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Velocity and acceleration vectors on second order curves 

V. Strohm, email: vfstrohm@yahoo.de 

 

Annotation 

The movement of a material point along curves of the second order is represented 

by the differential equation. The projections on the coordinate axes of the first and 

second derivatives are calculated. The direction of the velocity and acceleration 

vectors is determined. 
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The second law states that the rate of change of momentum of a body over time is 

directly proportional to the force applied, and occurs in the same direction as the 

applied force. 

𝑄 = 𝑚�̈�                 (1)       

The applied force causes acceleration. Conversely, acceleration is impossible 

without force. 

Nonlinear motion is described by differential equations. 

To compose differential equations, we represent the force acting on a point in a 

fixed Cartesian coordinate system. 

𝑚�̈� = −𝑄𝑐𝑜𝑠(𝜑(𝑡))           (2) 

𝑚�̈� = −𝑄𝑠𝑖𝑛(𝜑(𝑡))           (3) 

 

Из (3)   

 

𝑄 =
−𝑚�̈�

𝑐𝑜𝑠(𝜑(𝑡))
            (4) 

 

Let us substitute equation (4) into equation (3) 

 

�̈� =
�̈�

𝑐𝑜𝑠(𝜑(𝑡))
𝑠𝑖𝑛(𝜑(𝑡))          (5) 

 

The point coordinates can be represented as the function of angle of deflection φ(t) 
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and radius r(t) , Figure 1. 

 

 
   Figure 1 

 

𝑥 = 𝑟(𝜑(𝑡))·𝑐𝑜𝑠(𝜑(𝑡))          (6) 

𝑦 = 𝑟(𝜑(𝑡))·𝑠𝑖𝑛(𝜑(𝑡))          (7) 

𝑟(𝜑(𝑡)) =
𝑝

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
         (8) 

Let us calculate the first and second time derivative From equations (6), (7), (8). 

Let the second time derivative be put in the equation (5) and move everything to 

the left side. 

 

�̇� =
𝑑

𝑑𝑡
(

𝑝

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
𝑐𝑜𝑠(𝜑(𝑡))) = −

𝑝∗𝑐𝑜𝑠(𝜑(𝑡))∗𝑒∗𝑠𝑖𝑛(𝜑(𝑡))∗
𝑑

𝑑𝑡
𝜑(𝑡)

(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))
2 −

𝑝∗𝑠𝑖𝑛(𝜑(𝑡))∗
𝑑

𝑑𝑡
𝜑(𝑡)

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
= −

𝑏2∗𝑠𝑖𝑛(𝜑(𝑡))∗
𝑑

𝑑𝑡
𝜑(𝑡)

𝑎∗(1−2∗𝑒∗𝑐𝑜𝑠(𝜑(𝑡))+𝑒2∗𝑐𝑜𝑠(𝜑(𝑡))
2

)
       

  (9) 

�̇� =
𝑑

𝑑𝑡
(

𝑝

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
𝑠𝑖𝑛(𝜑(𝑡))) = −

𝑝∗𝑒∗𝑠𝑖𝑛(𝜑(𝑡))
2

∗ 
𝑑

𝑑𝑡
𝜑(𝑡)

(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))
2 +

𝑝∗𝑐𝑜𝑠(𝜑(𝑡))∗
𝑑

𝑑𝑡
𝜑(𝑡)

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
=

𝑏2∗
𝑑

𝑑𝑡
𝜑(𝑡)∗(−𝑒+𝑐𝑜𝑠(𝜑(𝑡)))

𝑎∗(1−2∗𝑒∗𝑐𝑜𝑠(𝜑(𝑡))+𝑒2∗𝑐𝑜𝑠(𝜑(𝑡))
2

)
         (10) 

�̈� =
2∗𝑝∗𝑒2∗𝑐𝑜𝑠(𝜑(𝑡))∗𝑠𝑖𝑛(𝜑(𝑡))

2
∗(

𝑑

𝑑𝑡
𝜑(𝑡))

2

(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))
3 +

2∗𝑝∗𝑒∗𝑠𝑖𝑛(𝜑(𝑡))
2

∗(
𝑑

𝑑𝑡
𝜑(𝑡))

2

(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))
2 −

𝑝∗𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
2

∗(
𝑑

𝑑𝑡
𝜑(𝑡))

2

(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))
2 −

𝑝∗𝑒∗𝑐𝑜𝑠(𝜑(𝑡))∗𝑠𝑖𝑛(𝜑(𝑡))∗
𝑑2

𝑑𝑡2𝜑(𝑡)

(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))
2 −

𝑝∗𝑐𝑜𝑠(𝜑(𝑡))∗
𝑑2

𝑑𝑡2𝜑(𝑡)

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
−

𝑝∗𝑠𝑖𝑛(𝜑(𝑡))∗
𝑑2

𝑑𝑡2𝜑(𝑡)

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
            (11) 
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�̈� =
2∗𝑝∗𝑒2∗𝑠𝑖𝑛(𝜑(𝑡))

3
∗(

𝑑

𝑑𝑡
𝜑(𝑡))

2

(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))3
−

3∗𝑝∗𝑒∗𝑠𝑖𝑛(𝜑(𝑡))∗𝑐𝑜𝑠(𝜑(𝑡))∗(
𝑑

𝑑𝑡
𝜑(𝑡))

2

(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))2
−

𝑝∗𝑒∗𝑠𝑖𝑛(𝜑(𝑡))
2

∗
𝑑2

𝑑𝑡2𝜑(𝑡)

(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))2
−

𝑝∗𝑠𝑖𝑛(𝜑(𝑡))∗(
𝑑

𝑑𝑡
𝜑(𝑡))

2

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
+

𝑝∗𝑐𝑜𝑠(𝜑(𝑡))∗
𝑑2

𝑑𝑡2𝜑(𝑡)

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
   (12) 

𝑑2

𝑑𝑡2
𝜑(𝑡) =

2∗𝑒∗𝑠𝑖𝑛(𝜑(𝑡))∗(
𝑑

𝑑𝑡
𝜑(𝑡))

2

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
       (13) 

or 

�̈� =
2∗𝑒∗sin(𝜑)∗�̇�2

1−𝑒∗cos (𝜑)
              (14) 

Equation (14) is differential equation of second-order for conic section with respect 

to the focus. Different values of the eccentricity will lead into a different shape of 

the curve. 

By solving equation (14), we obtain the values   of angular velocity (�̇�) and 

angular acceleration (�̈�). 

Equations (9) to (12) are the first and second coordinate derivatives. 

A circle is a special case of an ellipse. Eccentricity is zero. Angular acceleration 

 

𝑑2

𝑑𝑡2
𝜑(𝑡) = 0          (15) 

From equations (14), (15) it follows that only motion along a circle has a constant 

acceleration. 

𝑑2

𝑑𝑡2
𝜑(𝑡) ≠ 0          (16) 

We have two options for calculating linear velocity (v) and acceleration (�̇�): 

1.  

𝑣 = √�̇�2 + �̇�2             (17) 

�̇� = √�̈�2 + �̈�2            (18) 

2.  

𝑣 = 𝑟 ∗ �̇�             (19) 

�̇� = 𝑟 ∗ √�̇�4 + �̈�2            (20) 
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Option 1 allows you to get the direction of the vectors of linear velocity and 

acceleration. 

Let's set the number of conditional days to walk the perimeter of the ellipse. From 

equation (14) we obtain the angles equal to the sectoral velocity.  Substitute the 

values of the angles in equations (6), (7), determine the coordinates of the points 

on the ellipse. 

We obtain the angular parameters by a numerical method, the program 

Winkel100MGU_ab_read_from_file.exe [1]. The calculation results are written to 

the ellpi.txt file [1], in the format of Table 1. 

N t 𝜑(𝑡) �̇� �̈� 

1     

2     

3     

4     
t - time, φ(t) - angle, �̇� - angular velocity, �̈�- angular acceleration. 

   Table 1 

 

Linear parameters: velocity and acceleration projections on the X, Y axis, 

equations (9) to (12), velocity vector length, equations (8), (9), acceleration vector 

length, equations (10), (11), calculated by the program 

Linear_acceleration_vector.exe. The calculation results are written to the 

calc_results.txt file [1], in the format of Table 2. 

N r vφ vxy �̇�𝜑   �̇�𝑥𝑦    angle dotx doty 

1         

2         

3         

4         

r - polar radius, vφ - linear speed according to formula (19), vxy - linear speed according to 

formulas (17), �̇�𝜑 - linear acceleration according to formulas (20), �̇�𝑥𝑦 - linear acceleration 

according to formulas (19), angle - angle between vectors of linear velocity and acceleration, 

dotx is the coordinate of the intersection point of the acceleration vector and the X-axis, doty is 

the coordinate of the intersection of the acceleration vector and the Y-axis. 

   Table 2 

Graphical representation of vectors of velocities and accelerations. 
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v - speed, a - acceleration, dx, dy, ddx, ddy - first and second derivatives along the coordinate 

axes. 

   Figure 2 

Coordinates of the origin of the vectors of speed and acceleration, points of the 

original ellipse (x, y). 

 Velocity vector end coordinates     

(dx+x, dy+y)           (21) 

Acceleration vector end coordinates  

(ddx-dx-x, ddy-dy-y)          (22) 

Set in the program equal to the semiaxes of the ellipse (a = b). This is a circle, a 

special case of an ellipse. The results are shown in Figures 3, 4. Calculation results 

are written to files calc_results_05_05_20.txt, calc_results_05_05_80.txt [1]. 
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     Figure 3 
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     Figure 4 

It is known that with uniform motion along a circle, the velocity and acceleration 

are constant, the velocity is directed tangentially, the acceleration is perpendicular 

to the velocity. From the figures and tables, we see that the calculated values 

coincide with the theoretical. Velocity vectors are tangent. The acceleration vectors 

are normal and intersect at the center of the circle. Change the input parameters. 

Let us set unequal values of the semiaxes of the ellipse (a ≠ b, a > b), Figures 5, 6. 

Calculation results are written to files _results_05_045_20.txt, 

calc_results_05_045_80.txt [1]. 
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     Figure 5 
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      Figure 6 

From Figures 5, 6 we see that the acceleration vectors do not have a common 

intersection point. All lines of acceleration vectors intersect with the axes of the 

ellipse. Determine the points of intersection of the acceleration vectors with the X 

axis, Figures 8, 9. 

The point of intersection of the velocity vector is determined by the rule of 

intersection of two segments, Figure 7. 

 



10 
 

 

    Figure 7. 

 

 

    Figure 8. 
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    Figure 9 

 

In previous graphs, vector lengths were displayed in absolute values. 

 

Let's find the maximum values of speed and acceleration. Divide all values by the 

corresponding maximum and display the ellipse, speed and acceleration relative to 

the common center in one figure 10. 
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    Figure 10 

 

Data received by the program Linear_acceleration_vector.exe [1].  

Tangential and normal acceleration 

 

When moving along a curve, the acceleration is decomposed into tangential (aτ) 

and normal (an), Figure 11. The value aτ and an is not known. 
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   Figure 11 

 

The equation of the tangent to the curve y = f (x) at the point M(x0, y0) has the 

form: 

𝑦 − 𝑦(𝑥0) = 𝑦′(𝑥0)(𝑥 − 𝑥0)        (23) 

 

The equation of the normal to the curve y (x) at the point M(x0, y0) has the form: 

𝑦 − 𝑦(𝑥0) =
1

𝑦′(𝑥0)
(𝑥 − 𝑥0)   

       (24) 

Let us write down the equation of the normal to the ellipse 

𝑥2

𝑎2
+

𝑦(𝑥)2

𝑏2
= 1          (25) 

 

Let's differentiate 

2𝑥

𝑎2
+

2𝑦(𝑥)
𝑑

𝑑𝑥
𝑦(𝑥)

𝑏2
= 0         (26) 

 
𝑑

𝑑𝑥
𝑦(𝑥) = −

𝑏2𝑥

𝑎2𝑦(𝑥)
         (27) 

 

𝑦 − 𝑦(𝑥0) = −
𝑎2𝑦(𝑥)

𝑏2𝑥
(𝑥 − 𝑥0)        (29) 

 

Let's set the values of the major, minor axis of the ellipse and the number of 

conditional days of traversing the perimeter of the ellipse. Calculate the 
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coordinates of the normals. Origin coordinates at points on the ellipse. The 

coordinates of the end of the normals are calculated. Set x = 0 and define yi(0), (i = 

0, 1, 2, ..., days).  Using formula (29), we carry out calculations, the program 

Normal_vector.exe [1].  Calculation results are written to a file calc_resultsN.txt 

[1], in table format 3. 

N x y nx ny tx ty angle 

1        

2        

3        

4        
x is the X coordinate, y is the Y coordinate, nx is the normal to the X axis, ny is the normal to the Y 

axis, tx is the tangent coordinate to the X axis, ty is the tangent coordinate to the Y axis, angle is 

the angle between tangent and normal. 

    Table 3 

 Figures 12, 13, 14 show the corresponding normal vectors. 
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    Figure 12 

 

 

    Figure 13 
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    Figure 14 

 

For comparison, we present a drawing of the full acceleration vectors. The 

acceleration vector is trimmed to the point of intersection with the X-axis, Figure 

15. 
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    Figure 15 

 

 

Let us define the resultant of the acceleration vectors. 

 

When adding vectors, the corresponding coordinates are added. The ellipse is 

symmetrical about the large axis, so when you add coordinates along the Y axis, 

we get zero. The origin is aligned with the focus, therefore, when adding the 

coordinates along the X axis, we get an offset, Figure 16. 
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    Figure 16 

 

Figure 17 shows the vectors of speed and acceleration of the planet Mercury. 

Calculation results are written to a file calc_results_Mercury.txt [1]. 
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    Figure 17 

 

 

Move a point around the center of the ellipse 

 

Compatible origin with ellipse center, Figure 18. 
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    Figure 18 

 

Parametric radius formula 

 

𝑟(𝜑(𝑡)) =
𝑏

√1−𝑒2𝑐𝑜𝑠2𝜑(𝑡)
         (30) 

 

Repeat the reasoning of the coordinate center option in focus. We get the following 

formulas: 

�̇� =
𝑑

𝑑𝑡
(

𝑏𝑐𝑜𝑠(𝜑(𝑡))

√1−𝑒2𝑐𝑜𝑠2𝜑(𝑡)
) = −

𝑏𝑠𝑖𝑛(𝜑(𝑡))
𝑑

𝑑𝑡
𝜑(𝑡)

√1−𝑒2𝑐𝑜𝑠2𝜑(𝑡)
−

𝑏𝑐𝑜𝑠2𝜑(𝑡)𝑒2𝑠𝑖𝑛(𝜑(𝑡))
𝑑

𝑑𝑡
𝜑(𝑡)

(1−𝑒2𝑐𝑜𝑠2𝜑(𝑡))(1−𝑒2𝑐𝑜𝑠2𝜑(𝑡))3/2
  (31) 

�̇� =
𝑑

𝑑𝑡
(

𝑏𝑠𝑖𝑛(𝜑(𝑡))

√1−𝑒2𝑐𝑜𝑠2𝜑(𝑡)
) = −

𝑏𝑐𝑜𝑠(𝜑(𝑡))
𝑑

𝑑𝑡
𝜑(𝑡)

√1−𝑒2𝑐𝑜𝑠2𝜑(𝑡)
−

𝑏𝑠𝑖𝑛2𝜑(𝑡)𝑒2𝑐𝑜𝑠(𝜑(𝑡))
𝑑

𝑑𝑡
𝜑(𝑡)

(1−𝑒2𝑐𝑜𝑠2𝜑(𝑡))(1−𝑒2𝑐𝑜𝑠2𝜑(𝑡))3/2
  (32) 

�̈� =
𝑑2

𝑑𝑡
(

𝑏𝑐𝑜𝑠(𝜑(𝑡))

√1−𝑒2𝑐𝑜𝑠2𝜑(𝑡)
) = −

𝑏𝑐𝑜𝑠(𝜑(𝑡))(
𝑑

𝑑𝑡
𝜑(𝑡))2

√1−𝑒2𝑐𝑜𝑠2𝜑(𝑡)
−

𝑏𝑠𝑖𝑛(𝜑(𝑡))
𝑑2

𝑑𝑡
𝜑(𝑡)

√1−𝑒2𝑐𝑜𝑠2𝜑(𝑡)
+

3𝑏𝑠𝑖𝑛2𝜑(𝑡)𝑒2𝑐𝑜𝑠(𝜑(𝑡))(
𝑑

𝑑𝑡
𝜑(𝑡))2

(1−𝑒2𝑐𝑜𝑠2𝜑(𝑡))3/2
+

3𝑏𝑐𝑜𝑠3𝜑(𝑡)𝑒4𝑠𝑖𝑛2(𝜑(𝑡))(
𝑑

𝑑𝑡
𝜑(𝑡))2

(1−𝑒2𝑐𝑜𝑠2𝜑(𝑡))5/2
−

𝑏𝑐𝑜𝑠3𝜑(𝑡)𝑒2(
𝑑

𝑑𝑡
𝜑(𝑡))2

(1−𝑒2𝑐𝑜𝑠2𝜑(𝑡))3/2
−

𝑏𝑐𝑜𝑠2𝜑(𝑡)𝑒2𝑠𝑖𝑛(𝜑(𝑡))
𝑑2

𝑑𝑡
𝜑(𝑡)

(1−𝑒2𝑐𝑜𝑠2𝜑(𝑡))3/2
 (33) 

 

�̈� =
𝑑2

𝑑𝑡
(

𝑏𝑠𝑖𝑛(𝜑(𝑡))

√1−𝑒2𝑐𝑜𝑠2𝜑(𝑡)
) = −

𝑏𝑠𝑖𝑛(𝜑(𝑡))(
𝑑

𝑑𝑡
𝜑(𝑡))2

√1−𝑒2𝑐𝑜𝑠2𝜑(𝑡)
+

𝑏𝑐𝑜𝑠(𝜑(𝑡))
𝑑2

𝑑𝑡
𝜑(𝑡)

√1−𝑒2𝑐𝑜𝑠2𝜑(𝑡)
−

3𝑏𝑐𝑜𝑠2𝜑(𝑡)𝑒2𝑠𝑖𝑛(𝜑(𝑡))(
𝑑

𝑑𝑡
𝜑(𝑡))2

(1−𝑒2𝑐𝑜𝑠2𝜑(𝑡))3/2
+

3𝑏𝑠𝑖𝑛3𝜑(𝑡)𝑒4𝑐𝑜𝑠2(𝜑(𝑡))(
𝑑

𝑑𝑡
𝜑(𝑡))2

(1−𝑒2𝑐𝑜𝑠2𝜑(𝑡))5/2
+

𝑏𝑠𝑖𝑛3𝜑(𝑡)𝑒2(
𝑑

𝑑𝑡
𝜑(𝑡))2

(1−𝑒2𝑐𝑜𝑠2𝜑(𝑡))3/2
−

𝑏𝑠𝑖𝑛2𝜑(𝑡)𝑒2𝑐𝑜𝑠(𝜑(𝑡))
𝑑2

𝑑𝑡
𝜑(𝑡)

(1−𝑒2𝑐𝑜𝑠2𝜑(𝑡))3/2
 (34) 

 

Let's substitute equations (30), (31) in equation (5), transfer everything to the left and solve 
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𝑏(2∗𝑒2𝑐𝑜𝑠(𝜑(𝑡))𝑠𝑖𝑛(𝜑(𝑡))(
𝑑

𝑑𝑡
𝜑(𝑡))

2

−
𝑑2

𝑑𝑡
𝜑(𝑡)+

𝑑2

𝑑𝑡
𝜑(𝑡)𝑒2𝑐𝑜𝑠2𝜑(𝑡))

(1−𝑒2𝑐𝑜𝑠2𝜑(𝑡))3/2𝑐𝑜𝑠(𝜑(𝑡))
= 0     (35) 

𝑑2

𝑑𝑡2
𝜑(𝑡) =

2∗𝑒2∗𝑐𝑜𝑠(𝜑(𝑡))∗𝑠𝑖𝑛(𝜑(𝑡))∗(
𝑑

𝑑𝑡
𝜑(𝑡))

2

1−𝑒2∗𝑐𝑜𝑠(𝜑(𝑡))
2        (36) 

�̈� =
2∗𝑒2∗𝑐𝑜𝑠(𝜑)∗𝑠𝑖𝑛(𝜑)∗�̇�2

1−𝑒2∗𝑐𝑜𝑠(𝜑)2
         (37) 

Calculate the coordinates of the velocity and acceleration vectors, program 

Linear_acceleration_vector_center.exe. Calculation results in files ellpi.txt, 

calc_results_05_045_20.txt, calc_results_05_045_80.txt [1]. Graphically displayed 

in Figures 19, 20. 

 

     Figure 19 
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     Figure 20 

 

Сonclusions 

 

From all of the above, it follows that the focal point lies only on the lines of the 

three acceleration vectors: perihelion, aphelion and resultant vector, in the case of 

the center of coordinates at the focus of the ellipse. If the center of the ellipse is 

aligned with the center of coordinates, five lines of acceleration vectors pass 

through the center. 
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