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Every fraction a/b can be given as a decimal .(a) base b where a is a
symbol in base b. We will use .(a)b to designate this. So, for example,
1/2 + 1/6 = 4/6 = .(4)6. This reduces to .(2)3, but for our purposes we
want to limit bases to the form k!. As 3! = 6, this sum is given within this
constraint.

Our concern is to prove

e − 2 =
∞

∑

j=2

1

j!
=

1

2
+

1

2 · 3
+

1

2 · 3 · 4
+ . . .

is irrational. This is just e minus the first two terms, so if e − 2 is proven to
be irrational, e will be too.

We first show that all rational numbers in (0, 1) can be expressed as single
digits in base k!.

Lemma 1. Every rational p/q ∈ (0, 1) can be expressed as a single digit in

some base k!.

Proof. Let k = q and note

p(q − 1)!

q!
=

p

q
= .(p(q − 1)!)q!.

The decimal is a single decimal in base q! as p < q implies p(q − 1)! < q!.

Lemma 2. Let

sk =
k

∑

j=2

1

j!
,

then sk = .(x)k!, for some 1 ≤ x < k!.
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Proof. As k! is a common denominator of all terms in sk, sk can be expressed
as a fraction having this denominator.

Lemma 3. The least factorial that can express sk is k!.

Proof. Suppose
x

k!
+

1

(k + 1)!
=

y

a!
, (1)

for some positive integer a. If a ≤ k then multiplying (1) by k! produces an
integer plus 1/(k + 1) is an integer, a contradiction. So a > k, but a = k + 1
works, so it is the least possible factorial.

A partial plus the tail for the partial gives the entire sum. If we let .(x)z
y

designate the decimal x in base y that expresses the zth partial, a partial
with upper index z, then the next lemma gives us a way to make nesting
intervals.

Lemma 4.

sk < sk +
∞

∑

j=k+1

1

j!
= e − 2 < sk +

1

k!
. (2)

Proof. Using the geometric series, we have

∞
∑

j=k+1

1

j!
=

1

k!

(

1

(k + 1)
+

1

(k + 1)(k + 2)
+ . . .

)

<
1

k!

(

1

(k + 1)
+

1

(k + 1)2
+ . . .

)

=
1

k

1

k!
.

So
∞

∑

j=k+1

1

j!
<

1

k

1

k!
<

1

k!

and (2) follows.

Lemma 4 implies the x decimal in .(x)z
y doesn’t change with increasing

upper index of the partial; all tails of partials are immediately trapped. We
can designate this with .(x)z+

y .

Theorem 1. e is irrational.
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Proof. Using Lemmas 3 and 4, all partials are trapped between 1/2 and
1/2 + 1/2 = 1:

.(1)1+
2 < · · · < (1)1+

2 . (3)

Incrementing the upper index we get tighter and tighter traps for e − 2:

.(1)1+
2 < .(4)2+

6 < · · · < .(5)2+
6 < (1)1+

2 ; (4)

and
.(1)1+

2 < .(4)2+
6 < .(17)3+

24 < · · · < .(18)3+
24 < .(5)2+

6 < (1)1+
2 . (5)

Suppose e − 2 is rational, then by Lemma 1 there exists a k such that
e − 2 = .(x)k!, but for some y we must have

.(1)1+
2 < · · · < .(y)

(k−1)+
k! < e − 2 = .(x)k! < .(y + 1)

(k−1)+
k! < · · · < (1)1+

2 (6)

and no single digit in base k! can be between two other single digits in the
same base, a contradiction.
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