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Abstract

This paper gives the simple and necessary condition of Fermat Wiles Theorem with mainly
providing one method to analyze natural numbers and the formula Xn + Y n = Zn log-
ically and geometrically, which is positioned in combinatorial design theory. The condi-
tion is gcd(X,E)n = X − E ∧ gcd(Y,E)n = Y − E in ¬(n | XY ), or gcd(X,E)n/n =
X −E ∧ gcd(Y,E)n = Y −E in n | X ∧¬(n | Y ). Provided that E denotes E = X + Y −Z,
n is a prime number equal to or more than 2, and X,Y, Z are coprime numbers.

1 Introduction

Many people offer a silent prayer as if they did for victims of COVID-19 on this day morning,
August 6th in Japan. In many countries, this disaster seems also man-made, if not, errors com-
mitted. To minimize the damage, the author believe that the answer is not difficult, hoping that
not only a few people but as many people as possible stand on the first step of the road of seeking
the truth. Most of scholars know that this attitude or principle is the basis of science too. In
my past development of words automated categorizing software, just obeying the principle like a
normal scientist, and doing research for computer science, foundations of mathematics, reasonable
philosophy, linguistics, etc., my understanding of general thinking method was sophisticated as
below. Then the author was motivated to apply the method to mathematics, especially for Fermat
Wiles Theorem [1].

When we think something, we call the thing by an object. We can not think explicitly without
an object. If an object is only one, our thought does not advance, therefore at least two objects are
needed. We call some connection, which is not these objects and breaks each mutual independence
of these objects, by a relation. If no relation exists, also our thought does not advance. Therefore,
to think needs at least two objects and these relation. If we grasp our thought by the paradigm of
objects and relations, we can grasp features, comparison, decomposition, abstraction, and classifi-
cation of objects, or proposition and inference, or set and map, by this paradigm as well. Namely
thinking and understanding mean finding objects and clarifying mutual relations. Moreover, the
essence of an object is only in the relations between others, and ultimately the entity, which at least
we can recognize rationally, of an object is the relations of others∗, for example in mathematics,
x = 1− 1 and x2 = −1.

At a glance, Cantor succeeded to grasp features and abstract mathematical objects to sets,
but in fact sets are only the basis for describing the relations between elements or sets. Hilbert
put them into the paradigm of theories. He said “We think of these points, straight lines, and
planes as having certain mutual relations, which we indicate by means of such words as ‘are
situated,’ ‘between,’ ‘parallel,’ ‘congruent,’ ‘continuous,’ etc. The complete and exact description
of these relations follows as a consequence of the axioms of geometry.” in [2]. In this way, modern
axiomatism is mostly equal to defining relations expressly, and objects become only sign or mark
of joint or container for relations like pronouns or algebraic symbols.

This idea, which concentrates on the importance of relations, was also appeared in Descartes.
He said “These subjects, although objects are different, think only a variety of relations, in other
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words only proportions, which are found in these subjects”, and also said “we can borrow all
the advantages from geometric analysis and algebra, and all the disadvantages of either can be
corrected by the other one” in [3]. It means that algebraic geometry can deepen the understanding
of both geometric analysis and algebra by these mutual complementary relations.

From the philosophy above, general thinking method which is centered on relations, we consider
Fermat Wiles Theorem. When we analyze natural numbers and the formula Xn + Y n = Zn, we
need to find the other objects which have strong relations with them and support our understanding
on them. Once we find the objects, we just need to concentrate on seeking the relations between
all of them, and repeat this thinking operation for finding new objects and relations. By this policy
for seeking, as the result in this paper we see geometric structures positioned in design theory of
combinatorics. “Combinatorial design theory is the study of arranging elements of a finite set into
patterns (subsets, words, arrays) according to specified rules.”, cited from [5].

2 Deformation of Formula by Combinatorics
Theorem 2.1 When Xn + Y n = Zn holds, decomposing each power by multinomial theorem and
subtracting equal terms from both sides, then if we set E = X+Y −Z, X ′ = X−E, and Y ′ = Y −E,
the left side Xn + Y n remains En and the right side Zn remains

∑n−2
r=0 nCrE

r{(X ′ + Y ′)n−r −
X ′n−r − Y ′n−r}. Therefore,

En =
n−2∑
r=0

nCrE
r{(X ′ + Y ′)n−r −X ′n−r − Y ′n−r} (2.0.1)

holds.

Proof We think general finite set G. Gn is that its number of elements is n. We should note
that finite is equivalent to the fact that the set has one-to-one correspondence with a subset of
natural numbers, which has the max value.

For simple expression, we think Nn as 1 to n, a subset of natural numbers, and we take a
one-to-one correspondence between Gn and Nn. With the correspondence, we write the elements
of Gn as en1 to enn.

We also adopt the same rule to X as n. Then we think mappings fx : Gn 7→ GX , and a set QX

has all fx as its elements. We should note that fx is what we call a duplicate permutation, or we
can also say a categorized pattern of Gn by GX .

We think a coordinate set

SX = {(x1, x2, · · · , xX) | 0 ≤ xi ≤ n ∧ x1 + x2 + · · ·+ xX = n},

and a mapping gx : QX 7→ SX with being determined by xi = |f−1
x (eX i)|. Provided that the mark

| | means a number of elements.
gx is surjection. Hence for s ∈ SX , we think a set QX,s = g−1

x (s), and

| QX,s | = n!

x1!x2! · · · · · xX !

holds. This is a coefficient of multinomial theorem, therefore

Xn =
∑
s∈SX

| QX,s | = | QX |

holds.
The discussion above can be adapted to Y and Z as well as X. See Figure 1. Therefore if a

simply sum set QX+QY and QZ have one-to-one correspondence, Xn+Y n = Zn holds. Oppositely
and more importantly, if Xn + Y n = Zn holds, because of QX ∩ QY = ∅ and QX , QY , QZ being
finite sets, the numbers of elements of QX +QY and QZ are equal. Therefore QX +QY and QZ

have one-to-one correspondence depending on their finiteness.
If Z ≥ X+Y holds, because of Zn ≥ (X+Y )n > Xn+Y n, it is contradict. Therefore Z < X+Y

holds. Also Z > X,Y > 0, therefore 2Z > X + Y > 0 holds. From these inequalities, we should
note Z > E > 0. We should also note X ′ = X − E = Z − Y > 0 and Y ′ = Y − E = Z −X > 0.
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Figure 1: Related Objects

Next, see Figure 2. We think about the related objects of E,X ′, Y ′ as well as X,Y, Z. Then
we make correspondence of SX and SZ by arranging their coordinates left justified from their
starts x1 and z1. Also we make correspondence of SY and SZ by arranging their coordinates right
justified from their ends yY and zZ . Also we make correspondence of SX′ and SZ by arranging
their coordinates left justified from their starts x

′

1 and z1. Also we make correspondence of SY ′

and SZ by arranging their coordinates right justified from their ends y
′

Y ′ and zZ . Also we make
correspondence of SE and SZ by arranging their coordinates with transitivity rule holding, as SE

and SY correspond by arranging their coordinates left justified from their starts e1 and y1, and
SE and SX correspond by arranging their coordinates right justified from their ends eE and xX .
We should note that SX and SX′ , and SY and SY ′ have also naturally defined correspondence by
transitivity rule, SZ mediating.

Although we can grasp this correspondence relations geometrically in multidimensional Carte-
sian coordinate space, it is not much helpful for us to think the relations logically. On the other
hand, when we think the relations as in Figure 2, they can be seen easily as geometrical congruence
or parallel translation of lattice points, and help us think logically and geometrically.

More details about Figure 2, each component corresponds to each lattice point on SZ , SX , SY ,
SX′ , SY ′ , SE main lines, and each number of the components corresponds to the same number of
lattice points on each sub-line which belongs to and comes out from each lattice point on main
lines. As the result, s ∈ S corresponds to n lattice points on sub-lines, but not on main lines. It
is no problem for us to think each SZ , SX , SY , SX′ , SY ′ , SE simply in two-dimensional Cartesian
coordinate plane.

This geometric structures can be positioned in design theory of combinatorics, especially being
related to finite geometry and block design.

We think the elements of SZ which do not correspond to the elements of SX or SY , and call
them a set S(Z−X∪Y )inZ . Also we think the elements of SZ which do not correspond to the elements
of SX , and call them a set S(Z−X)inZ . Also we think the elements of SZ which do not correspond to
the elements of SY , and call them a set S(Z−Y )inZ . Then S(Z−X∪Y )inZ = S(Z−X)inZ ∩ S(Z−Y )inZ

holds.
We think the elements of SZ which have at least one component having equal to or more

than 1 both in z1 to zX and zX+1 to zZ , and call them a set SX,Y ′inZ . Also we think the
elements of SZ which correspond to the elements of SY ′ , and call them a set SY ′inZ . Then
S(Z−X)inZ = SY ′inZ +SX,Y ′inZ holds. As well as this, S(Z−Y )inZ = SX′inZ +SY,X′inZ also holds.

We think the elements of SZ which have at least one component having equal to or more than 1
both in z1 to zX′ and zX+1 to zZ , and call them a set SX′,Y ′inZ . We should note that the elements
of SX′,Y ′inZ can have components having equal to or more than 1 in zX′+1 to zX .

From the above,

S(Z−X∪Y )inZ = S(Z−X)inZ ∩ S(Z−Y )inZ = (SY ′inZ + SX,Y ′inZ) ∩ (SX′inZ + SY,X′inZ).

Since SY ′inZ ∩ (SX′inZ + SY,X′inZ) = (SY ′inZ + SX,Y ′inZ) ∩ SX′inZ = ∅,

(SY ′inZ + SX,Y ′inZ) ∩ (SX′inZ + SY,X′inZ) = SX,Y ′inZ ∩ SY,X′inZ

holds.
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Figure 2: Correspondence Relations

If s ∈ SX′,Y ′inZ , s ∈ SX,Y ′inZ and s ∈ SY,X′inZ , therefore SX′,Y ′inZ ⊂ SX,Y ′inZ ∩ SY,X′inZ .
Oppositely, if s ∈ SX,Y ′inZ ∩ SY,X′inZ , s has at least one component having equal to or more
than 1 both in z1 to zX′ and zX+1 to zZ , therefore SX,Y ′inZ ∩ SY,X′inZ ⊂ SX′,Y ′inZ . Hence
SX,Y ′inZ ∩ SY,X′inZ = SX′,Y ′inZ holds. From this, S(Z−X∪Y )inZ = SX′,Y ′inZ holds.

Next we think the elements of SZ which correspond to the elements of SX , and call them a
set SXinZ . As well as this, SY inZ and SEinZ are defined. In addition to these sets, we define
S(X∪Y )inZ = SXinZ ∪ SY inZ and S(X∩Y )inZ = SXinZ ∩ SY inZ .

Then S(Z−X∪Y )inZ = SZ − S(X∪Y )inZ = SZ − (SXinZ + (SY inZ − S(X∩Y )inZ)) holds. Since
S(X∩Y )inZ = SEinZ , S(Z−X∪Y )inZ = SZ−(SXinZ+(SY inZ−SEinZ)) holds. Therefore SX′,Y ′inZ =
SZ − (SXinZ + (SY inZ − SEinZ)) holds.

By the reverse mapping g−1
z from SZ to QZ , we think the reverse images of SXinZ , SY inZ , SEinZ ,

SX′,Y ′inZ , and call them QXinZ , QY inZ , QEinZ , QX′,Y ′inZ . Since gz is a mapping, QX′,Y ′inZ =
g−1
z (SX′,Y ′inZ) = g−1

z (SZ − (SXinZ + (SY inZ − SEinZ))) = QZ − (QXinZ + (QY inZ − QEinZ))
holds. Therefore QX′,Y ′inZ = QZ − (QXinZ + (QY inZ − QEinZ)) holds, and then |QX′,Y ′inZ | =
|QZ | − |QXinZ | − |QY inZ |+ |QEinZ | holds.

Now we should recall that Xn + Y n = Zn, and QX +QY and QZ have one-to-one correspon-
dence, therefore |QX′,Y ′inZ | = |QX |+ |QY | − |QXinZ | − |QY inZ |+ |QEinZ | holds. We should note
that QX and QXinZ are different sets. Also QY and QY inZ are different sets. Also QE and QEinZ

are different sets. But each pair of sets has the same number of elements.
As the result, we can know that

|QE | = |QX′,Y ′inZ | (2.0.2)

is a necessary condition. We should note that |QE | is derived from Xn + Y n and |QX′,Y ′inZ | is
derived from Zn. In other words, by thinking S(X∪Y )inZ as a standard, the overlapped elements of
SX and SY are SE , namely QE , and the exceeded elements of SZ are SX′,Y ′inZ , namely QX′,Y ′inZ .

Now |QE | = En. Next we think |QX′,Y ′inZ |. For s ∈ SX′,Y ′inZ , |g−1
z (s)| = n!

z1!z2!· ··· ·zZ ! holds.
And then it can be divided into three parts,

n!

z1!z2! · · · zZ !
=

n(n− 1) · · · (r + 1)

(n− r)(n− r − 1) · · · 2 · 1
· (n− r)(n− r − 1) · · · 2 · 1

z1! · · · zX′ ! · zX+1! · · · zZ !
· r(r − 1) · · · 2 · 1

zX′+1! · · · zX !
.

Provided that we call the sum of components of SEinZ as r, in other words, r = zX′+1+ · · · + zX .
Now SX′,Y ′inZ can be divided into the cases of 0 ≤ r ≤ n − 2 in SEinZ . We should note that

an element s of SX′,Y ′inZ has at least one component having equal to or more than 1 both in z1
to zX′ and zX+1 to zZ , therefore r can not be n− 1 and n. For each case of r, it is equivalent to
the case that the sum of components of SX′inZ and SY ′inZ has n− r, however being excluded the
two cases that only SX′inZ has n− r and only SY ′inZ has n− r.
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Therefore, about |QX′,Y ′inZ | =
∑

|g−1
z (s)|, we can first take the sum by r = zX′+1+ · · · + zX ,∑ r(r − 1) · · · 2 · 1
zX′+1! · · · zX !

= Er

holds. Next we can take the sum by n− r = z1 + · · · + zX′ + zX+1 + · · · + zZ ,∑ (n− r)(n− r − 1) · · · 2 · 1
z1! · · · zX′ ! · zX+1! · · · zZ !

= (Z − E)n−r − (X − E)n−r − (Y − E)n−r

holds.
It is clear that n(n−1) ··· (r+1)

(n−r)(n−r−1) ··· 2·1 = nCr, therefore

|QX′,Y ′inZ | =

n−2∑
r=0

nCrE
r{(Z − E)n−r − (X − E)n−r − (Y − E)n−r}

holds. From the above, En =
∑n−2

r=0 nCrE
r{(X ′ + Y ′)n−r −X ′n−r − Y ′n−r} holds.

□

The equivalence between two formulas is easy to be proved by elementary deformation with
binomial theorem as the following, however it is difficult to understand the meaning or the value
of the formula without demonstration of THEOREM 2.1. This is the complementary effectiveness
of the logical operations in the geometric structures. It gives us strong motivation and hints for
additional seeking on the formula.

Theorem 2.2 When we set E = X + Y − Z, X ′ = X − E, Y ′ = Y − E,

Xn + Y n = Zn ⇔ En =

n−2∑
r=0

nCrE
r{(X ′ + Y ′)n−r −X ′n−r − Y ′n−r}

Proof

0 = Zn −Xn − Y n = (Z − E + E)n − (X − E + E)n − (Y − E + E)n

=
n∑

r=0

nCrE
r{(Z − E)n−r − (X − E)n−r − (Y − E)n−r}

= nCnE
n(−1) + nCn−1E

n−1{(Z − E)− (X − E)− (Y − E)}

+

n−2∑
r=0

nCrE
r{(Z − E)n−r − (X − E)n−r − (Y − E)n−r}

= −En + nEn−1(Z + E −X − Y )

+
n−2∑
r=0

nCrE
r{(Z − E)n−r − (X − E)n−r − (Y − E)n−r}

holds. Therefore En =
∑n−2

r=0 nCrE
r{(X ′ + Y ′)n−r −X ′n−r − Y ′n−r}.

□

3 Preparations for Analysis
Lemma 3.1 When n is a prime number equal to or more than 2, E ≡ 0 (mod n) holds.

Proof If E ̸≡ 0 (mod n) holds, En ≡ E ≡
∑n−2

r=0 nCrE
r{(X ′+Y ′)n−r −X ′n−r −Y ′n−r} (mod n).

When 1 ≤ r ≤ n−2, nCr ≡ 0 (mod n) holds. Therefore E ≡ (X ′+Y ′)n−X ′n−Y ′n (mod n) holds.
Regardless of whether (X ′ + Y ′), X ′, Y ′ can be divided by n or not, E ≡ X ′ + Y ′ −X ′ − Y ′ ≡
0 (mod n) holds. This contradicts the assumption E ̸≡ 0 (mod n), hence E ≡ 0 (mod n) holds.

□
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Definition 3.2 For a natural number n, when we call the index by s ≥ 0 on the prime factor
p ≥ 2 in prime factorization of n, we define the function fp(n) = s.

Lemma 3.3 For natural numbers a, b, c, when c can be decomposed by summation of a and b, in
other words, c = a+ b holds, if fp(a) = 0 and fp(b) ≥ 1 hold, fp(c) = 0 holds.

Proof If fp(c) ≥ 1 holds, since a = c− b, 0 = fp(a) = fp(c− b) ≥ 1 holds. This is contradiction,
therefore fp(c) = 0 holds.

□

Lemma 3.4 For natural numbers a, b, c, when c can be decomposed by summation of a and b, in
other words, c = a+ b holds, fp(c) ≥ min(fp(a), fp(b)) holds.

In addition to it, if fp(c) = min(fp(a), fp(b)) holds, max(fp(a), fp(b)) ≥ fp(c) holds. If fp(c) >
min(fp(a), fp(b)) holds, fp(a) = fp(b) holds.

Proof If fp(c) < min(fp(a), fp(b)) holds, fp(a + b) ≥ min(fp(a), fp(b)) > fp(c) holds. This
contradicts fp(a+ b) = fp(c), therefore fp(c) ≥ min(fp(a), fp(b)) holds.

If fp(c) = min(fp(a), fp(b)) holds, max(fp(a), fp(b)) ≥ min(fp(a), fp(b)) = fp(c) holds. There-
fore max(fp(a), fp(b)) ≥ fp(c) holds.

If fp(c) > min(fp(a), fp(b)) and fp(a) ̸= fp(b) hold, especially fp(a) ̸= fp(b) and because of
LEMMA 3.3,

fp(
a

pmin(fp(a),fp(b))
+

b

pmin(fp(a),fp(b))
) = 0

holds. Now
c = a+ b = pmin(fp(a),fp(b)) · ( a

pmin(fp(a),fp(b))
+

b

pmin(fp(a),fp(b))
)

holds, therefore

fp(c) = fp(p
min(fp(a),fp(b))) + fp(

a

pmin(fp(a),fp(b))
+

b

pmin(fp(a),fp(b))
) = min(fp(a), fp(b))

holds. This contradicts fp(c) > min(fp(a), fp(b)). Therefore if fp(c) > min(fp(a), fp(b)) holds,
fp(a) = fp(b) holds.

□

Lemma 3.5 For natural numbers a, b, c, when c can be decomposed by summation of a and b, in
other words, c = a+ b holds, if fp(a) ̸= fp(b) holds, fp(c) = min(fp(a), fp(b)) holds.

Proof From LEMMA 3.4, fp(c) ≥ min(fp(a), fp(b)) holds. If fp(c) > min(fp(a), fp(b)) holds,
fp(a) = fp(b) holds, however this contradicts fp(a) ̸= fp(b). Therefore fp(c) = min(fp(a), fp(b))
holds.

□

Theorem 3.6 For any decomposition of a natural number a by addition, if x denotes its each
term, in other words, a =

∑
x holds, and then

fp(a) = fp(
∑

fp(a)≥fp(x)

x)

holds.

Proof First we set a natural number x′ and a term y of the decomposition as

x′ =
∑

fp(a)≥fp(x)

x

and fp(a) < fp(y).
Next we assume fp(a) ̸= fp(x

′). Since LEMMA 3.5, in the case fp(x′) ̸= fp(y) holds, fp(x′+y) =
min(fp(x

′), fp(y)) holds. Since fp(a) ̸= fp(x
′) and fp(a) < fp(y), fp(a) ̸= min(fp(x

′), fp(y)) holds.
Therefore fp(a) ̸= fp(x

′ + y) holds.
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On the other hand, in the case fp(x
′) = fp(y) holds, fp(a) < fp(y) = min(fp(x

′), fp(y)) and
because of LEMMA 3.4 min(fp(x

′), fp(y)) ≤ fp(x
′ + y) holds. Therefore fp(a) ̸= fp(x

′ + y) also
holds. In short, if fp(a) ̸= fp(x

′) holds, fp(a) ̸= fp(x
′ + y) holds.

Now we unite x′ + y and reset x′ to denote the united term, and also reset y to another term
which satisfies fp(a) < fp(y). Since fp(a) ̸= fp(x

′) and fp(a) < fp(y) still hold from the above, we
can rethink the same operation as well. This operation can be repeated until y becomes empty.
Therefore fp(a) ̸= fp(

∑
x) holds. However this contradicts a =

∑
x. Therefore

fp(a) = fp(
∑

fp(a)≥fp(x)

x)

holds.

□

Lemma 3.7 For any decomposition of a natural number a by addition, if z is the only one term
which has the minimum index fp(z) for the prime factor p,

fp(a) = fp(z)

holds.

Proof First we set a term y of the decomposition as y is the different term from z. Since LEMMA
3.5 holds, fp(y + z) = min(fp(y), fp(z)) = fp(z) holds.

Now we unite y + z and reset z to denote the united term, and also reset y to another term
which is the different term from z. Since fp(z) is still the minimum index from the above, we
can rethink the same operation as well. This operation can be repeated until y becomes empty.
Therefore fp(a) = fp(z) holds.

□

We should note that, in LEMMA 3.7, for all the term y which are the different terms from the
term z, fp(y) > fp(z) = fp(a) holds. We do not use THEOREM 3.6 in this paper, but the theorem
will help us understand LEMMA 3.7, because LEMMA 3.7 is the special case of THEOREM 3.6.
LEMMA 3.7 is the very important proposition in this paper, when it applies to the formula (2.0.1)
in the next theorem. We will feel that the difficulty of finding solution of Fermat Wiles Theorem
comes from this LEMMA 3.7, which is derived from the fundamental proposition LEMMA 3.3.

4 Leading the Condition
Theorem 4.1 When n is a prime number equal to or more than 2, for any prime factor ∀p|X ′,

n ̸= p ⇒ nfp(E) = fp(X
′)

n = p ⇒ nfp(E) = fp(X
′) + 1

hold.

Proof Since

(X ′ + Y ′)n−r −X ′n−r − Y ′n−r =

n−r∑
r′=0

n−rCr′X
′r′Y ′n−r−r′ −X ′n−r − Y ′n−r

=
n−r−1∑
r′=1

n−rCr′X
′r′Y ′n−r−r′

holds, with putting this formula into the formula (2.0.1),

En =
n−2∑
r=0

nCrE
r{

n−r−1∑
r′=1

n−rCr′X
′r′Y ′n−r−r′} (4.0.3)

holds. Therefore X ′Y ′|En holds. Since p|X ′, p|En and then p|E holds.
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Now if Xn + Y n = Zn has the set of the solution (X,Y, Z) and X,Y have a common prime
factor q, Z also has a prime factor q. Therefore even if each term of the formula has been divided by
qn, the formula (X/q)n + (Y/q)n = (Z/q)n holds again. Repeating this operation until (X,Y, Z)
have no common prime factor, we can find the set of the solution (X,Y, Z) which are coprime
numbers. Therefore for seeking the existence of the solution of Xn + Y n = Zn, it is enough
to discuss about only the case that the solution (X,Y, Z) are coprime numbers. From now, we
postulate this condition in this paper.

Next for ∀p|X ′, p|E and X = X ′ +E hold, therefore p|X holds. It is also said that for ∀p′|Y ′,
p′|E and Y = Y ′ +E hold, therefore p′|Y holds. In addition, X,Y are coprime numbers, therefore
p ̸= p′ and X ′, Y ′ are also coprime numbers. Hence fp(Y

′) = 0 holds.
Now from the formula (4.0.3),

En =

n−2∑
r=0

n−r−1∑
r′=1

nCrE
r
n−rCr′X

′r′Y ′n−r−r′ (4.0.4)

holds. When we think about all the terms nCrn−rCr′E
rX ′r′Y ′n−r−r′ of the formula above, we can

notice that the term nX ′Y ′n−1, which is the term of (r, r′) = (0, 1), has the special value. Here D
denotes the other term of nCrn−rCr′E

rX ′r′Y ′n−r−r′ , but not nX ′Y ′n−1.
In the case of n ̸= p, since fp(Y

′) = 0 holds, fp(X ′) = fp(nX
′Y ′n−1) holds. D always includes

EX ′ (r ≥ 1) or X ′2 (r′ ≥ 2), therefore

fp(D) ≥ fp(EX ′) or fp(D) ≥ fp(X
′2)

hold. Since p|E,
fp(EX ′) > fp(X

′) and fp(X
′2) > fp(X

′)

hold. From all of the above, fp(D) > fp(nX
′Y ′n−1) holds. Therefore, for the right side of the

formula (4.0.4), which is the decomposition of the natural number En by addition, the term
nX ′Y ′n−1 is the only one term which has the minimum index fp(nX

′Y ′n−1) for the prime factor
p. Since LEMMA 3.7,

nfp(E) = fp(E
n) = fp(nX

′Y ′n−1) = fp(X
′)

holds.
In the case of n = p, since fp(Y

′) = 0 holds, fp(nX ′) = fp(nX
′Y ′n−1) holds. D always includes

nEX ′ (r ≥ 1) or nX ′2 (r = 0 ∧ r′ ≥ 2), therefore

fp(D) ≥ fp(nEX ′) or fp(D) ≥ fp(nX
′2)

hold. Since p|E,
fp(nEX ′) > fp(nX

′) and fp(nX
′2) > fp(nX

′)

hold. From all of the above, fp(D) > fp(nX
′Y ′n−1) holds. Therefore, for the right side of the

formula (4.0.4), which is the decomposition of the natural number En by addition, the term
nX ′Y ′n−1 is the only one term which has the minimum index fp(nX

′Y ′n−1) for the prime factor
p. Since LEMMA 3.7,

nfp(E) = fp(E
n) = fp(nX

′Y ′n−1) = fp(nX
′) = fp(X

′) + 1

holds.
We should note that in the case of n = 2, D denotes no term, but from the formula (4.0.4)

E2 = 2X ′Y ′ holds. Therefore

2 ̸= p ⇒ 2fp(E) = fp(E
2) = fp(2X

′Y ′) = fp(X
′)

2 = p ⇒ 2fp(E) = fp(E
2) = fp(2X

′Y ′) = fp(X
′) + 1

also hold.

□

Figure 3 is the space which displays the relations between the prime factorizations of X,Y,X ′, Y ′,
E,En. Primes are arranged in ‘a right way’ on its plane, and the vertical axis shows their indexes.
Provided that the case of n = p, and especially n = 2 ∧ f2(E) = 1, is excluded from the figure.
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Figure 3: Primes Space

Theorem 4.2 When n is a prime number equal to or more than 2,

¬(n|X) ⇒ gcd(X,E)n = X − E

n|X ⇒ gcd(X,E)n

n
= X − E

hold. These also hold for Y .

Proof For any prime factor ∀p|X ′, as referred in the proof of THEOREM 4.1, p|E holds. Since
X = X ′ + E, p|X also holds. Therefore p|gcd(X,E) holds.

Since X ′ = X − E, gcd(X,E)|X ′ holds. Therefore for any prime factor ∀q|gcd(X,E), q|X ′

holds. Now we define a radical of a natural number by

rad(X ′) :=
∏
p|X′

p.

From the above, we have known that rad(X ′) = rad(gcd(X,E)) holds.
In the case ¬(n|X), since p|X, n ̸= p holds. Therefore from THEOREM 4.1, nfp(E) = fp(X

′)
holds. Since n ≥ 2 and fp(E) ≥ 1, fp(E) < fp(X

′) holds. Therefore we can apply LEMMA 3.7 to
X = X ′ + E, and then fp(X) = fp(E) holds. Therefore

fp(gcd(X,E)) = fp(p
min(fp(X),fp(E))) = fp(p

fp(E)) = fp(E) =
fp(X

′)

n
nfp(gcd(X,E)) = fp(X

′)

holds. Since rad(gcd(X,E)) = rad(X ′) and the above, when X ′ ̸= 1, gcd(X,E)n = X ′ = X − E
holds. Even if X ′ = 1, obviously it also holds.

In the case n|X, we can apply the same discussion to n ̸= p. It means that nfp(gcd(X,E)) =
fp(X

′) holds. Therefore we need to think about only the case n = p. We should note that since
LEMMA 3.1 and X ′ = X −E, n|X ′ holds. Therefore there inevitably exists ∃p|X ′ which satisfies
n = p. From THEOREM 4.1, nfp(E) = fp(X

′) + 1 holds.
When n ≥ 3, because of fp(E) ≥ 1, fp(E) < nfp(E) − 1 = fp(X

′) holds. When n = 2 and
f2(E) ≥ 2, f2(E) < 2f2(E)−1 = f2(X

′) holds. Therefore, in the two cases, we can apply LEMMA
3.7 to X = X ′ + E, and then fp(X) = fp(E) holds. Therefore

fp(gcd(X,E)) = fp(p
min(fp(X),fp(E))) = fp(p

fp(E)) = fp(E) =
fp(X

′) + 1

n
nfp(gcd(X,E))− 1 = fp(X

′)

holds.
When n = 2 and f2(E) = 1, f2(X ′) = 2f2(E) − 1 = 1 holds. Since X = X ′ + E, f2(X) =

f2(X
′ + E) ≥ 1 holds, and then f2(X) ≥ f2(E) holds. Therefore

f2(gcd(X,E)) = f2(2
min(f2(X),f2(E))) = f2(2

f2(E)) = f2(E) =
f2(X

′) + 1

2
2f2(gcd(X,E))− 1 = f2(X

′)
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also holds.
Since rad(gcd(X,E)) = rad(X ′) and the above,

gcd(X,E)n

n
= X ′ = X − E

holds. Provided that X ′ ̸= 1 holds, because of X > E, n|X, and LEMMA 3.1. The same discussion
applies to Y .

□

5 Conclusions
Putting two conditions of X and Y to one, from this paper we have a new question whether there
exist the solutions for natural numbers (X,Y,E), which satisfy that X and Y are relatively prime,
E is a multiple of n, and

gcd(X,E)n = X − E ∧ gcd(Y,E)n = Y − E (Provided ¬(n | XY ))

or
gcd(X,E)n

n
= X − E ∧ gcd(Y,E)n = Y − E (Provided (n | X) ∧ ¬(n | Y )).

At least (n,X, Y,E) = (3, 335, 553, 210) satisfies the condition above. At the last, when we put
the condition into Xn + Y n = Zn,

(gcd(X,E)n + E)n + (gcd(Y,E)n + E)n = (gcd(X,E)n + gcd(Y,E)n + E)n

(Provided ¬(n | XY ))

or

(
gcd(X,E)n

n
+ E)n + (gcd(Y,E)n + E)n = (

gcd(X,E)n

n
+ gcd(Y,E)n + E)n

(Provided (n | X) ∧ ¬(n | Y ))

holds. It means that we can make Xn + Y n = Zn, the formula of Fermat Wiles Theorem, to
the more strict one in this paper. In addition, it is interesting that this condition can be satisfied
at least in simple n = 2 with Pythagorean triples. However Pythagorean triples seem to need
(2 | X).
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