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Abstract

In this paper we lay out the proof of this result in group theory using an old-fashioned approach.

If H is a subgroup of G, then C(H) = {x € G|xh = hx for all h € H}

Theorem 1
Let G be a group with a normal subgroup H and a subgroup K. If N is a subgroup of G such that N C C(H)
and N C C(K), then N C C(HK).

Theorem 2
Let A and B be normal subgroups of G such that AN B = (e). Then A C C(B).

Theorem 3

Let G be a group of order 1575 with a normal Sylow 3-subgroup. Then G is abelian.

Proof.

By the hypothesis, G has a normal subgroup H of order 32. By Sylow’s theorem, G has a subgroup K of
order 52. Since, by Sylow’s theorem, the number of subgroups of G/H of order 52 is 1, it follows that HK/H
is the only subgroup of G/H of order 5% and hence HK/H is normal in G/H. Consequently HK is normal
in G. Let ¢ be an automorphism of HK. Since K is a subgroup of HK of order 52, ¢(K) is a subgroup of
HK of order 52. By Sylow’s theorem, the number of subgroups of HK of order 5 is 1. Thus ¢(K) = K.
Since HK is normal in G and K is a characteristic subgroup of HK, K must be normal in G. By Sylow’s
theorem, G has a subgroup N of order 7. Since, by Sylow’s theorem, the number of subgroups of G/H of
order 7 is 1, it follows that HN/H is the only subgroup of G/H of order 7 and hence HN/H is normal in
G/H. Consequently HN is normal in G. Let ¢ be an automorphism of HN. Since N is a subgroup of HN
of order 7, ¢(N) is a subgroup of HN of order 7. By Sylow’s theorem, the number of subgroups of HN of
order 7 is 1. Thus ¢(N) = N. Since HN is normal in G and N is a characteristic subgroup of HN, N must
be normal in G. Since H is a group of order 3% where 3 is a prime, H is abelian and hence H C C(H).
Moreover since H and K are normal in G such that H N K = (e), H C C(K) by Theorem 2. So G has
a normal subgroup H and a subgroup K such that H € C(H) and H C C(K). Thus H C C(HK) by
Theorem 1. Since H and N are normal in G such that H NN = (e), H C C(N) by Theorem 2. So G has a
normal subgroup HK and a subgroup N such that H C C(HK) and H C C(N). Thus

H C C((HK)N) (1)

by Theorem 1. Since K and H are normal in G such that KN H = (e), K C C(H) by Theorem 2. Moreover
since K is a group of order 5% where 5 is a prime, K is abelian and hence K C C(K). So G has a normal
subgroup H and a subgroup K such that K € C(H) and K C C(K). Thus K € C(HK) by Theorem 1.
Since K and N are normal in G such that K N N = (e), K C C(N) by Theorem 2. So G has a normal
subgroup HK and a subgroup N such that K C C(HK) and K C C(N). Thus

K C C((HK)N) (2)
by Theorem 1. By (1) and (2),
HK C C((HK)N). (3)

Since N and H are normal in G such that N N H = (e¢), N C C(H) by Theorem 2. Moreover since N and
K are normal in G such that N N K = (e), N C C(K) by Theorem 2. So G has a normal subgroup H and
a subgroup K such that N C C(H) and N C C(K). Thus N C C(HK) by Theorem 1. Since N is a group
of order 7 where 7 is a prime, N is cyclic and hence abelian. Thus N € C(N). So G has a normal subgroup
HK and a subgroup N such that N C C(HK) and N C C(N). Thus by Theorem 1

N C C((HK)N). (4)



By (3) and (4),

(HK)N Cc C((HK)N).
Note that |(HK)N| = 1575. Since (HK)N C G and |(HK)N| = |G|, it follows that (HK)N = G. Since
G C (HK)N and (HK)N C C((HK)N), it follows that G C C((HK)N). Since G C (HK)N, it follows

that C((HK)N) C C(G). Since G C C((HK)N) and C((HK)N) C C(G), it follows that G C C(G). Since
C(G) C G and G C C(G), it follows that C(G) = G. To conclude G is abelian.
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