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We show that for each topological space X there is a topological space Y such that the quotient
space G\Y of Y by the action of the automorphism group G of Y is homeomorphic to X.

For each topological space Y write Y∗ for the quotient space of Y by the action
of the automorphism group of Y .

Theorem 1. For each topological space X there is a topological space Y such that
Y∗ is homeomorphic to X.

Warning: In this text we interpret the following mathematical notions literally:
We regard an ordinal α as the set of ordinals less that α, we regard a cardinal as a
particular ordinal, and we regard the elements of the quotient Q = Z/∼ of a set Z
by an equivalence relation ∼ as being the equivalence classes — in particular each
element of Q has a well defined cardinality.

To each couple (S, α) where S is an infinite set and α an ordinal we will attach a
topological space X = Ξ(S, α) such that X∗ is homeomorphic to the set α equipped
with the codiscrete topology.

The set X on which the topology will be defined is the disjoint union

X :=
⊔
β<α

Sβ+1.

The orbits of Aut(X) in X will be the Sβ+1, and each of them will be dense. We
can assume α ≥ 1.

We will define a preorder ≤, and then a topology τ on X. We will denote
respectively by Aut(X), Aut(X,≤) and Aut(X, τ) the group of all bijections
X → X, the group of all automorphisms of the preordered set X, and the group of
all automorphisms of the topological space X. Consider also the group G of all
families (gβ)β<α, where each gβ is a bijection S → S, and the injective morphism
i : G→ Aut(X) be defined by

i(g)(x) = (gγ(xγ))γ<β+1 ∀ x ∈ Sβ+1.

Then Aut(X,≤), Aut(X, τ) and i(G) are subgroups of Aut(X). These three
subgroups will turn out to coincide.
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We define ≤ by decreeing that, given

x = (xδ)δ<β+1 ∈ Sβ+1 and y = (yδ)δ<γ+1 ∈ Sγ+1,

we have x ≤ y if and only if β = 0 or

β ≤ γ and x = (yδ)δ<β+1.

One checks that this is indeed a preorder, that i(G) is contained in Aut(X,≤), and
more precisely, that i(G) is the subgroup of all those elements of Aut(X,≤) which
preserve the Sβ+1.

We claim that the inclusion i(G) ⊂ Aut(X,≤) is an equality:

i(G) = Aut(X,≤). (1)

Let g be in Aut(X,≤) and x be in Sβ+1 with β < α. It suffices to show gx ∈ Sβ+1.
If β = 0 this is clear because S is the set of those elements x of X which satisfy:

(∀y ∈ X) (y ≤ x =⇒ x ≤ y).

If 0 < β < α set
Xx := {y ∈ X \ S | y < x} ∪ {s},

where s is a fixed element of S ⊂ X. Then the preordered set Xx is in fact a totally
ordered set isomorphic to the ordinal β. This implies gx ∈ Sβ+1 as desired. As a
result,

the Sβ+1 are the orbits of Aut(X,≤) in X. (2)

There is a unique topology τ on X such that the closed subsets of X are precisely
the intersections of finitely generated upward closed subsets of X. We write Ξ(S, α)
for the topological space obtained by equipping X with the topology τ . Let
f : X → α be the map sending x ∈ Sβ+1 to β.

Proposition 2. The topological space Ξ(S, α)∗ is codiscrete. The map f induces
a bijection Ξ(S, α)∗ → α. The set S is the unique maximal codiscrete subspace of
Ξ(S, α) having at least two points.

Proof. Since
the Sβ+1 are dense in X, (3)

it only remains to show
Aut(X,≤) = Aut(X, τ). (4)

We have Aut(X,≤) ⊂ Aut(X, τ) because τ is defined in terms of ≤. But, since ≤
can be recovered from τ because we have x ≤ y if and only if y is in the closure of
{x}, Equality (4) holds. Proposition 2 follows from (1), (2), (3) and (4).

2



Let now X be an arbitrary topological space. For x, x′ ∈ X write x ∼ x′ if
x and x′ have the same closure. This is an equivalence relation. We denote the
quotient by Q, i.e. Q := X/∼; recall that we regard each element Γ of Q as being
literally an equivalence class in X. The proof of Theorem 1 will involve some basic
properties of the canonical projection q : X → Q. We state these properties below.
The proofs are straightforward and left to the reader.

The map q : X → Q is surjective, continuous and closed. We have q−1(Γ) = Γ
for all Γ ∈ Q [the first Γ is viewed as an element of Q, the second as a subset of
X]. If R is a subset of Q, then q−1(R) =

⋃
Γ∈R Γ. Write CX and CQ for the set of

closed subsets of X and of Q, and denote by

CX CQ
q−1

q∗

the direct and inverse image maps. Then these two maps are inverse bijections
compatible with finite unions and arbitrary intersections. If C ∈ CX then we have
C =

⋃
Γ⊂C Γ. Using the general notation A := closure of A, we have

q∗
(
Z
)

= q∗(Z) and
⋃
Γ∈R

Γ = q−1
(
R
)

= q−1(R)

for Z ⊂ X and R ⊂ Q. For x ∈ Γ ∈ Q we have

{x} = Γ = q−1
(
{Γ}

)
=
⋃

∆⊂Γ

∆.

If moreover x′ ∈ Γ′ ∈ Q then we have

Γ ⊂ Γ′ ⇐⇒ x ∈ {x′} ⇐⇒ Γ ∈ {Γ′},

as well as
Γ 6= Γ′ ⇐⇒

(
Γ ∩ Γ′ = ∅ or Γ ∩ Γ′ = ∅

)
. (5)

Write |T | for the cardinality of any set T . For each Γ ∈ Q choose a bijection

φΓ : |Γ| → Γ

[here |Γ| denotes the cardinality of Γ viewed as a subset of X]; choose also an
infinite set SΓ in such a way that Γ 6= ∆ implies |SΓ| 6= |S∆|; and set

YΓ := Ξ(SΓ, |Γ|).

Let the set [not the topological space] Y be the disjoint union of the YΓ, and define
f : Y → X by mapping y ∈ (SΓ)β+1 ⊂ YΓ ⊂ Y to φΓ(β) ∈ Γ ⊂ X.
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For any subset A of Y and any equivalence class Γ ∈ Q set AΓ := A ∩ YΓ, so
that we get A =

⊔
ΓAΓ. It is easy to see that there is a unique topology on Y such

that a subset A of Y is closed if and only if the two conditions below hold

• AΓ is closed in YΓ := Ξ(SΓ, |Γ|) for all Γ ∈ Q,

• the set {Γ ∈ Q | AΓ = YΓ} is closed in Q.

We equip Y with this topology.

Note 3. (a) The topology induced on YΓ coincides with that of Ξ(SΓ, |Γ|).
(b) Let y be in YΓ ⊂ Y . If y is in SΓ, then {y} is dense in YΓ, and we have

{y} = SΓ = YΓ =
⊔

∆⊂Γ

Y∆.

If y is not in SΓ, then {y} is not dense in YΓ, and the closures of {y} in YΓ and in
Y coincide.

(c) In particular two distinct points y, y′ ∈ Y have the same closure in Y if and
only if y, y′ ∈ SΓ ⊂ YΓ for some Γ ∈ Q, and thus

(d) the SΓ are the only maximal codiscrete subsets of Y having at least two points.

Proof of Theorem 1. Let G be the group of all homeomorphisms g : Y → Y . It
suffices to show that the orbits of G coincide with the fibers of f : Y → X. It
is even enough to prove that any G-orbit is contained in some fiber of f , that is,
given g ∈ G and y ∈ Y , it suffices to check f(gy) = f(y).

If f(gy), f(y) ∈ Γ for some Γ ∈ Q, then the result follows from Proposition 2
and Note 3a. It remains to show that the case

f(y) ∈ Γ, f(gy) ∈ Γ′, Γ 6= Γ′ (6)

is impossible. Assume by contradiction that (6) holds. By (5) we have Γ ∩ Γ′ = ∅
or Γ ∩ Γ′ = ∅ and we can assume the latter. This implies f(gy) /∈ Γ, and thus
gy /∈ YΓ in view of Note 3b. To derive the desired contradiction it suffices to show

gYΓ ⊂ YΓ. (7)

We have
gSΓ ⊂ SΓ. (8)

Indeed, since the S∆, for ∆ ∈ Q, are the maximal codiscrete subspaces of Y having
at least two points by Note 3d, they are permuted by g, and, since they have
distinct cardinalities, each of them is preserved by g. Now (7) follows from (8)
coupled with the equality SΓ = YΓ contained in Note 3b.
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