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We show that, given any finite connected poset X, there is a finite poset Y such that the
quotient poset Aut(Y)\Y is isomorphic to X.

Let X be a finite poset, G its automorphism group and X, the set of all G-orbits
in X. For A, B € X, write A < B if the inequality a < b holds in X for some
a € A,b € B. Equipped with this relation X, is again a finite poset.

If X is a poset we write X~ for the subset of minimal elements, and X for the
subset of maximal elements. An element of X~ N X is called an isolated point.

Theorem. If X is a nonempty finite poset without isolated points, then there is
a finite poset Y without isolated points such that Y, ~ X.

To prove the theorem we will define a poset Y and show that it has the required
properties.

Denote by |S| the cardinality of any set S and put [n] := {1,2,...,n} for any
nonnegative integer n. Let X be a nonempty finite poset without isolated points.
Set

n:=|X|, m:==|X"|, X ={x,...,xn}.

Let i1, Timaa, - - -, T, be an enumeration of the elements of X \ X~ such that
x; < xj implies 7 < j.

We will first define integers ¢; < -+ < ¢, < r and then define Y using these
integers.

For i € [m] we set ¢; 1= 1.

e Definition of ¢,,11 < ¢pio < -+ < ¢,: Let Il be the set of all non-constant
polynomial P(t) € Q[t] with positive leading coefficient; here ¢ is an indeterminate.
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where the sum runs over the j € [m] such that z; < x;. Since P; € II for all 4, there

are integers c,,11,. .., ¢, € mZ such that m < ¢,41 < -+ < ¢, and Pi(¢;) # Pj(c;)
whenever m < i < j < n.

e Definition of r: For i € [m] denote by II; the set of all the polynomials in II
whose degree is congruent to —i modulo m, and set
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where the sum runs over the j € [n] such that z; > z;. Since each @); is in II;, the

Q; are pairwise distinct. Hence there is an integer r > ¢, such that the Q;(r) are
pairwise distinct.

e Definition of Y: For i € [n] set Y; :={S C [r] | |S] = ¢}, and let Y be the union
of the Y;. For S € Y;, T €Y set

S<T < z;<zjand S CT.

Then < is a partial order on Y. Note that for S € Y; we have: S is minimal in Y if
and only if x; is minimal in X, and S is maximal in Y if and only if z; is maximal
in X. In particular Y is a nonempty finite poset without isolated points.

e Proof of the isomorphism Y, ~ X: Write S ~ T for S, T € Y to indicate that
there is an automorphism of Y which maps S to T

There is a strictly increasing surjection f : Y — X mapping S € Y; to x;. We
claim that f induces an isomorphism Y, — X. To prove this it suffices to show
that for S € Y; and T € Y; we have S ~ T if and only if ¢ = j. If i = j, then, since
S and T are two cardinality ¢; subsets of [r|, there is a permutation o of [r| which
moves S to T, and ¢ induces an automorphism of Y which maps S to T. It only
remains to prove that S ~ T implies ¢ = j.

Recall that we have S € Y;, T' € Y, S ~ T and we claim ¢ = j.

Case 1: S is minimal. Then T is also minimal and we get ¢, j € [m]. The number
of elements of Y which are greater than S (respectively greater than T') is Q;(r)
(respectively Q;(r)). But the assumption S ~ T implies Q;(r) = Q;(r), and thus
i= .

Case 2: S is not minimal. Then 7 is also not minimal and we get m < 1,7 < n.
The number of minimal elements of Y which are less than S (respectively less than
T) is Pi(c;) (respectively Pj(c;)). But the assumption S ~ T implies P;(¢;) = Pj(c;),
and thus ¢ = j. This completes the proof of the theorem.



