Using Decimals to
 Prove e is Irrational

Timothy W. Jones

December 29, 2020

Every fraction a / b can be given as a decimal .(a) base b where a is a symbol in base b. We will use.$(a)_{b}$ to designate this. So, for example, $1 / 2+1 / 6=4 / 6=.(4)_{6}$. This reduces to.$(2)_{3}$, but for our purposes we want to limit bases to the form $k!$. As $3!=6$, this sum is given within this constraint.

Our concern is to prove

$$
e-2=\sum_{j=2}^{\infty} \frac{1}{j!}=\frac{1}{2}+\frac{1}{2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\ldots
$$

is irrational. This is just e minus the first two terms, so if $e-2$ is proven to be irrational, e will be too.

We first show that all rational numbers in $(0,1)$ can be expressed as single digits in base k !.
Lemma 1. Every rational $p / q \in(0,1)$ can be expressed as a single digit in some base k !.
Proof. Let $k=q$ and note

$$
\frac{p(q-1)!}{q!}=\frac{p}{q}=.(p(q-1)!)_{q!} .
$$

The decimal is a single decimal in base $q!$ as $p<q$ implies $p(q-1)!<q!$.
Lemma 2. Let

$$
s_{k}=\sum_{j=2}^{k} \frac{1}{j!},
$$

then $s_{k}=.(x)_{k!}$, for some $1 \leq x<k!$.

Proof. As k ! is a common denominator of all terms in s_{k}, s_{k} can be expressed as a fraction having this denominator.

Lemma 3. The least factorial that can express s_{k} is $k!$.
Proof. Suppose

$$
\begin{equation*}
\frac{x}{k!}+\frac{1}{(k+1)!}=\frac{y}{a!}, \tag{1}
\end{equation*}
$$

for some positive integer a. If $a \leq k$ then multiplying (1) by k ! produces an integer plus $1 /(k+1)$ is an integer, a contradiction. So $a>k$, but $a=k+1$ works, so it is the least possible factorial.

A partial plus the tail for the partial gives the entire sum. If we let . $(x)_{y}^{z}$ designate the decimal x in base y that expresses the z th partial, a partial with upper index z, then the next lemma gives us a way to make nesting intervals.

Lemma 4.

$$
\begin{equation*}
s_{k}<s_{k}+\sum_{j=k+1}^{\infty} \frac{1}{j!}=e-2<s_{k}+\frac{1}{k!} \tag{2}
\end{equation*}
$$

Proof. Using the geometric series, we have

$$
\begin{gathered}
\sum_{j=k+1}^{\infty} \frac{1}{j!}=\frac{1}{k!}\left(\frac{1}{(k+1)}+\frac{1}{(k+1)(k+2)}+\ldots\right) \\
\quad<\frac{1}{k!}\left(\frac{1}{(k+1)}+\frac{1}{(k+1)^{2}}+\ldots\right)=\frac{1}{k} \frac{1}{k!}
\end{gathered}
$$

So

$$
\sum_{j=k+1}^{\infty} \frac{1}{j!}<\frac{1}{k} \frac{1}{k!}<\frac{1}{k!}
$$

and (2) follows.
Lemma 4 implies the x decimal in . $(x)_{y}^{z}$ doesn't change with increasing upper index of the partial; all tails of partials are immediately trapped. We can designate this with.$(x)_{y}^{z+}$.

Theorem 1. e is irrational.

Proof. Using Lemmas 3 and 4, all partials are trapped between $1 / 2$ and $1 / 2+1 / 2=1$:

$$
\begin{equation*}
.(1)_{2}^{1+}<\cdots<(1)_{2}^{1+} . \tag{3}
\end{equation*}
$$

Incrementing the upper index we get tighter and tighter traps for $e-2$:

$$
\begin{equation*}
.(1)_{2}^{1+}<.(4)_{6}^{2+}<\cdots<.(5)_{6}^{2+}<(1)_{2}^{1+} ; \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
.(1)_{2}^{1+}<.(4)_{6}^{2+}<.(17)_{24}^{3+}<\cdots<.(18)_{24}^{3+}<.(5)_{6}^{2+}<(1)_{2}^{1+} . \tag{5}
\end{equation*}
$$

Suppose $e-2$ is rational, then by Lemma 1 there exists a k such that $e-2=.(x)_{k!}$, but for some y we must have

$$
\begin{equation*}
.(1)_{2}^{1+}<\cdots<.(y)_{k!}^{(k-1)+}<e-2=.(x)_{k!}<.(y+1)_{k!}^{(k-1)+}<\cdots<(1)_{2}^{1+} \tag{6}
\end{equation*}
$$

and no single digit in base k ! can be between two other single digits in the same base, a contradiction.

References

[1] Eymard, P., Lafon, J.-P. (2004). The Number π. Providence, RI: American Mathematical Society.
[2] Hardy, G. H., Wright, E. M., Heath-Brown, R., Silverman, J., Wiles, A. (2008). An Introduction to the Theory of Numbers, 6th ed. London: Oxford Univ. Press.
[3] J. Havil (2012). The Irrationals. Princeton, NJ: Princeton Univ. Press.
[4] Rudin, W. (1976). Principles of Mathematical Analysis, 3rd ed. New York: McGraw-Hill.
[5] Sondow, J. (2006). A geometric proof that e is irrational and a new measure of its irrationality. Amer. Math. Monthly 113(7): 637-641.

