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We show that, given any finite connected poset X, there is a finite poset Y such that the
quotient poset Aut(Y )\Y is isomorphic to X.

Let X be a finite poset, G its automorphism group and X∗ the set of all G-orbits
in X. For A,B ∈ X∗ write A ≤ B if the inequality a ≤ b holds in X for some
a ∈ A, b ∈ B. Equipped with this relation X∗ is again a finite poset.

If X is a poset we write X− for the subset of minimal elements, and X+ for the
subset of maximal elements. An element of X− ∩X+ is called an isolated point.

Theorem. If X is a nonempty finite poset without isolated points, then there is
a finite poset Y without isolated points such that Y∗ ' X.

To prove the theorem we will define a poset Y and show that it has the required
properties.

Denote by |S| the cardinality of any set S and put [n] := {1, 2, . . . , n} for any
nonnegative integer n. Let X be a nonempty finite poset without isolated points.
Set

n := |X|, m := |X−|, X− = {x1, . . . , xm}.

Let xm+1, xm+2, . . . , xn be an enumeration of the elements of X \ X− such that
xi < xj implies i < j.

We will first define integers c1 < · · · < cn < r and then define Y using these
integers.

For i ∈ [m] we set ci := i.

• Definition of cm+1 < cm+2 < · · · < cn: Let Π be the set of all non-constant
polynomial P (t) ∈ Q[t] with positive leading coefficient; here t is an indeterminate.



Set for m < i ≤ n

Pi(t) :=
∑
xj<xi

(
t

j

)
,

where the sum runs over the j ∈ [m] such that xj < xi. Since Pi ∈ Π for all i, there
are integers cm+1, . . . , cn ∈ mZ such that m < cm+1 < · · · < cn and Pi(ci) 6= Pj(cj)
whenever m < i < j ≤ n.

• Definition of r: For i ∈ [m] denote by Πi the set of all the polynomials in Π
whose degree is congruent to −i modulo m, and set

Qi(t) :=
∑
xj>xi

(
t− i
cj − i

)
,

where the sum runs over the j ∈ [n] such that xj > xi. Since each Qi is in Πi, the
Qi are pairwise distinct. Hence there is an integer r > cn such that the Qi(r) are
pairwise distinct.

• Definition of Y : For i ∈ [n] set Yi := {S ⊂ [r] | |S| = ci}, and let Y be the union
of the Yi. For S ∈ Yi, T ∈ Yj set

S < T ⇐⇒ xi < xj and S ⊂ T.

Then ≤ is a partial order on Y . Note that for S ∈ Yi we have: S is minimal in Y if
and only if xi is minimal in X, and S is maximal in Y if and only if xi is maximal
in X. In particular Y is a nonempty finite poset without isolated points.

• Proof of the isomorphism Y∗ ' X: Write S ∼ T for S, T ∈ Y to indicate that
there is an automorphism of Y which maps S to T .

There is a strictly increasing surjection f : Y → X mapping S ∈ Yi to xi. We
claim that f induces an isomorphism Y∗ → X. To prove this it suffices to show
that for S ∈ Yi and T ∈ Yj we have S ∼ T if and only if i = j. If i = j, then, since
S and T are two cardinality ci subsets of [r], there is a permutation σ of [r] which
moves S to T , and σ induces an automorphism of Y which maps S to T . It only
remains to prove that S ∼ T implies i = j.

Recall that we have S ∈ Yi, T ∈ Yj, S ∼ T and we claim i = j.

Case 1: S is minimal. Then T is also minimal and we get i, j ∈ [m]. The number
of elements of Y which are greater than S (respectively greater than T ) is Qi(r)
(respectively Qj(r)). But the assumption S ∼ T implies Qi(r) = Qj(r), and thus
i = j.

Case 2: S is not minimal. Then T is also not minimal and we get m < i, j ≤ n.
The number of minimal elements of Y which are less than S (respectively less than
T ) is Pi(ci) (respectively Pj(cj)). But the assumption S ∼ T implies Pi(ci) = Pj(cj),
and thus i = j. This completes the proof of the theorem.


