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Abstract. We present a formula for the smallest possible numbers whose

number of divisors is the n-th perfect number. The formula, that produces
an integer sequence a(n), involves the n-th Mersenne prime that appears both

in an exponent of a power of 2 and in the product of consecutive odd primes

(the odd primorial). While smallest in some sense, these numbers are among
largest one can run into through an exercise in elementary number theory.

1. Introduction

The perfect number is a simple idea that uses the concept of divisors. By defini-
tion, for a natural number n to be perfect, the sum of its proper divisors must be
n, or, if all divisors are included, 2n, i.e., sigma(n) = 2n, where sigma(n) stands
for the sum of all divisors of n.

Perfect numbers have been exciting the imagination of professional mathemati-
cians and amateurs alike for centuries now and the interest in them does not seem
to be abating. They were studied already in antiquity, particularly by one of the
era mathematical greats, Euclid. It was Euclid who noted that perfect numbers are
triangular numbers of the form

N = Mp(Mp + 1)/2, (1)

where Mp is what is now called the Mersenne prime, i.e., a prime of the form 2p−1,
where p is also prime. Not all primes p generate Mersenne primes (for instance,
this is not so for p = 11), but if Mk is to be prime, then it can be shown that k
must be prime too.

It was not until the 18-th century that Leonhard Euler proved that (1) generates
all even perfect numbers. We do not know if there are any odd perfect numbers.
If they do exist at all, they must be very large. At present, this is one of the more
interesting open problems of elementary number theory (see, e.g., [2, 5]).

The first four Mersenne primes are thus 22 − 1 = 3, 23 − 1 = 7, 25 − 1 = 31,
and 27 − 1 = 127. They give rise to the four perfect numbers known already to the
ancients, namely 6, 28, 496, and 8128, respectively.

In what follows, we are not interested in perfect numbers but in smallest numbers
whose number of divisors, often denoted as τ , is a perfect number. By focusing on
smallest such numbers, we are able to put forward a simple formula for them, which
turns out to contain expressions using both the Mersenne primes and, which was
less expected, the primorial function.
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In a way, simplifying a bit, this formula is an analog of Euclid’s formula for
perfect numbers (1), but for τ(n) while Euclid’s is for n.

2. The formula

The n-th term of the sequence consisting of smallest numbers whose number of
divisors is the n-th perfect number can be cast in the form

a(n) = 2(Mn−1)oddprimorial(log2((Mn + 1)/2)), (2)

where Mn is the n-th Mersenne prime and oddprimorial(k) is the product of the
first k odd primes.

For future use and as an example, let us list a few first values of oddprimorial(k).
For k = 1 to k = 4 we have: 3, 3 ∗ 5 = 15, 3 ∗ 5 ∗ 7 = 105, and 3 ∗ 5 ∗ 7 ∗ 11 = 1155.

The first two values of a(n) can easily be found by searching for the smallest
numbers whose number of divisors is 6 and 28. Using Mathematica [6] (see the next
section), we find them to be 12 and 960. Based on these two data points, it is rela-
tively straightforward to predict the general pattern for a(n). Using Mathematica
again, we first verify the formula for n = 1 and n = 2, and then for the smallest
numbers with 496 and 8128 divisors (terms 3 and 4 of our sequence). Subsequently,
we can do this for even larger Mersenne primes.

Hence, for the first Mersenne prime of 3: a(1) = 22 ∗oddprimorial(log2(2)) = 4∗
3 = 12, and for the second Mersenne prime of 7: a(2) = 26∗oddprimorial(log2(4)) =
64 ∗ 3 ∗ 5 = 960.

Next, we get a(3) = 230 ∗ oddprimorial(log2(16)) = 230 ∗ 3 ∗ 5 ∗ 7 ∗ 11 and
a(4) = 2126 ∗ oddprimorial(log2(64)) = 2126 ∗ 3 ∗ 5 ∗ 7 ∗ 11 ∗ 13 ∗ 17.

These numbers are much larger then the first two, containing 13 and 44 digits,
respectively. Listed below in their full glory, they are:

1240171806720,
21714693892101036872835921354998998703800320.
Their very form in terms of the powers of 2 and the product of consecutive odd

primes already suggests that they have the required number of divisors, but we can
also easily check this using Mathematica.

The next term of the sequence studied has 2480 digits and the last one (the 8-th)
that we were able to produce without getting overflow problems contains nearly 650
million digits.

3. The Wolfram Mathematica code

The following simple Mathematica code can be used to search for the first number
whose number of divisors is 28 (the second perfect number)

SelectFirst[Range@10000, DivisorSigma[0,#]==28&]

Of course, changing 28 to 6 in this piece of code, let us quickly find the smallest
number whose number of divisors is 6 (the first perfect number).

The following code can be used to test if the first four terms of a(n) have the
correct number of divisors:

a={2^2*3, 2^6*3*5, 2^30*3*5*7*11, 2^126*3*5*7*11*13*17};

DivisorSigma[0,#]&/@a



SMALLEST NUMBERS WHOSE NUMBER OF DIVISORS IS A PERFECT NUMBER 3

The next piece of code let us produce a(n) for even higher values of n. However,
for n > 8, Mathematica (version 12) starts having overflow problems.

Table[2^(2^MersennePrimeExponent[n]-2)*Product[Prime[i],

{i,2,1+Log [2,(2^MersennePrimeExponent[n])/2]}], {n,5}]

The last piece of code is used to find out the number of digits of a(n). As noted
earlier, we can do this only up to n = 8; the last term in this table is 646457041.

Table[IntegerLength[2^(2^MersennePrimeExponent[n]-2)*Product[Prime[i],

{i,2,1+Log [2,(2^MersennePrimeExponent[n])/2]}]], {n,8}]

4. Conclusion

Perfect numbers are literally an ancient topic of study, but still of considerable
interest to professional mathematicians and amateurs alike. This paper presented a
somewhat novel variation on this topic, approaching it from a different angle than
this is usually done (see [1, 2, 3, 4, 5]). It deals with the smallest natural numbers
whose number of divisors is a perfect number.

It turns out that what starts as an innocent exercise in elementary number theory,
quickly escalates into a problem that even the mighty Mathematica finds too hard
to handle. The numbers this exercise leads to are truly staggering, especially if
one realizes that Mersenne primes are among the biggest numbers ever explored by
humanity and here we have them employed not only as exponents of powers of 2
but also in the product of consecutive odd primes (the odd primorial), where they
determine how many of the odd primes occur in it.

The formula this simple problem leads to is quite rich yet still very elementary;
certainly elementary enough to be explored even in high school setting. While the
appearance of Mersenne primes may not be unexpected, the primorial function that
shows up in the formula may be harder to anticipate, yet seems pretty natural too.
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