# The Elementary Proof of Fermat's Last Theorem 

By

## Sattawat Suntisurat <br> King's Mongkut Institute of Technology Ladkrabang

Mechanical Engineering Thailand

## E-mail : sattawatsuntisurat@gmail.com

25 Dec 2020
Abstract : Proof of Fermat's Last Theorem by using basic of algebra.

From Fermat's Last Theorem,

$$
a^{n}+b^{n} \neq c^{n} \text { for every positive integer } a, b, c \text { and } n>2
$$

Begin to prove...
Assume $a, b, c$ can make $a^{n}+b^{n}=c^{n}, n$ is positive integer
and $\operatorname{gcd}(a, b, c)=1$

$$
\begin{aligned}
& a^{n}+b^{n}=c^{n} \\
& a^{n}=c^{n}-b^{n} \\
& a^{n}=(c-b)\left(c^{n-1}+b c^{n-2}+b^{2} c^{n-3}+\ldots+b^{n-1}\right) \\
& a^{n}=(c-b)\left[(c-b) K+n b^{n-1}\right] \\
& K=c^{n-2}+2 b c^{n-3}+3 b^{2} c^{n-4}+\ldots+(n-1) b^{n-2} \text { and } c-b \neq 1
\end{aligned}
$$

Assume a is a prime
If $a$ is a prime, then $(c-b)=a^{k}, k \geq 1$
But $\mathrm{a}+\mathrm{b}>\mathrm{c}=====>\mathrm{a}>\mathrm{c}-\mathrm{b}$ it is contradiction, so a isn't prime.

$$
b^{n}=(c-a)\left[(c-a) P+n a^{n-1}\right]
$$

$$
P=c^{n-2}+2 a c^{n-3}+3 a^{2} c^{n-4}+\ldots+(n-1) b^{n-2} \text { and } c-a \neq 1
$$

Assume $b$ is a prime
If $b$ is a prime, then $(c-a)=b^{k}, k \geq 1$
But $\mathrm{a}+\mathrm{b}>\mathrm{c}=====>\mathrm{b}>\mathrm{c}-\mathrm{a}$ it is contradiction, so a isn't prime.
Therefore $a$ and $c$ aren't prime but they are composite numbers.
Assume $\mathrm{a}=\mathrm{b}$

$$
\begin{aligned}
2 b^{n} & =c^{n} \\
(\sqrt[n]{2} b)^{n} & =c^{n} \quad \text { then } c \text { is irrational. }
\end{aligned}
$$

## Therefore $a \neq b$

After that , to continue by following below diagram


Consider from $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{D}$

Consider at $\mathrm{A}, \operatorname{gcd}[\mathrm{n},(\mathrm{c}-\mathrm{b})]=1$
I can write as below,

$$
\left(k^{n}+b\right)^{n}=(m k)^{n}+b^{n}
$$

Let

$$
k^{n}+b=c, m k=a, \operatorname{gcd}(m, k)=1
$$

Rewrite again,

$$
b^{n}=\left(k^{n}+b-m k\right)\left[\left(k^{n}+b\right)^{n-1}+m k\left(k^{n}+b\right)^{n-2}+\ldots+(m k)^{n-1}\right]
$$

Then $b^{n}$ can be divided by ( $\left.k^{n}+b-m k\right)$
Ref. Remainder theorem, $\quad\left(m k-k^{n}\right)^{n}=0$

$$
k^{n-1}=m \text { it isn't true because } \operatorname{gcd}(m, k)=1
$$

Therefore $a^{n}+b^{n} \neq c^{n}$ at A Step
No positive integer $a, b, c$ can make it true if $n$ has no common factors with (c-b)

Consider at $B, \operatorname{gcd}[n,(c-b)] \neq 1$
The equation $a^{n}+b^{n}=c^{n}$ may be true if $n$ has common factors with ( $c-b$ )

Consider at $\mathrm{C}, \operatorname{gcd}[\mathrm{n},(\mathrm{c}-\mathrm{a})]=1$
I can write as below,

$$
\left(p^{n}+a\right)^{n}=a^{n}+(p q)^{n}
$$

Let

$$
p^{n}+a=c, p q=b, \operatorname{gcd}(p, q)=1
$$

Rewrite again, $\quad a^{n}=\left(p^{n}+a-p q\right)\left[\left(p^{n}+a\right)^{n-1}+p q\left(p^{n}+a\right)^{n-2}+\ldots+(p q)^{n-1}\right]$
Then $a^{n}$ can be divided by ( $\left.p^{n}+a-p q\right)$
Ref. Remainder theorem, $\quad\left(p q-p^{n}\right)^{n}=0$

$$
p^{n-1}=q \text { it isn't true because } \operatorname{gcd}(p, q)=1
$$

Therefore $a^{n}+b^{n} \neq c^{n}$ at C Step
No positive integer $a, b, c$ can make it true if $n$ has no common factors with ( $c-a$ )

From Step $B$ and $C$, if the equation $a^{n}+b^{n}=c^{n}$ will be true when...

```
gcd[n,(c-a)] 
```

Consider at $D, \operatorname{gcd}[n,(c-a)] \neq 1$
From the previous proof, then equation must be this form,

$$
\begin{equation*}
a^{f(c-a) f(c-b) N}+b^{f(c-a) f(c-b) N}=c^{f(c-a) f(c-b) N} \tag{1}
\end{equation*}
$$

$\qquad$
$f(c-a)$ is factor of $(c-a), f(c-b)$ is factor of $(c-b)$ and $N$ is a positive integer
Rewrite again,

$$
\left(a^{f(c-a) N}\right)^{f(c-b)}+\left(b^{f(c-a) N}\right)^{f(c-b)}=\left(c^{f(c-a) N}\right)^{f(c-b)}
$$

Let

$$
\begin{gathered}
a^{f(c-a) N}=A, b^{f(c-a) N}=B, \quad c^{f(c-a) N}=C \\
A^{f(c-b)}+B^{f(c-b)}=C^{f(c-b)}
\end{gathered}
$$

From the proof, must $\operatorname{gcd}[f(c-b), C-A] \neq 1$

$$
\begin{equation*}
C-A=(c-a)\left(c^{f(c-a) N-1}+a c^{f(c-a) N-2}+a^{2} c^{f(c-a) N-3}+\ldots+a^{f(c-a) N-1}\right) \tag{2}
\end{equation*}
$$

$\qquad$
From (2), I found that $f(c-b)$ has no any common factors with $C-A$

It contradict the previous proof, So I can say...
$a^{n}+b^{n} \neq c^{n} a, b, c$ are the positive integers, $n>2, c-a \neq 1$ and $c-b \neq 1$

There is another case, $\mathrm{a}=\mathrm{c}-1$ or $\mathrm{b}=\mathrm{c}-1$

I have to prove it with the different method as below,

$$
\text { Assume } \quad a^{n}+b^{n}=c^{n}, a, b, c \text { are positive integers and } n>2
$$

Let

$$
b=c-1, \quad a^{n}=c^{n-1}+(c-1) c^{n-2}+(c-1)^{2} c^{n-3}+\ldots+(c-1)^{n-1}
$$

Let $\quad a=c-k, 1<k<c$ and $k$ is positive integer

$$
(c-k)^{n}=c^{n-1}+(c-1) c^{n-2}+(c-1)^{2} c^{n-3}+\ldots+(c-1)^{n-1}
$$

The equation must be divided by $(c-k)$ for the both sides,
$k$ is a root of polynomial at right side.
Ref. Remainder theorem,

$$
k^{n-1}+(k-1) k^{n-2}+(k-1)^{2} k^{n-3}+\ldots+(k-1)^{n-1}=0
$$

But $k^{n-1}+(k-1) k^{n-2}+(k-1)^{2} k^{n-3}+\ldots+(k-1)^{n-1}>0$ always for $1<k<c$

So $k$ isn't an integer, if $k$ isn't an integer then a won't an integer too.

But a must be integer, it is contradiction. So I can say...

## $\mathbf{a}^{\boldsymbol{n}}+\mathbf{b}^{\mathbf{n}} \neq \mathbf{c}^{\boldsymbol{n}}$ for every positive integer $\mathbf{a}, \boldsymbol{b}, \mathbf{c}$ and $\mathbf{n}>\mathbf{2}$

