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Abstract: This paper shows the exact integrability analysis of two classes of
non-autonomous and nonlinear differential equations. It has been possible to
recover some equations of general relativity from the first class of equations
and consequently to compute their solution in fashion way. The second class
is shown to include the Emden-Fowler equation and its integrability analysis,
performed with the first integral theory developed by Monsia et al. [16] allowed
to compute the exact solution of some subclasses of Emden-Fowler equations.
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1 Introduction

Non-autonomous nonlinear ODEs are the nonlinear ODEs whose independent variable appears
explicitly. These equations are often encountered in mathematical physics as the governing equa-
tions of considerable number of problems in mechanics, physics, and chemical engineering. The
general solution of those equations can not usually be given explicitly. To fix this issue, some re-
searchers employ a linearizing approach consisting to map a given nonlinear differential equation
to some linear differential equation with known solution, so that the desired exact solution can be
computed using the known solution of the linear equation. But the finding of such an appropriate
transformation which ensures this mapping is not always evident. Other reseachers try to reduce
the order of the considered equation by means of Lie point symmetries analysis to find its first
integrals... In this context, consider the two classes of non-autonomous nonlinear ODEs

ẍ(t) + (2γ − 1)
ẋ2(t)

x(t)
− l g

′(t)

g(t)
˙x(t) = 0 (1)
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u′′(t) +A1u

′(t) +B1u(t) + C1u
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where α, ρ, σ, γ, andn are arbitrary parameters g(t) 6= 0 is an arbitrary function of t .
The investigation of (1) can be useful, since it can be proved under certain condition to include
some equations of general relativity as [1].

ẍ− 3
ẋ2

x
− ẋ

t
= 0 (3)

and other famous equations used to illustrate different methods of integration of differential equa-
tions, as for instance

ẍ+
ẋ2

x
+ 3

ẋ

t
= 0 (4)

Now the problem to investigate is to ask whether one can find some nonlocal transformation which
maps the free particle equation into (1). This work predicts so. That transformation can appear
so interesting since it will be used to compute the exact solution of equations (3) and (4) using
the solution of the free particle equation.
On the other hand, the investigation of (2) is also useful since it may include the non-autonomous
nonlinear ODE

d

dt
(tρ

du

dt
) + btσun = 0 (5)

knowing in the literature as Emden-Fowler equation and which can be reduced under some ap-
propriate transformation into the form [2,3]

y′′(x) + bxσyn(x) = 0 (6)

(6) is known as a standard form of Emden-Fowler equation [4], where ρ, σ, n are arbitrary pa-
rameters. For σ = 2, b = 1, ρ = 2, equation (5) becomes the Lane-Emden equation

d

dt
(t2
du

dt
) + t2un = 0 (7)

that was used to model the thermal behavior of a spherical cloud of gas acting under the mutual
attraction of its molecules [5]. Emden- Fowler equation arises in the study of gas dynamics
and fluid mechanics [6, 7]. More recently, the Emden Fowler equations also appear in the study
of relativistic mechanics and in nuclear physics [6, 8]. Emden-Fowler equation has been widely
investigated in the literature from various point of view. Here, we propose to show that equation
(2) can be considered as Emden-Fowler equation and may include (5), so that it can be considered
as a generalized form of equation (5). We also investigate the exact integrability of the standard
form of Emden-Fowler equation (6). A significant part of the relevant search in integrability
analysis of (6) deals with the use of approximate methods [9–14] and phase plane analysis [15],
Lie symmetry and Painlevé analysis of the Emden- Fowler equations has been performed in [4].
Recently, Monsia and coworkers introduced in the literature some theory of first integral analysis of
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differential equations [16], and whose importance have been highlighted in some recent publication
[17], to calculate the exact general solution of the well known equation which is assumed to
be a truly nonlinear oscillator. In this respect, it becomes reasonnable to ask whether that
powerful theory can also be helpful in the exact integrability of equation (6). Therefore we
purpose to investigate (6) from the point of view of first integral analysis via the first integral
theory more recently introduced by Monsia and coworkers [16]. Hence, in order to investigate the
exact integrability of the concerning two classes of nonlinear non-autonomous equations under
consideration, we organize the paper in two sections. Section 2 presents the investigation of the
class of equations (1) and Section 3, those of (2). We first in Section 2 establish the general theory
which leads to equation (1) , and the usefulness of that theory is shown through the solving of
target equations. As in Section 2, Section 3 starts by establishing the general theory from which
derive the class of equations (2), whereafter the integrability analysis of (2) is done via the exact
integrability of (6) under certain conditions. Finally a conclusion is addressed.

2 Exact integrability analysis of (1)

2.1 General theory

This section is devoted to the establishment of nonlinear and generalized equation (1) by nonlocal
transformation of the free particle equation. Consider a free particle equation

y′′(τ) = 0 (8)

with its well-known solution
y(τ) = c1τ + c2 (9)

where c1 and c2 are constants. Let us consider the following nonlocal transformation

y(τ) = x(t)2γ , dτ = g(t)ldt (10)

where, l and γ are real parameters, and g(t) is an arbitrary function of t. Then, the following
theorem may be proved.

Theorem 2.1 Consider equation (8). Then by application of (10), equation(8) becomes equa-
tion(1).

Proof

Under the application of (10), the first derivative of y(τ) may be immediately written as

dy

dτ
=

2γ

g(t)l
ẋx2γ−1 (11)

so that one may find
d2y

dτ2
=

2γx2γ−1

g(t)2l
[
ẍ+ (2γ − 1)

ẋ2

x
− l g

′(t)

g(t)
ẋ
]

(12)

Inserting (12) into equation (8) and taking into account
2γx2γ−1

g(t)2l
6= 0 yields (8). Now some

equations are considered in the following to illustrate the theory
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2.2 A nonlinear differential equation of family of (1)

Let us consider equation (4). It has been considered in [18] to illustrate a method based on varia-
tional derivatives to find two integrating factors and therefore the general solution of the equation.
The method used requires to solve a system of two coupled second-order partial differential equa-
tions. Here, we will recover equation (4) from (1), and consequently, compute its solution in a
fashion way. Therefore, one may consider the following theorem

Theorem 2.2 Let γ = 1, l = −3 and g(t) = t.Then equation (1) reduces to equation (4).

Proof

The proof is evident. Indeed by substituting γ = 1, l = −3 and g(t) = t into (1) leads immediately
to (4).
Let us compute now the exact solution of equation (4). By application of theorem 2.2, transfor-
mation(10) can be rewritten in this form

y(τ) = x2(t),
dτ

dt
= t−3 (13)

which yields x(t) = [y(τ)]
1
2

τ(t) = − 1

2t2
+ c3.

(14)

c3 is a constant which we set in the following to be zero. Taking into account (9) one may have

x(t) = [− c1
2t2

+ c2]
1
2 (15)

2.3 An equation of general relativity

Consider the following theorem

Theorem 2.3 Let γ = −1, l = 1 and g(t) = t.Then equation (1) reduces to equation (3).

Proof: Equation (3) is immediately recovered by substituting γ = −1, l = 1 and g(t) = t into
(1).
Equation(3) is found in [19] providing an illustration of searching the first integral from symme-
tries. Originally that equation was found by Buchdal in its study of a relativistic fluid sphere in
the theory of general relativity [1], wherein he indicates its solution whithout any proof. Recently
Yessoufou et al. [20] have computed the same solution by applying a more general nonlocal trans-
formation to the harmonic oscillator equation. Let us show the solution of equation(3) in the form
highlighted by Buchdal [1]. By application of theorem 2.3 , transformation (10) can be rewritten
in this form

y(τ) = x−2(t),
dτ

dt
= t (16)

which yields x(t) = [y(τ)]
−1
2

τ(t) = −1

2
t2 + c3.

(17)
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c3 is a constant which we set to be zero in the following. Using (9) one may have

x(t) = [
c1
2
t2 + c2]

−1
2 (18)

which can be arranged in the form

x(t) = c
− 1

2
2 (1 +

c1
2c2

t2)
−1
2 (19)

Let a, c, and k be the new constants such that c2 = 4
c4

a2
a 6= 0 and k =

c1
2c2

. Then the solution

is rewritten in the form
x(t) =

1

2
c−2a(1 + kt2)−

1
2 (20)

which is the solution of equation(3) highlighted by Buchdal [1].

3 Exact integrability analysis of equation (2)

3.1 General theory

This section is devoted to the establishment of nonlinear and generalized equation (2) by nonlocal
transformation of the standard form of Emdem- Fowler equation. Consider the standard form of
Emdem- Fowler equation (6) which is rewritten as

y′′ + f(x)yn = 0 (21)

with f(x) = bxσ, x ∈ (o,∞), b, andσ the arbitrary parameters.
We propose here to apply some nonlocal transformation to (21) to obtain some equation which in-
cludes (5) as particular case. Thus, the equation obtained will be considered as a more generalized
one than (5). In this way, let

y(x) = u(t)e−αϕ(x); t−ρdt = eγϕ(x)dx (22)

be a nonlocal transformation. Then the following theorem may be proved

Theorem 3.1 Consider equation (21). Then by application of (22), equation (21) may become

u′′(t) +Au′(t) +Bu(t) + Cun(t) = 0 (23)

with 

A =
ρ

t
+ (γ − 2α)t−ρϕ′(x)e−γϕ(x)

B =
[
−αϕ′′(x) + α2ϕ′2(x)

]
t−2ρe−2γϕ(x)

C =
[
f(x)t−2ρe−[2γ+(n−1)α]ϕ(x)]

Proof
Under the application of (22), let us evaluate yn(x), y′(x) and y′′(x) as

yn(x) = un(t)e−nαϕ(x) (24)
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and
y′ =

dy

dx

that is

y′ =
d

dx

[
u(t)e−αϕ(x)

]
= −αϕ′(x)e−αϕ(x)u(t) + du

dt

dt

dx
e−αϕ(x)

Now

dt

dx
= tρeγϕ(x)

then it yields
y′(x) =

[
− αϕ′(x)u(t) + tρu′(t)eγϕ(x)

]
e−αϕ(x) (25)

where
y′′ =

d

dx
y′

that is to say

y′′(x) =
d

dx

[
− αϕ′(x)u(t) + tρu′(t)eγϕ(x)

]
e−αϕ(x)

= −αϕ′(x)e−αϕ(x)
[
−αϕ′(x)u(t) + tρu′(t)eγϕ(x)

]
+ e−αϕ(x)

[
−αϕ′′(x)u(t)− αϕ′(x)u′(t)tρeγϕ(x)

]
+ e−αϕ(x)

[
ρt2ρ−1u′(t)e2γϕ(x) + t2ρe2γϕ(x)u′′(t) + γtρϕ′(x)u′(t)eγϕ(x)

]
which is

y′′(x) = u′′(t)
[
t2ρe(2γ−α)ϕ(x)

]
+ u′(t)

[
(γ − 2α)tρϕ′(x)e(γ−α)ϕ(x) + ρt2ρ−1e(2γ−α)ϕ(x)

]
+ u(t)

[
−αϕ′′(x)e−αϕ(x) + α2ϕ′2(x)e−αϕ(x)

]
(26)

Therefore, Equation (21) is rewritten in this form

u′′(t)
[
t2ρe(2γ−α)ϕ(x)

]
+ u′(t)

[
(γ − 2α)tρϕ′(x)e(γ−α)ϕ(x) + ρt2ρ−1e(2γ−α)ϕ(x)

]
+ u(t)

[
−αϕ′′(x)e−αϕ(x) + α2ϕ′2(x)e−αϕ(x)

]
+ un(t)

[
f(x)e−nαϕ(x)

]
= 0 (27)

which may be arranged in the form (23). To obtain our desired generalized equation, consider
the following theorem

Theorem 3.2 If ϕ(x) = lnx, equation (23) becomes (2)

Proof
From (22), one may have by integration

−1
ρ− 1

t−(ρ−1) =

∫
eγϕ(x)dx+ I
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Setting I = 0, and for ϕ(x) = lnx, it yields

x =

[
−γ + 1

ρ− 1

] 1

γ + 1 t
−
ρ− 1

γ + 1 (28)

and

xσ =

[
−γ + 1

ρ− 1

] σ

γ + 1 t
−
σ(ρ− 1)

γ + 1 (29)

Since ϕ(x) = lnx, then

ϕ′(x) =
1

x

and
ϕ′′(x) = − 1

x2

Therefore A, B, and C are respectively rewritten in the form A1, B1, andC1. Thus equation (2)
is found. (2) is our desired generalized equation. To observe that one may recover (5) from (2),
consider the following theorem

Theorem 3.3 If α = −1, γ = −2, then equation (2) becomes (5).

Proof
For α = −1, γ = −2, A1 =

ρ

t
, B1 = 0, and

c1 = b(ρ− 1)σ+n+3t[−2ρ+(ρ−1)(σ+n+3)]

then, equation (2) becomes

u′′(t) +
ρ

t
u′ + un(t)

[
b(ρ− 1)σ+n+3t[−2ρ+(ρ−1)(σ+n+3)]

]
= 0

Multiplying by tρ, it yields

tρu′′(t) + ρtρ−1u′(t) +
[
b(ρ− 1)σ+n+3t[−ρ+(ρ−1)(σ+n+3)]

]
un(t) = 0

which is written in the self adjoint form as follows

d

dt
(tρ

du

dt
) + βtσ

′
un(t) (30)

where σ′ = −ρ+ (ρ− 1)(σ + n+ 3) and β = b(ρ− 1)σ+n+3

Thus, the generalized equation (5) is recovered from (2). Therefore the exact integrability
analysis of (2) can be provided by the exact integrability analysis of (21).

3.2 Exact solution of a subclass of equation (21)

The purpose of this section is to introduce first integral theory developed by Monsia and
coworkers as an alternative to existing methods in solving nonlinear Emden-Fowler type
equation. Here, we propose to use these techniques to obtain the exact solution of equation (21).
Consider equation (21). Setting σ = 0, then one has

y′′(x) + byn(x). = 0 (31)
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We choose to investigate the exact integrability of (31) using the first integral theory [16], for
n2 6= 1. In this way, let us consider the first integral recently introduced by Monsia et al. [16]

I = I(y, y′) = y′lyµ − λyr (32)

where l, µ, r, andλ are arbitrary constants. By differentiation with respect to x, one may
have [17].

y′′ +
µ

ly

[
λyr−µ + Iy−µ

]2
l − λr

l
yr−µ−1

[
λyr−µ + Iy−µ

]2− l
l = 0 (33)

Using (33), exact integrability theorem of (31) may be formulated.

3.2.1 Integrability theorem of the equation (31)

To formulate the theorem which assures the exact and general solution to (31), let us consider

µ = 0, l = 1, r =
n+ 1

2
. Thus (33) reduces to the nonlinear equation

y′′ − I λ(n+ 1)

2
y

n− 1

2 − λ2(n+ 1)

2
yn = 0 (34)

For I = 0, and b = −λ
2(n+ 1)

2
, one may recover (31). From (34), one may state the following

theorem

Theorem 3.4 If I = 0, and b = −λ
2(n+ 1)

2
, then equation (34) turns into (31), and is exactly

integrable and the exact and general solution is

y(x) =

[
−b(n− 1)2

2(n+ 1)
(x+K1)

2

] 1

1− n (35)

where K1 is an arbitrary constant

Proof
In the context of (31), (32) becomes

y′ − λy
n+ 1

2 = 0 (36)

which leads to
2

1− n
y

1− n
2 = λ(x+K1) (37)

so that

y(x) =

[
λ2

(1− n)2

4
(x+K1)

2

] 1

1− n (38)

Substituting λ2 =
−2b
n+ 1

into (38), one may secure the exact general solution to (31) as (35).
Thus the above theorem is proved.
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4 Conclusion

In this paper a nonlocal transformation has been developed to map the free particle equation
into a class of second order non-autonomous and nonlinear differential equation. It is found that
this class of equation includes some famous non-autonomous differential equations of literature.
As consequence, their solutions have been computed using the generalized equation. Doing so,
the usefullness of the theory has been shown. In the other hand, following the first integral
theory developed by Monsia and coworkers [16], the exact integrability analysis of Emden-
Fowler equation is performed.
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