

Python Formatted Output: Old and New (K. S. Ooi)

1

Python Formatted output: Old and New

K. S. Ooi

Foundation in Science

Faculty of Health and Life Sciences

INTI International University

Persiaran Perdana BBN, Putra Nilai,

71800 Nilai, Negeri Sembilan, Malaysia

E-mail: kuansan.ooi@newinti.edu.my

dr.k.s.ooi@gmail.com

Abstract
The new string formatter of Python 3 has more to offer than the old formatted

output absorbed from C. The adjustment can be specified by either :> (move

to right), :< (move to left), or :^ (move to center), which is quite intuitive. One

can select character to pad spaces and no longer to have only whitespaces as

padding characters. With or without precision specification, the new formatter

is predictable and intuitive.

Keywords: Python 3, formatted output.

Date: Dec 25, 2020

1. The Old

In my previous article [1], I show by experimentation that Python absorbs the formatted output

from C, almost having the identical conversion specifications (cc) of the format string. The

following two figures summarize the characteristics of the cc, one without precision and one

with precision.

Figure 1: cc without precision.

%m

The + is default. With or

without +, the output

will be right-adjusted if

need be.

The - means the output

will be left-adjusted if

need be.

The integer m specifies the minimum

width. For integer and string, the

specification will be ignored if their

width is larger than m. Otherwise,

whitespaces will be padded,

according to the sign. For real

numbers, if the width is larger than m,

precision 6 is assumed.

Python Formatted Output: Old and New (K. S. Ooi)

2

Figure 2: cc with precision

From the results presented in [1], you had better specify the width for outputting numbers in

exponential format, and do not let the specification defaulting. The “old” format is shared

between C and Python, and, of course, other languages, too.

2. The New

Since this article is written specifically for scientific computing, I will only focus of string and

numbers. One interesting site you might want to visit is [2].

If the width m is larger than the string or number, we summarize the results of experimentation

in the following table.

Table 1: In the cases that the width m is larger than the string or the numbers. The square

brackets are included in the print statements to observe the whitespaces, if they appear.

Print statement Output Comment
print("[{:12}]".format(456)) [456] The output is right-

adjusted. This is the

default.
print("[{:>12}]".format(456)) [456] The same result as the

previous print statement.

The > is intuitive. It says

move the number to the

right.

print("[{:<12}]".format(456)) [456] The output is left-

adjusted. This is the

default. The < directs the

number to the left. Fairly

intuitive.
print("[{:^12}]".format(4567811)) [4567811] The ^ centralizes the

output. If the

centralization is not

%m.n

The + and – signs have

the same effect on the

output as in Figure 1.

The integer m specifies

the width.

The integer n specifies

the precision. The

default precision can

vary.

Python Formatted Output: Old and New (K. S. Ooi)

3

perfect, the output will be

more toward to the left.
print("[{:>15}]".format("Mambo Jumbo")) [Mambo Jumbo] Integers and string have

the same formatter.
print("[{:@>15}]".format("Mombo")) [@@@@@@@@@@Mombo] You can pad the spaces

with characters of your

choosing.
print("[{:@<15}]".format("Mombo")) [Mombo@@@@@@@@@@] The character must be in

between : and <. The

previous experiment,

between : and >.

If you do not specify the width, integers and string will be printed in full. The results are

summarized in Table 2.

Table 2: In the cases that the width is not specified.

Print statement Output Comment
print("[{:}]".format("My dog eats it!"))

or

print("[{}]".format("My dog eats it!"))

[My dog eats it!] The : is optional.

print("[{:>12}]".format(456)) [456] The same result as the

previous print

statement. The > is

intuitive. It says move

the number to the right.
print("[{:d}]".format(23456789)) [23456789] The whole number is

printed.
print("[{:f}]".format(132.3456789094)) [132.345679] The precision set for

you is 6.
print("[{:e}]".format(1326.3456789094)) [1.326346e+03] The exponential format,

either e or E, has the

default precision of 6.

print("[{:G}]".format(1326.3456789094)) [1326.35] The formatter decides

on the general format.

The shorter one will be

printed.

print("[{:g}]".format(1326345678.9094)) [1.32635e+09] The general format.

This time it prints the

exponential format.

Python Formatted Output: Old and New (K. S. Ooi)

4

The cases where precision is specified are summarized in Table 3.

Table 3: In the cases that the precision is specified.

Print statement Output Comment
print("[{:.5}]".format("Her dog eats my work!")) [Her d] Select the first

five characters

of the string.
print("[{:15.5}]".format("Her dog eats my work!"))
print("[{:<15.5}]".format("Her dog eats my work!"))
print("[{:>15.5}]".format("Her dog eats my work!"))
print("[{:^15.5}]".format("Her dog eats my work!"))
print("[{:8<15.5}]".format("Her dog eats my work!"))
print("[{:1>15.5}]".format("Her dog eats my work!"))
print("[{:7^15.5}]".format("Her dog eats my work!"))

[Her d]
[Her d]
[Her d]
[Her d]
[Her d8888888888]
[1111111111Her d]
[77777Her d77777]

The formatter

become very

predictable.

Python Formatted Output: Old and New (K. S. Ooi)

5

References

1. K. S. Ooi, Formatted Output: The Forgotten C Facility, ePrint:

https://vixra.org/abs/2012.0195 (2020)

2. PyFormat, Using % and .format() for great good!, at https://pyformat.info/ (accessed

Dec 26, 2020)

Abbreviations used

cc - conversion specification

