Isomorphisms between dual spaces of a vector space

Eduardo Magalhães

December 20, 2020

Abstract

In this small paper, it's deduced that for every finite-dimensional vector space V, the i-th and the j-th dual spaces of V are isomorphic. Two other minor lemmas are also proven: 1) Every vector space V with dimension n over a field \mathbb{K} is isomorphic to \mathbb{K}^{n}, and 2) The i-th dual space of a finite-dimensional vector space V is isomorphic to the $i+1$-th dual space of V.

1 Introduction

Notation:

Firstly I'll introduce the notation that will be used in this paper: \mathbb{N} will be denoting the set of all natural numbers, with the number 0 included. We'll denote the dual space of a vector space V, over a field \mathbb{K} as: $\operatorname{Hom}(V, \mathbb{K})$. The n-th dual space of V will be denoted as: $\operatorname{Hom}_{n}(V, \mathbb{K})$ and it can be formally defined as the following:

$$
\left\{\begin{array}{l}
\operatorname{Hom}_{0}(V, \mathbb{K})=V \\
\operatorname{Hom}_{n+1}(V, \mathbb{K})=\operatorname{Hom}\left(\operatorname{Hom}_{n}(V, \mathbb{K}), \mathbb{K}\right)
\end{array} \quad, \forall n \in \mathbb{N}\right.
$$

If two vector spaces, V and W are isomorphic, that will be denoted as: $V \simeq W$.

If V is a set of vectors, then the linear span of V will me denoted as: $\mathcal{L}(V)$.

2 Content

2.1 Lemmas

To prove the main result we will make use of the following lemmas:

Lemma 1: Let V be a finite-dimensional vector space over a field \mathbb{K}. If $\operatorname{dim}(V)=n$, then:

$$
V \simeq \mathbb{K}^{n}
$$

Proof: Let $\left(v_{1}, \ldots, v_{n}\right)$ be an ordered basis of V. Then we can define a function $f: V \rightarrow \mathbb{K}^{n}$ such that, if $u \in V$ and u has coordinates $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, then $f(u)=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{K}^{n}$.

First let's verify that this function is indeed linear:

- Let $v=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $u=\left(\beta_{1}, \ldots, \beta_{n}\right)$ be vectors of V. Then: $f(v+u)=$ $\left(\alpha_{1}+\beta_{1}, \ldots, \alpha_{n}+\beta_{n}\right)=\left(\alpha_{1}, \ldots, \alpha_{n}\right)+\left(\beta_{1}, \ldots, \beta_{n}\right)=f(v)+f(u)$.
- Let $\lambda \in \mathbb{K}$ and $v=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in V$. Then: $f(\lambda v)=\left(\lambda \alpha_{1}, \ldots, \lambda \alpha_{n}\right)=$ $\lambda\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\lambda f(v)$

Now we need to prove that f is bijective. Let $v, u \in V$ if $v \neq u$ then they must have different coordinates, this implies that $f(v) \neq f(u)$ so we conclude that the f is injective. It's also trivial to verify that f is surjective, because for every $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{K}^{n}$,there exists always a vector $u \in V$ with coordinates $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ such that $f(u)=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{K}^{n}$. This makes f a bijective linear map, meaning that $V \simeq \mathbb{K}^{n}$. Q.E.D.

Lemma 2: Let V be a finite-dimensional vector space over a field \mathbb{K}. Then it's true that:

$$
\forall \alpha \in \mathbb{N}, \operatorname{Hom}_{\alpha}(V, \mathbb{K}) \simeq \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})
$$

Proof: Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of $\operatorname{Hom}_{\alpha}(V, \mathbb{K})$. Now, let $\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\} \subseteq$ $\operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$ such that:

$$
\begin{array}{r}
v_{i}^{\prime}: \operatorname{Hom}_{\alpha}(V, \mathbb{K}) \rightarrow \mathbb{K} \tag{1}\\
v_{j} \rightsquigarrow \delta_{i j}
\end{array}, \forall i, j \in\{1, \ldots, n\}
$$

where $\delta_{i j}$ is the Kronecker delta. Then, $\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ is a basis for $\operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$.

- First let's prove that it's spans the space:

We want to show that: $\mathcal{L}\left(\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}\right)=\operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$. The fact that $\mathcal{L}\left(\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}\right) \subseteq$ $\operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$ follows trivially from the fact that, because $\operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$ is a vector space, it's closed under addition and multiplication with a scalar.

Now, let $w \in \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$. Let's check what w does to a generic element of $\operatorname{Hom}_{\alpha}(V, \mathbb{K})$. Let $u \in \operatorname{Hom}_{\alpha}(V, \mathbb{K})$,then:

$$
u=\sum_{k=1}^{n} \lambda_{k} v_{k}
$$

with $\lambda_{k} \in \mathbb{K}$. So we have the following:

$$
w(u)=w\left(\sum_{k=1}^{n} \lambda_{k} v_{k}\right)
$$

Using the fact that w is linear we can simplify this even further:

$$
w\left(\sum_{k=1}^{n} \lambda_{k} v_{k}\right)=\sum_{k=1}^{n} w\left(\lambda_{k} v_{k}\right)=\sum_{k=1}^{n} \lambda_{k} w\left(v_{k}\right)
$$

We want to prove that w is a linear combination of $\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$, so we have to get those somewhere into the sum. We'll accomplish this by doing the following: it's trivial that: $\lambda_{k}=\lambda_{k} \delta_{k k}$, because $\delta_{k k}=1$. But $\delta_{k k}=\sum_{m=1}^{n} \delta_{k m}$, because, $\forall m \neq k, \delta_{k m}=0$, so we are basically just adding a bunch of 0's, not changing the value of $\delta_{k k}$. So we conclude that: $\lambda_{k}=\lambda_{k} \sum_{m=1}^{n} \delta_{k m}=\sum_{m=1}^{n} \lambda_{m} \delta_{k m}$. But, because of (1), $\delta_{k m}=v_{k}^{\prime}\left(v_{m}\right)$. So we end up with:
$\lambda_{k}=\sum_{m=1}^{n} \lambda_{m} v_{k}^{\prime}\left(v_{m}\right)$. Continuing where we left:

$$
\sum_{k=1}^{n} \lambda_{k} w\left(v_{k}\right)=\sum_{k=1}^{n} w\left(v_{k}\right)\left(\sum_{m=1}^{n} \lambda_{m} v_{k}^{\prime}\left(v_{m}\right)\right)
$$

Because v_{k}^{\prime} is linear, we have that: $\sum_{m=1}^{n} \lambda_{m} v_{k}^{\prime}\left(v_{m}\right)=\sum_{m=1}^{n} v_{k}^{\prime}\left(\lambda_{m} v_{m}\right)=$ $v_{k}^{\prime}\left(\sum_{m=1}^{n} \lambda_{m} v_{m}\right)$. But note that $\sum_{m=1}^{n} \lambda_{m} v_{m}$ is the vector u that we started with, so: $v_{k}^{\prime}\left(\sum_{m=1}^{n} \lambda_{m} v_{m}\right)=v_{k}^{\prime}(u)$. So we conclude that: $\sum_{m=1}^{n} \lambda_{m} v_{k}^{\prime}\left(v_{m}\right)=$ $v_{k}^{\prime}(u)$. Making this substitution we get:

$$
\sum_{k=1}^{n} w\left(v_{k}\right)\left(\sum_{m=1}^{n} \lambda_{m} v_{k}^{\prime}\left(v_{m}\right)\right)=\sum_{k=1}^{n} w\left(v_{k}\right) v_{k}^{\prime}(u)=\underbrace{\left(\sum_{k=1}^{n} w\left(v_{k}\right) v_{k}^{\prime}\right)}_{\in \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})}(u)
$$

this allows us the conclude that:

$$
\forall u \in \operatorname{Hom}_{\alpha}(V, \mathbb{K}), w(u)=\left(\sum_{k=1}^{n} w\left(v_{k}\right) v_{k}^{\prime}\right)(u)
$$

So now we know that:

$$
w=\sum_{k=1}^{n} w\left(v_{k}\right) v_{k}^{\prime}
$$

With this we can conclude that every $w \in \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$ is a linear combination of $\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$, so we infer that: $\mathcal{L}\left(\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}\right) \supseteq \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$. If we pair this conclusion with $\mathcal{L}\left(\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}\right) \subseteq \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$ that we've deduced
above, we are finally done proving that: $\mathcal{L}\left(\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}\right)=\operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$, this meaning that the set $\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ spans $\operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$.

- Now, in order to conclude the proof of the second lemma, let's prove that the set $\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ is linearly independent:

Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{K}$ such that:

$$
\sum_{k=1}^{n} \lambda_{k} v_{k}^{\prime}=0
$$

This means that, it doesn't matter which input we give to $\sum_{k=1}^{n} \lambda_{k} v_{k}^{\prime}$, the output is always 0 . So let's see what happens when we plug the elements of the basis $\left\{v_{1}, \ldots, v_{n}\right\}$ as input: let $i \in\{1, \ldots, n\}$

$$
\begin{gathered}
\left(\sum_{k=1}^{n} \lambda_{k} v_{k}^{\prime}\right)\left(v_{i}\right)=0 \\
\sum_{k=1}^{n} \lambda_{k} v_{k}^{\prime}\left(v_{i}\right)=0 \\
\sum_{k=1}^{n} \lambda_{k} \delta_{i k}=0 \\
\lambda_{i}=0
\end{gathered}
$$

So we conclude that, $\forall i \in\{1, \ldots, n\}, \lambda_{i}=0$, proving that $\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ is linearly independent.

- Now we know that $\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ spans $\operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$ and that the set is linearly independent. This means that $\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ is a basis of $\operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$ and, because $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of $\operatorname{Hom}_{\alpha}(V, \mathbb{K})$ it's clear that $\operatorname{dim} \operatorname{Hom}_{\alpha}(V, \mathbb{K})=$ $\operatorname{dim} \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})=n$. Using lemma 1 we conclude that $\operatorname{Hom}_{\alpha}(V, \mathbb{K}) \simeq$ $\mathbb{K}^{n} \simeq \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$, so, using the fact that \simeq is transitive, we end up with: $\operatorname{Hom}_{\alpha}(V, \mathbb{K}) \simeq \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$. Q.E.D.

2.2 The proposition

Proposition 1: Let V be a finite-dimensional vector space over a field \mathbb{K}, then:

$$
\forall i, j \in \mathbb{N}, \operatorname{Hom}_{i}(V, \mathbb{K}) \simeq \operatorname{Hom}_{j}(V, \mathbb{K})
$$

Proof: With lemmas 1 and 2 this proof is almost done, we just need to put everything together now. Using lemma 2 and mathematical induction it's trivial to conclude that:

$$
\begin{equation*}
\forall \alpha \in \mathbb{N}, V \simeq \operatorname{Hom}_{\alpha}(V, \mathbb{K}) \tag{2}
\end{equation*}
$$

- For $\alpha=0$, then we have that $\operatorname{Hom}_{\alpha}(V, \mathbb{K})=\operatorname{Hom}_{0}(V, \mathbb{K})=V \simeq V$.
- Let's assume that $V \simeq \operatorname{Hom}_{\alpha}(V, \mathbb{K})$, with $\alpha \in \mathbb{N}$, then, because of lemma 2 we have: $V \simeq \operatorname{Hom}_{\alpha}(V, \mathbb{K}) \simeq \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$, so: $V \simeq \operatorname{Hom}_{\alpha+1}(V, \mathbb{K})$.

With this two steps proven, mathematical induction tells us that this statement is true for all $\alpha \in \mathbb{N}$.

So now: Let $i, j \in \mathbb{N}$. Because of (2) we have:

$$
\operatorname{Hom}_{i}(V, \mathbb{K}) \simeq V \simeq \operatorname{Hom}_{j}(V, \mathbb{K})
$$

Using that fact that \simeq is transitive we arrive at the conclusion that:

$$
\operatorname{Hom}_{i}(V, \mathbb{K}) \simeq \operatorname{Hom}_{j}(V, \mathbb{K})
$$

And this concludes the proof. Q.E.D.

