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Abstract

We introduce the co-manifolds and the co-bundles which are spaces of
dimension the cardinality of the continuum.

1 The classical tensor calculus

For a differential manifold M [B][K], it is possible to make a tensor calculus
[A][BG][S] with tensor products of the tangent and cotangent spaces. We
tensorize the spaces and introduce local coordinates (x;). A tensor is then
an expression like:
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It is possible to transform the tensor under coordinates changes Z; by the
matrix:
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We obtain new expressions, for example:
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2 The oco-manifolds

It is possible to make a tensor calculus when the index of the tensor is
continuous instead of being discreet. For example, is z' are the local
coordinates; the tensor A® transforms under the change of coordinates
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We have the coherence rule for the change of coordinates:
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With 6, the Dirac function. If ' = z’, we obtain the equation:
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The basic space is the Fréchet space of Schwartz functions [M] (smooth
real functions with polynomial decreasing at infinity of the functions and
all their derivatives). So that we have:

The functions over this space are functionals over the smooth Schwartz
functions. A functional F is derivable if the following limit exists:
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and if the differential is a distribution over the Schwartz space. The
functional F is smooth if we can infinitely iterate the differentials. The
derivations are identified with the Schwartz functions and we have:

XF(g) = dFye(X)
The differential of a functional is:

—+oo
— a t
aF= | a;td:c dt

We have, under a change of coordinates:
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The metric g is a 2-tensor such that:

—+oo —+oo ,
g(X,Y) = / / g XY dtdt’

The metric is a riemannian metric [J] if the quadratic form is definite
positiv. The inverse of the metric gy is g** such that:
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Definition:
The manifolds which are modeled over the Schwartz space are called the
oo-manifods.



3 The oco-bundles

Definition:
The oo-bundles over an oo-manifold M are projectiv modules over the
ring of smooth functionals of M.

The connections over an oo-bundle are defined by the fact that they are
linear and the Leibniz condition:

Vx(F.s) = XF.s+F.Vx(s)

with F a smooth functional over M, and s an element of the co-bundle.
The Levi-Civita connection can be defined by the condition of zero torsion
and that it conserves the riemannian metric.
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