hidden state ht .

Figure 5: a. General LSTM architecture b. One memory cell (Bakker, 2002)

While LSTM is good at approximating the dependency of the current unit of the se-
quence with previous units, it does not take into account the dependency of the current
unit on units to its right in the sequence. (Lample et al., 2016) solved this problem by
implementing a bi-directional LSTM (Graves and Schmidhuber, 2005). In other words,
there are 2 independent LSTMs that are trained separately using the segment of the input
sequence to the left and the right of the target word. The model gets the full representation
of the target word by concatenating the left and right context representations of the forward

and the backward LSTM respectively ie the hidden state ht = [
−→
h t;
←−
h t].

3.5.4 Gated Recurrent Unit

Gated Recurrent Unit (Cho et al., 2014) is a more recent and less complex variant of the
RNN compared to the LSTM.
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Figure 6: Vanilla RNN and GRU architecture (single unit shown for simplicity) with a
reset gate r (adjusts the incorporation of new input with the previous memory),
an update gate z (controls the preservation of the previous memory), current
hidden output ht and previous hidden output ht−1 (Zhao et al., 2017)

The GRU is similar to the LSTM as it modulates the error flow thus avoiding vanish-
ing gradients (Bengio et al., 1994). However, GRU has many crucial differences with the
LSTM. GRUs do not have separate memory cells like LSTMs. Therefore GRUs lack the
controlled exposure to the memory content (ie the output gate of LSTMs). Unlike LSTMs,
GRUs expose the full content without any control. Moreover, GRUs control the informa-
tion flow from the previous activation to the current, candidate activation. On the other
hand, LSTMs compute the latest memory content without any control over the historical
information flow. The GRU works using the following equations:

hjt = (1− zjt )h
j
t−1 + zjt h̄

j
t (14)

zjt = σ(Wzxt + Uzht−1) (15)

h̄jt = tanh(Wxt + U(rt � ht−1)) (16)

rjt = σ(Wrxt + Urht−1) (17)

hjt is the activation of the GRU at level j at time t. h̄jt is the candidate activation of the
GRU (Bahdanau et al., 2014) at level j at time t. The update gate zjt decides how much
the unit updates its activation. The reset gate rjt is computed similar to the update gate.

3.5.5 Results

Tables 1 and 2 show the F1 scores of state of the art neural network models in chronological
order for NER on the dev as well as test data set from CoNLL-2003 shared task and the
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OntoNotes 5.0 NER task (English). Tables 3 4 show the F1 scores of the state of the art
models for the CoNLL 2002 Spanish and Dutch NER shared tasks.

Model
CoNLL-2003 OntoNotes 5.0

Prec. Recall F1 Prec. Recall F1

Collobert et al.
(2011)

- - 88.67 - - -

Collobert et al.
(2011)+lexicon

- - 89.59 - - -

Huang et al.
(2015)

- - 84.26 - - -

Huang et al.
(2015)+Senna +
gazetteer

- - 90.10 - - -

Chiu and Nichols
(2015)

83.48 83.28 83.28(± 0.20) 82.58 82.49 82.53(± 0.40)

Chiu and Nichols
(2015) + emb

90.75 91.08 90.91(± 0.20) 85.99 86.36 86.17(± 0.22)

Chiu and Nichols
(2015) + emb +
lex

91.39 91.85 91.62(± 0.33) 86.04 86.53 86.28(± 0.26)

Ma and Hovy
(2016)

- - 91.37 - - -

Lample et al.
(2016) (Bi-
LSTM)

- - 89.15 - - -

Lample et al.
(2016) (Bi-
LSTM-CRF)

- - 90.94 - - -

Hu et al. (2016) - - 91.18 - - -

Table 1: Table to test captions and labels

There are 22 model results in Tables 1 and 2 while there are 8 model results in Tables
3 and 4. For the purpose of presentation, the neural models are divided into 2 tables with
11 results in each table. Tables 3 and 4 show the F1 scores of the linear and the log-linear
models ( ie. does not involve neural networks) for NER. The latest NER model that does
not have any form of neural network in its architecture was produced in 2015. All the
NER models that have produced state of the art results since 2015 use neural network
architecture. Therefore, it is unlikely that linear methods will be able to compete with the
results produced by deep learning models for NER and other sequence tagging tasks.

It is also clear from Table 1 that the use of character-level and word-level knowledge
( eg. gazetteers, benchmark corpus like (Chelba et al., 2013), LM ie language model)
benefits neural models. Specifically word embeddings (Mikolov et al., 2013a; Pennington
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Model
CoNLL-2003 OntoNotes 5.0

Prec. Recall F1 Prec. Recall F1

Yang et al. (2016)
- no word embed-
dings

- - 77.20 - - -

Yang et al. (2016)
- no char GRU

- - 88.00 - - -

Yang et al. (2016)
- no gazetteer

- - 90.96 - - -

Yang et al. (2016) - - 91.20 - - -

Rei (2017) - - 87.38(±0.36) - - -

Strubell et al.
(2017)

- - 90.54 - - -

Yang et al. (2017) - - 91.20 - - -

Yang et al.
(2017) + CoNLL
2000/PTB-POS

- - 91.26 - - -

Peters et al.
(2017)(word
embedding)

- - 90.87(±0.13) - - -

Peters et al.
(2017)(LM em-
bedding)

- - 90.79(±0.15) - - -

Peters et al.
(2017) + 1B
Word dataset

- - 91.62(±0.23) - - -

Peters et al.
(2017) + 1B
Word dataset +
4096-8192-1024

- - 91.93(± 0.19) - - -

Table 2: Table to test captions and labels

et al., 2014) and sub-word or character embeddings are used as additional features to the
input text corpus for co-training.

Moreover, most of the recent LSTM models (eg. LSTM-CRF (Huang et al., 2015;
Lample et al., 2016), LSTM-CNNs (Chiu and Nichols, 2015)) utilize syntax (eg. character
type, capitalization), lexicon, context, POS features as well as preprocessing to suit the NER
task. ? achieved a high F! score (91.2) by using hand-crafted features like word, character,
POS, chunk and stemmed n-grams, Brown and WordNet clusters as well as dictionaries
from external knowledge bases like Wikipedia and Freebase.

Such additional information also finds use as pre-trained embeddings to downstream
models. Although the pre-trained models are not task-specific, they improve the perfor-
mance of NER models. For example, ? reports a significant improvement (Wilcoxon
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Model
CoNLL-2003 OntoNotes 5.0

Prec. Recall F1 Prec. Recall F1

Chieu and Ng
(2002)

- - 88.31 - - -

Florian et al.
(2003)

- - 88.76 - - -

Ando and Zhang
(2005)(dev)

- - 93.15 - - -

Ando and Zhang
(2005)(test)

- - 89.31 - - -

Finkel et al.
(2005)

95.10 78.30 85.90 - - -

Suzuki
and Isozaki
(2008)(dev)

- - 94.48 - - -

Suzuki
and Isozaki
(2008)(test)

- - 89.92 - - -

Table 3: Table to test captions and labels

Model
CoNLL-2003 OntoNotes 5.0

Prec. Recall F1 Prec. Recall F1

Ratinov and
Roth (2009)

91.20 90.50 90.80 82.00 84.95 83.45

Lin and Wu
(2009)

- - 90.90 - - -

Finkel and Man-
ning (2009)

- - - 84.04 80.86 82.42

Suzuki et al.
(2011)

- - 91.02 - - -

Sil and Yates
(2013)

86.80 89.50 88.20 - - -

Passos et al.
(2014)

- - 90.90 - - 82.24

Durrett and
Klein (2014)

- - - 85.22 82.89 84.04

Luo et al. (2015)
(NER features)

90.00 89.90 89.90 - - -

Luo et al. (2015)
(NER + EL fea-
tures)

91.50 91.40 91.20 - - -

Table 4: Table to test captions and labels
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ranked sum test, p ¡ 0.001) when they train their model with word embeddings (Collobert
et al., 2011) compared to random embeddings regardless of the additional features used
for training. Co-training strategies are more favorable compared to pre-training strategies
since the former requires a less complex neural network compared to the latter. Therefore
co-training is more efficient because it does not require any additional corpus and hence the
training time is also less.

Model
CoNLL
2002
Dutch
NER

CoNLL
2002
Spanish
NER

F1 (%) F1 (%)

Carreras et al.
(2002)

77.05 81.39

Nothman et al.
(2013)

78.60 -

Gillick et al.
(2015)

82.84 82.95

Lample et al.
(2016)

81.74 85.75

Yang et al. (2016)
- no word embed-
dings

67.36 73.34

Yang et al. (2016)
- no char GRU

77.76 83.03

Yang et al. (2016) 85.00 84.69

Yang et al. (2016)
+ joint training

85.19 85.77

Table 5: Table to test captions and labels

Efforts to increase NER F1 score by pre-training, co-training or joint training hss come
at a cost. With respect to a generic neural network architecture, additional training layers
significantly increases the complexity and the training time of the NER models making
the use of these models difficult in practice. Strubell et al. (2017) introduced the use of
dilated convolutions that gave close to state of the art results while improving efficiency
over existing models by processing a larger input window at a time to model context in
a parallelized manner. Another aspect that is evident from Table 1 is that CRF is very
suitable as the output layer of neural network NER models.
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Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from scratch. Journal of machine
learning research, 12(ARTICLE):2493–2537, 2011.

20



Alessandro Cucchiarelli and Paola Velardi. Unsupervised named entity recognition using
syntactic and semantic contextual evidence. Computational Linguistics, 27(1):123–131,
2001.

Gerald Francis DeJong et al. Skimming stories in real time: An experiment in integrated
understanding. Technical report, YALE UNIV NEW HAVEN CONN DEPT OF COM-
PUTER SCIENCE, 1979.

George R Doddington, Alexis Mitchell, Mark A Przybocki, Lance A Ramshaw, Stephanie M
Strassel, and Ralph M Weischedel. The automatic content extraction (ace) program-tasks,
data, and evaluation. In Lrec, volume 2, pages 837–840. Lisbon, 2004.

Greg Durrett and Dan Klein. A joint model for entity analysis: Coreference, typing, and
linking. Transactions of the association for computational linguistics, 2:477–490, 2014.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A Smith.
Transition-based dependency parsing with stack long short-term memory. arXiv preprint
arXiv:1505.08075, 2015.

Michael G Dyer and Uri Zernik. Encoding and acquiring meanings for figurative phrases.
In 24th Annual Meeting of the Association for Computational Linguistics, pages 106–111,
1986.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Hakan Erdogan. Sequence labeling: Generative and discriminative approaches. ICMLA,
2010.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked, Stephen
Soderland, Daniel S Weld, and Alexander Yates. Unsupervised named-entity extraction
from the web: An experimental study. Artificial intelligence, 165(1):91–134, 2005.

Richard Evans and Stafford Street. A framework for named entity recognition in the open
domain. Recent advances in natural language processing III: selected papers from RANLP,
260(267-274):110, 2003.

Jenny Rose Finkel and Christopher D Manning. Joint parsing and named entity recognition.
In Proceedings of Human Language Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, pages 326–
334, 2009.

Jenny Rose Finkel, Trond Grenager, and Christopher D Manning. Incorporating non-local
information into information extraction systems by gibbs sampling. In Proceedings of the
43rd Annual Meeting of the Association for Computational Linguistics (ACL’05), pages
363–370, 2005.

Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong Zhang. Named entity recogni-
tion through classifier combination. In Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003, pages 168–171, 2003.

21



Yoav Freund and Robert E Schapire. Large margin classification using the perceptron
algorithm. Machine learning, 37(3):277–296, 1999.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag Subramanya. Multilingual language
processing from bytes. arXiv preprint arXiv:1512.00103, 2015.

Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirectional
lstm and other neural network architectures. Neural networks, 18(5-6):602–610, 2005.

Ralph Grishman and Richard Kittredge. Analyzing language in restricted domains: sublan-
guage description and processing. Psychology Press, 2014.

Ralph Grishman and Beth M Sundheim. Message understanding conference-6: A brief his-
tory. In COLING 1996 Volume 1: The 16th International Conference on Computational
Linguistics, 1996.

Michael U Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of unnormalized
statistical models, with applications to natural image statistics. The journal of machine
learning research, 13(1):307–361, 2012.

James Hammerton. Named entity recognition with long short-term memory. In Proceedings
of the seventh conference on Natural language learning at HLT-NAACL 2003, pages 172–
175, 2003.
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