Isomorphisms between dual spaces of a vector space

Eduardo Magalhães

December 20, 2020

Abstract

In this small paper, it's deduced that for every finite-dimensional vector space V, the *i*-th and the *j*-th dual spaces of V are isomorphic. Two other minor lemmas are also proven: 1) Every vector space V with dimension n over a field \mathbb{K} is isomorphic to \mathbb{K}^n , and 2) The *i*-th dual space of a finite-dimensional vector space V is isomorphic to the i + 1-th dual space of V.

1 Introduction

Notation:

Firstly I'll introduce the notation that will be used in this paper: \mathbb{N} will be denoting the set of all natural numbers, with the number 0 included. We'll denote the dual space of a vector space V, over a field \mathbb{K} as: Hom (V, \mathbb{K}) . The *n*-th dual space of V will be denoted as: Hom_n (V, \mathbb{K}) and it can be formally defined as the following:

$$\begin{cases} \operatorname{Hom}_0(V,\mathbb{K}) = V\\ \operatorname{Hom}_{n+1}(V,\mathbb{K}) = \operatorname{Hom}(\operatorname{Hom}_n(V,\mathbb{K}),\mathbb{K}) \end{cases}, \forall n \in \mathbb{N} \end{cases}$$

If two vector spaces, V and W are isomorphic, that will be denoted as: $V\simeq W.$

If V is a set of vectors, then the linear span of V will me denoted as: $\mathcal{L}(V)$.

2 Content

2.1 Lemmas

To prove the main result we will make use of the following lemmas:

Lemma 1: Let V be a finite-dimensional vector space over a field \mathbb{K} . If $\dim(V) = n$, then:

$$V \simeq \mathbb{K}^n$$

Proof: Let $(v_1, ..., v_n)$ be an ordered basis of V. Then we can define a function $f: V \to \mathbb{K}^n$ such that, if $u \in V$ and u has coordinates $(\alpha_1, ..., \alpha_n)$, then $f(u) = (\alpha_1, ..., \alpha_n) \in \mathbb{K}^n$.

First let's verify that this function is indeed linear:

- Let $v = (\alpha_1, ..., \alpha_n)$ and $u = (\beta_1, ..., \beta_n)$ be vectors of V. Then: $f(v+u) = (\alpha_1 + \beta_1, ..., \alpha_n + \beta_n) = (\alpha_1, ..., \alpha_n) + (\beta_1, ..., \beta_n) = f(v) + f(u).$
- Let $\lambda \in \mathbb{K}$ and $v = (\alpha_1, ..., \alpha_n) \in V$. Then: $f(\lambda v) = (\lambda \alpha_1, ..., \lambda \alpha_n) = \lambda(\alpha_1, ..., \alpha_n) = \lambda f(v)$

Now we need to prove that f is bijective. Let $v, u \in V$ if $v \neq u$ then they must have different coordinates, this implies that $f(v) \neq f(u)$ so we conclude that the f is injective. It's also trivial to verify that f is surjective, because for every $(\alpha_1, ..., \alpha_n) \in \mathbb{K}^n$, there exists always a vector $u \in V$ with coordinates $(\alpha_1, ..., \alpha_n)$ such that $f(u) = (\alpha_1, ..., \alpha_n) \in \mathbb{K}^n$. This makes f a bijective linear map, meaning that $V \simeq \mathbb{K}^n$. Q.E.D.

Lemma 2: Let V be a finite-dimensional vector space over a field \mathbb{K} . Then it's true that:

$$\forall \alpha \in \mathbb{N}, \operatorname{Hom}_{\alpha}(V, \mathbb{K}) \simeq \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$$

Proof: Let $\{v_1, ..., v_n\}$ be a basis of $\operatorname{Hom}_{\alpha}(V, \mathbb{K})$. Now, let $\{v'_1, ..., v'_n\} \subseteq \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$ such that:

$$\begin{array}{c} v'_i: \operatorname{Hom}_{\alpha}(V, \mathbb{K}) \to \mathbb{K} \\ v_i \rightsquigarrow \delta_{ij} \end{array}, \forall i, j \in \{1, ..., n\} \end{array}$$

$$(1)$$

where δ_{ij} is the Kronecker delta. Then, $\{v'_1, ..., v'_n\}$ is a basis for $\operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$.

• First let's prove that it's spans the space:

We want to show that: $\mathcal{L}(\{v'_1, ..., v'_n\}) = \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$. The fact that $\mathcal{L}(\{v'_1, ..., v'_n\}) \subseteq \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$ follows trivially from the fact that, because $\operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$ is a vector space, it's closed under addition and multiplication with a scalar.

Now, let $w \in \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$. Let's check what w does to a generic element of $\operatorname{Hom}_{\alpha}(V, \mathbb{K})$. Let $u \in \operatorname{Hom}_{\alpha}(V, \mathbb{K})$, then:

$$u = \sum_{k=1}^{n} \lambda_k v_k$$

with $\lambda_k \in \mathbb{K}$. So we have the following:

$$w(u) = w\left(\sum_{k=1}^{n} \lambda_k v_k\right)$$

Using the fact that w is linear we can simplify this even further:

$$w\left(\sum_{k=1}^{n}\lambda_{k}v_{k}\right) = \sum_{k=1}^{n}w\left(\lambda_{k}v_{k}\right) = \sum_{k=1}^{n}\lambda_{k}w(v_{k})$$

We want to prove that w is a linear combination of $\{v'_1, ..., v'_n\}$, so we have to get those somewhere into the sum. We'll accomplish this by doing the following: it's trivial that: $\lambda_k = \lambda_k \delta_{kk}$, because $\delta_{kk} = 1$. But $\delta_{kk} = \sum_{m=1}^n \delta_{km}$, because, $\forall m \neq k, \delta_{km} = 0$, so we are basically just adding a bunch of 0's, not changing the value of δ_{kk} . So we conclude that: $\lambda_k = \lambda_k \sum_{m=1}^n \delta_{km} = \sum_{m=1}^n \lambda_m \delta_{km}$. But, because of (1), $\delta_{km} = v'_k(v_m)$. So we end up with: $\lambda_k = \sum_{m=1}^n \lambda_m v'_k(v_m)$. Continuing where we left:

$$\sum_{k=1}^{n} \lambda_k w(v_k) = \sum_{k=1}^{n} w(v_k) \left(\sum_{m=1}^{n} \lambda_m v'_k(v_m) \right)$$

Because v'_k is linear, we have that: $\sum_{m=1}^n \lambda_m v'_k(v_m) = \sum_{m=1}^n v'_k(\lambda_m v_m) = v'_k(\sum_{m=1}^n \lambda_m v_m)$. But note that $\sum_{m=1}^n \lambda_m v_m$ is the vector u that we started with, so: $v'_k(\sum_{m=1}^n \lambda_m v_m) = v'_k(u)$. So we conclude that: $\sum_{m=1}^n \lambda_m v'_k(v_m) = v'_k(u)$. We big much with $v'_k(u)$. Making this substitution we get:

$$\sum_{k=1}^{n} w(v_k) \left(\sum_{m=1}^{n} \lambda_m v_k'(v_m) \right) = \sum_{k=1}^{n} w(v_k) v_k'(u) = \underbrace{\left(\sum_{k=1}^{n} w(v_k) v_k' \right)}_{\in \operatorname{Hom}_{\alpha+1}(V,\mathbb{K})} (u)$$

this allows us the conclude that:

$$\forall u \in \operatorname{Hom}_{\alpha}(V, \mathbb{K}), \ w(u) = \left(\sum_{k=1}^{n} w(v_k)v'_k\right)(u)$$

So now we know that:

$$w = \sum_{k=1}^{n} w(v_k) v'_k$$

With this we can conclude that every $w \in \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$ is a linear combination of $\{v'_1, ..., v'_n\}$, so we infer that: $\mathcal{L}(\{v'_1, ..., v'_n\}) \supseteq \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$. If we pair this conclusion with $\mathcal{L}(\{v'_1, ..., v'_n\}) \subseteq \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$ that we've deduced above, we are finally done proving that: $\mathcal{L}(\{v'_1, ..., v'_n\}) = \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$, this meaning that the set $\{v'_1, ..., v'_n\}$ spans $\operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$.

• Now, in order to conclude the proof of the second lemma, let's prove that the set $\{v'_1, ..., v'_n\}$ is linearly independent:

Let $\lambda_1, ..., \lambda_n \in \mathbb{K}$ such that:

$$\sum_{k=1}^{n} \lambda_k v'_k = 0$$

This means that, it doesn't matter which input we give to $\sum_{k=1}^{n} \lambda_k v'_k$, the output is always 0. So let's see what happens when we plug the elements of the basis $\{v_1, ..., v_n\}$ as input: let $i \in \{1, ..., n\}$

$$\left(\sum_{k=1}^{n} \lambda_k v'_k\right)(v_i) = 0$$
$$\sum_{k=1}^{n} \lambda_k v'_k(v_i) = 0$$
$$\sum_{k=1}^{n} \lambda_k \delta_{ik} = 0$$
$$\lambda_i = 0$$

So we conclude that, $\forall i \in \{1, ..., n\}, \lambda_i = 0$, proving that $\{v'_1, ..., v'_n\}$ is linearly independent.

• Now we know that $\{v'_1, ..., v'_n\}$ spans $\operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$ and that the set is linearly independent. This means that $\{v'_1, ..., v'_n\}$ is a basis of $\operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$ and, because $\{v_1, ..., v_n\}$ is a basis of $\operatorname{Hom}_{\alpha}(V, \mathbb{K})$ it's clear that dim $\operatorname{Hom}_{\alpha}(V, \mathbb{K}) =$ dim $\operatorname{Hom}_{\alpha+1}(V, \mathbb{K}) = n$. Using lemma 1 we conclude that $\operatorname{Hom}_{\alpha}(V, \mathbb{K}) \simeq$ $\mathbb{K}^n \simeq \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$, so, using the fact that \simeq is transitive, we end up with: $\operatorname{Hom}_{\alpha}(V, \mathbb{K}) \simeq \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$. Q.E.D.

2.2 The proposition

Proposition 1: Let V be a finite-dimensional vector space over a field \mathbb{K} , then:

$$\forall i, j \in \mathbb{N}, \ \operatorname{Hom}_i(V, \mathbb{K}) \simeq \operatorname{Hom}_j(V, \mathbb{K})$$

Proof: With lemmas 1 and 2 this proof is almost done, we just need to put everything together now. Using lemma 2 and mathematical induction it's trivial to conclude that:

$$\forall \alpha \in \mathbb{N}, V \simeq \operatorname{Hom}_{\alpha}(V, \mathbb{K})$$
(2)

- For $\alpha = 0$, then we have that $\operatorname{Hom}_{\alpha}(V, \mathbb{K}) = \operatorname{Hom}_{0}(V, \mathbb{K}) = V \simeq V$.
- Let's assume that $V \simeq \operatorname{Hom}_{\alpha}(V, \mathbb{K})$, with $\alpha \in \mathbb{N}$, then, because of lemma 2 we have: $V \simeq \operatorname{Hom}_{\alpha}(V, \mathbb{K}) \simeq \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$, so: $V \simeq \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$.

With this two steps proven, mathematical induction tells us that this statement is true for all $\alpha \in \mathbb{N}$.

So now: Let $i, j \in \mathbb{N}$. Because of (2) we have:

$$\operatorname{Hom}_i(V,\mathbb{K}) \simeq V \simeq \operatorname{Hom}_i(V,\mathbb{K})$$

Using that fact that \simeq is transitive we arrive at the conclusion that:

 $\operatorname{Hom}_i(V,\mathbb{K}) \simeq \operatorname{Hom}_i(V,\mathbb{K})$

And this concludes the proof. Q.E.D.