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Abstract  

In this paper we present a general class of differential equations of Ermakov-

Pinney type which may serve as truly nonlinear oscillators. We show the 

existence of periodic solutions by exact integration after the phase plane 

analysis. The related quadratic Lienard type equations are examined to show for 

the first time that the Jacobi elliptic functions may be solution of second-order 

autonomous non-polynomial differential equations. 
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Introduction 

In the research field of periodic solution to Lienard nonlinear differential 

equations of the form 

    0)( =+ xfx&&                                                                                                (1) 

where the overdot stands for the derivative with respect to time, and )(xf  is a 

nonlinear function of x , it is less usual to notice differential equations with exact 

periodic solutions. It is again very less usual to find differential equations with 

exact periodic solutions in terms of trigonometric functions. This makes the 

Ermakov-Pinney equation 

  0
3
=++

x

b
xax&&                                                                                                (2) 

unusual and underlines its high usefulness in science and engineering. In this 

way a lot of applications in classical mechanics as well as in quantum mechanics 

for example, has been carried out during these decades [1, 2]. The Ermakov-

Pinney equation (2) has been studied in [2] to show the existence of new 
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periodic solutions and non-periodic solutions. In [3] an exceptional Lienard 

equation with strong and high order nonlinearity is presented. A Lienard 

equation with a periodic solution in terms of a single trigonometric function, 

which may lead to a quadratic Lienard type equation with a periodic solution 

exhibiting harmonic oscillations, and contains several well-known equations like 

the Ermakov-Pinney equation [4], the Mickens truly nonlinear oscillators and 

the cubic Duffing equation as special cases, has never been highlighted in the 

literature despite the well established theory of  differential equations, as it is 

carried out in [3]. According to [5, 6] all Ermakov-Pinney equations may be 

reduced to 

0
3
=+

x

b
x&&                                                                                                              (3) 

using a variable change. One may say that the cubic singularity defines the 

nonlinear property of the Ermakov-Pinney equation. So a differential equation 

with cubic nonlinearity may be said of Ermakov-Pinney type. In this perspective 

consider the Lienard differential equation [2, 3] 

   ( ) 0
22

1 11 =+−+ −−−− qq x
qb

xaqx αα&&                                                                         (4) 

Making  2=q , yields as equation 

 ( ) 02
2

1
3

3 =+−+ −

x

b
xax αα&&                                                                                     (5) 

In view of the above, the equation (5) may be characterized of Ermakov-Pinney 

type. For 2=α , the equation (5) reduces to (3). The equation (5)  may be 

reduced to a quadrature. Using the corresponding first order differential equation 

[2, 3] 

  bxaxx =+ α22
&                                                                                                     (6) 

the general solution of (5) is written as the quadrature defined by 

 ( ) ∫
−

=+±
αxab

dxx
Kt                                                                                             (7) 

Let  

  ∫
−

=
αxab

xdx
J                                                                                                    (8) 
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The change of variable αxabX −=2 , and XdX
a

Xb

a
dx

α
α

α

−








 −
−=

1
22

 , where 0≠a , 

and 0≠α  , turns J  into 

   ( ) dXXb
a

J ∫
−

−−= α
α

αα

2
2

2

2
                                                                                 (9) 

A new change of variable 
b

X
=φ , where 0≠b , reduces J  to the form 

  ( ) φφ
α

α
αα
d

a

b

b

b
J ∫

−

−






−=
2

2

2

1
2

                                                                             (10) 

As can be seen, the value of the integral in J  could not be known exactly. A 

new change of variable in terms of trigonometric or hyperbolic functions may be 

also performed but this does not solve the problem. However, it shows that the 

general solutions of some specific equations of the equation (5) are not periodic. 

The equation (5) may be reduced to the form 

( ) 01
3

32 =+−+ −

x

b
xanx n

&&                                                                                       (11) 

where n2=α , n  is an integer. The equation (11) may be of physical importance 

since it has the structure of truly nonlinear oscillators formulated by Mickens in 

his book [7], and contains the famous Ermakov-Pinney equation as special case. 

It is known also that differential equations with power nonlinearities are often 

encountered in mathematical modeling of physical problems. A vast literature 

exists on the topic of truly nonlinear oscillators. During the last decades many 

authors investigated these nonlinear differential equations. As nonlinear 

differential equations, they have no exact explicit solutions in general. Moreover 

they could not be solved by the well known standard approximate analytical 

techniques [7]. So the existence of periodic solutions of these equations is yet 

under some debate. This particularly, becomes an attractive research problem 

when the second order autonomous truly nonlinear equation has a singularity at 

the origin and can have no critical point, necessary condition, according to [8], 

to a planar autonomous systems to have a periodic solution. It was the case of 

the so-called pseudo-oscillator investigated in [8]. The authors [8] concluded 

that such a differential equation has no periodic solution. In contrast to this the 

author in [9] showed that periodic solution exists, at least a non-smooth solution. 
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The author [9] carried out a theory to build such periodic solutions. In [10] the 

two general solutions predicted in [8] have been exactly calculated and the 

authors [10] concluded also to the non existence of smooth periodic solution. 

The equation (11) has a cubic singularity at the origin for a positive integer n , 

but may have fixed points. For n  negative, singularities appear also. Choosing 

1=n , that is 2=α , reduces the equation (11) to the Ermakov-Pinney type 

equation (3). For 2=n , that is 4=α , the equation (11) becomes the Ermakov-

Pinney equation (2). Using 3=n , in other words 6=α , the equation (11) 

transforms into 

     02
3

3 =++
x

b
xax&&                                                                                            (12) 

For 0=b , the equation (12) reduces to the well-known restricted cubic Duffing 

equation [7, 11, 12] for which it is said that all the solutions are periodic. 

Contrarily to these authors and to several others, it has been shown that such an 

equation may exhibit non-periodic solution, precisely complex-valued solutions 

[13]. Putting 4=n , into the equation (11), yields 

       03
3

5 =++
x

b
xax&&                                                                                           (13) 

When 0=b , the equation (13) reduces to the restricted quintic Duffing equation. 

The equations (12), (13) and others, which may be obtained for various values 

of n , have not been previously studied in the literature. The above underlines the 

mathematical importance to ask whether the equation (11) has periodic solutions 

for 2>n . The case 2=n , corresponding to the Ermakov-Pinney equation has 

been investigated in several papers. Periodic solutions have been carried out for 

this equation in [2, 4]. The case of negative n  will be considered separately in a 

paper. In the present work we show that the equation (11) may exhibit periodic 

and explicit general solutions for 1=
b

a
, and 42 ≤≤ n . In this regard the 

qualitative properties of solutions of the equation (11) are investigated in section 

(2), and the section (3) is devoted to exhibit exact periodic solutions of (11) 

under the preceding conditions. The general solutions of the equation (3) are 

also exhibited in this section. Finally a conclusion is formulated for the work. 
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2. Qualitative properties of solutions 

The qualitative properties of solutions to (11) are investigated in this section 

using the phase plane method. Therefore the equation (11) is equivalent to the 

planar autonomous dynamical system 

   ( )
3

321,
x

b
xanyyx n −−−== −

&&                                                                        (14) 

The fixed point is defined by 0=y  and 
( )

n

an

b
x

2

1

1









−
−= . As one may see, for

1−=
a

b
, the critical point is real, but for 1+=

a

b
, the coordinate x  may become 

complex. From (14) one may write 

 
( )

3

21

xy

baxn

dx

dy n +−
−=                                                                                        (15) 

The separation of variable leads to 

  ( ) dx
x

b
axnydy n






 +−−= −
3

321                                                                            

By integration, one may obtain the integral curves given by   

  c
x

b
axy n ++−= −

2

222                                                                                      (16) 

This means that  

 
2

22

x

b
axc n −≥ −  ,                                                                                                 (17) 

as    02 ≥y  , where c  is the integration constant defining the first integral, that is 

the Hamiltonian of the system          

  
2

222

222

1

x

b
x

a
yH n −+= −                                                                                   (18) 

The Hamiltonian (18) is time independent so that the equation (11) defines a 

conservative system from physical point of view. Using 1−=
a

b
, and 2≥n  with c   

satisfying the preceding condition, one may observe that the integral curves (16) 

are closed trajectories in the ( )−yx, plane corresponding to periodic solutions of 
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(11). However, we show in the next section that the general solutions are 

complex-valued. For 1=
a

b
, the trajectories in the ( )−yx, plane are not closed 

curves, but the explicit general solutions calculated in the next section are 

periodic. Now the objective is to calculate the exact and explicit general 

solutions of the equations (3), (12) and (13). 

3. General solutions 

3.1 General solutions of (3) 

The reduced Ermakov-Pinney equation (3) has been the object of a high 

consideration in the literature since the Ermakov-Pinney equations can be 

reduced to (3) as mentioned before. In order to study its properties, the 

Ermakov-Pinney equation (3) for 1−=b , in [5, 6] is transformed into 

0432 42 =+− zzzz &&&                                                                                            (19)  

using the point transformation 

2

1

x
z =                                                                                                            (20) 

However, no explicit general solution is given. In [6] the equation (19) is 

examined from symmetry group point of view and the authors [6] arrived to 

examine 

032 42 =+− Bzzzz &&&                                                                                          (21) 

where B  is the arbitrary constant. The authors [6] observe that the analysis of 

Lie point symmetries is not adequate for (21) which requires, rather than 

nonlocal symmetry calculation. As the evaluation of nonlocal symmetries may 

be complicated, the authors [6] apply the Jacobi last multiplier approach to find 

the solution of (19) in terms of time dependent integral. On the other hand, the 

equation (3) is also investigated in [14]. The authors [14] succeed to calculate a 

general solution of (3) where 1=b , in terms of the so-called C  invariant related 

to the Ermakov-Pinney invariant. However, the point transformation of the 

equation (3) into (19) shows clearly that such an equation has two general 

solutions which differ only by a sign. The objective in this paragraph is to 

determine in a direct fashion the two general solutions and by exactly solving 

the auxiliary equation (19), in terms of arbitrary constants. 
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3.1.1 Direct method 

According to (10) the equation (3) may be reduced to the quadrature 

    ( ) ∫





−=+± φd
a

b

b

b
Kt                                                                                 (22) 

which leads to 

 ( )Kt
a

b

b

b
+±=







− φ                                                                                       (23) 

Using the change 
b

bX

b

X
==φ , the equation (23) gives 

    ( )KtaX +±=                                                                                              (24) 

from which, using the previous relation 22 axbX −= , one may secure the general 

solutions of (3) as  

  ( )
2

1

24
)( 




 +−±= Ktab
a

b
tx                                                                                (25) 

where K  is an integration constant. 

3.1.2 Solution using the auxiliary equation (19) 

 Let us consider the generalized Sundman transformation theory introduced 

recently in the literature by Akande and coworkers [15]. In fact the generalized 

Sundman transformation is a powerfull change of variables which allows 

solving differential equations with a few mathematical manipulations. In the 

theory introduced by Akande et al. [15] the oscillator harmonic equation 

 02 =+ uu ω&&                                                                                                         (26) 

where ω  is a constant, u&&  means the second derivative with respect to τ , and 

  ( )βωττ += sin)( 0Au                                                                                        (27) 

is transformed, under the change of variables 

  ( ) ( )dtztGdztFu ,,,)( == ττ                                                                           (28) 

where 
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 ( ) ( ) ( )zeztGdzzgztF ϕγ== ∫ ,,)(, l , and 
( )

0
,

≠
∂

∂
z

ztF
                                              (29) 

to the second order differential  equation 

    
( )

0
)(

)()(2exp
)('

)(

)(' 22 =+







−+ ∫

l

l

&l&&
zg

dzzgz
zz

zg

zg
z

ϕγ
ωϕγ                                         (30) 

where 0A , β , l , γ  are arbitrary parameters, 0)( ≠zg , and )(zϕ  are arbitrary 

functions of z , and prime denotes differentiation with respect to z . The 

application of ( ))(ln)( zfz =ϕ , leads to 

      0
)(

)()(

)(

)('

)(

)('
22

2 =+







−+ ∫

l

l

&l&&
zg

dzzgzf
z

zf

zf

zg

zg
z

γω
γ                                             (31) 

Putting zzg =)( , and 2)( zzf = , into (31), allows one to obtain 

    ( ) 0
1

2 14
22

=
+

+−+ +γω
γ z
z

z
z

l

&
l&&                                                                         (32) 

which may reduce, choosing 
2

1
=−= lγ ,  to 

   02
2

3 32
2

=+− z
z

z
z ω

&
&&                                                                                       (33) 

The equation (33) may be identified to (21) when B=24ω  and to (19) when 

12 =ω .  So from the solutions of (33) one may deduce those of (3) with 1−=b .  

In this context the transformation defined by (28) and (29) becomes 

    ∫ ==
−

2

1

2

1

2)( zdzzu τ                                                               

that is, 
4

2u
z = , and zdtd =τ , so that the equation (33) may be reduced to the 

quadrature determined by 

    ( )
( )∫ +

=+
βτω

τ
21

2

0

sin4

d
Kt

A
                                                                        (34) 

where 1K  is an integration constant. The change of variable βτω +=s , reduces 

the integral in (34) to     
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   ∫=
s

ds
J

2sin

1

ω
                                                                                              (35) 

which yields  

  ( )1

2

0

4
)(cot Kt

A
sg +=−

ω
                                                                               (36) 

such that 

     ( )







+

−
=+ −

1

2

01

4
cot Kt

A
g

ω
βτω                                                                (37) 

Substituting (37) into (27) yields the general solution to (33) as 

   ( ) ( )



















+

−
= −

1

2

0122

0
4

cotsin
4

1
Kt

A
gAtz

ω
                                                         (38) 

Using (38) one may deduce the solution of (19) in the form 

   ( ) ( )



















+−= −

1

2

0122

0
4

cotsin
4

1
Kt

A
gAtz                                                                (39) 

Therefore the solution of (3) where 1−=b , becomes 

 ( )
( )




















+−

=
−

1

2

0122

0

2

4
cotsin

4

Kt
A

gA

tx                                                                  (40) 

that is 

       ( )
( )




















+−

±=
−

1

2

01

0
4

cotsin

2

Kt
A

gA

tx                                                          (41) 

Knowing  










+
=− −−

2

11

1

1
sin)(cot

v
vg , for 0>v , and ( ) 











+
−= −−

2

11

1

1
sincot

v
vg π , 

for 0<v , then the general solutions (41) reduce to  

        
( )

0

2

1

4

0

16
12

)(
A

Kt
A

tx

++
±=                                                                         (42) 
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Now the problem to be solved is to calculate the general solution of the 

equations (12) and (13) to show analytically and explicitly the existence of 

periodic solutions to the equation (11). 

3.2 Exact periodic and complex-valued solutions 

3.2.1 Periodic and complex-valued solutions of (12) 

The equation (12) is obtained when 3=n , that is when 6=α , from the equation 

(11). Two cases may be investigated. 

Periodic solution  

For reason of simplicity we choose 1== ba . In this case the integral J  becomes 

 
( )∫
−

−=
3 2213

1

φ

φd
J                                                                                         (43) 

which may be rewritten as [17] 

     
( )

( )1
0 3 2213

1
ct

d
J +±=

−
−= ∫

φ

ξ

ξ
                                                                      (44) 

where ∞pp φ0 , and 
1c  is an arbitrary parameter. 

By integration, (44) reduces to [17] 

  ( )kFJ ,
32

3

3

1
4

ψ=                                                                                            (45) 

where   












−++

−−−
= −

3 2

3 2

1

113

113
cos

φ

φ
ψ , and 

4

322 +
=k . Using (45), one may write 

  ( ) ( )14
,

32

1
ctkFJ +±== ψ                                                                                (46) 

from which one may get 

   ( )[ ]kctCn ,32cos 1
4 +±=ψ                                                    

that is 

 ( )[ ]kctCn ,32
113

113
1

4

3 2

3 2

+±=
−++

−−−

φ

φ
                                                              (47)          
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In this situation φ  may be written as 

( ) ( )[ ]
( )[ ]

2
1

3

1
4

1
4

,321

,321313
1)(
























+±+

+±+−−
+±=

kctCn

kctCn
tφ                                               (48)                                                                   

Knowing X
b

X
==φ , that is 

a

Xb
x

2−
=α , which becomes 21 Xx −=α , as 1== ba

, the solution x  takes the definitive form 

 
( ) ( ) ( )[ ]

( )[ ]
2

1

1
4

1
4

,321

,321331
)( 











+±+

+±++−
=

kctCn

kctCn
tx                                                       (49)                                                

Complex-valued solution: 1=−= ba  

This case corresponds to 

  ( )
( )∫ ∫
−

=−=
−

3 22

3
2

2

13
1

3 φ

φ
φφ

di
d

i
J                                                                     (50) 

where i  is the purely imaginary number. The equation (50) gives [17] 

     
( )

( )2
0 3 22

3

1

cti
d

+±=
−

∫
φ

ξ

ξ
                                                                               (51) 

where ∞pp φ0 , and 
2c  is an arbitrary parameter. 

The evaluation of the integral in (51) leads to 

   ( ) ( )24
3,

32

3
ctikF +±=ψ                                                                              (52) 

The equation (52) may be rewritten in the form 

 ( )[ ]kctiCn ,32cos 2
4 +±=ψ                                                                               (53) 

 such that 

      ( )[ ]kctiCn ,32
113

113
1

4

3 2

3 2

+±=
−++

−−−

φ

φ
                                                            (54) 

From (54) one may get φ  as 
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( ) ( )[ ] ( )

( )[ ]
2

1
3

2
4

2
4

',321

13',3213
1)(
























+±+

+−+±−
+±=

kctCn

kctCn
tφ                                        (55)   

with 21' kk −= .                                                          

In the present case,
1−

=
X

φ , which is rewritten as Xi−=φ , that is φiX = , so 

that 

   ( )11 22 −=−−= φα Xx                                                                                     (56) 

from which one may secure the complex-valued solution )(tx  in the form 

   
( ) ( )[ ] ( )

( )[ ]
2

1

2
4

2
4

',321

13',3213
)( 











+±+

+−+±−
=

kctCn

kctCn
tx                                                     (57)                                                  

3.2.2 Periodic and complex-valued solutions of (13) 

The equation (13) corresponds to 4=n , which gives 8=α . Two cases may be 

studied.  

Periodic solution: 1== ba  

In this case, the integral J  is written in this form 

  
( )∫
−

−=
4 3214

1

φ

φd
J                                                                                            (58) 

Using (7) one may get the equation [16, 17] 

  
( )

( )3
0

4 3214

1
ct

d
+±=

−
− ∫

φ

ξ

ξ
                                                                                (59) 

where 3c  is an arbitrary parameter. Therefore, by integration, the equation (59) 

reduces to 

    ( )34
2

2
,2 ctF +=










mψ                                                                                 (60) 

where 10 ≤φp . From (60) one may ensure the following equation 
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    ( ) 







+=

2

2
,22cos 3ctCn mψ                                                                         (61) 

which is written in this form 

     ( ) 







+=−

2

2
,221 3

4 2 ctCn mφ                                                                      (62) 

From the equation (62), one may secure 

         ( ) 







+−=

2

2
,221 3

42 ctCnφ                                                                    (63) 

Using the relation 
b

X
=φ , that is φ=X , the equation (63) is rewritten as 

   ( ) 







+−=

2

2
,221 3

42 ctCnX                                                                            (64) 

from which the relation 
a

Xb
x

2−
=α , that is 28 1 Xx −=  , gives 

  ( )
2

1

3
2

2
,22)(






















+= ctCntx                                                                         (65) 

Complex-valued solution: 1=−= ba  

This condition leads to the equation [17] 

    ( )4
0 81

cti
dx

+±=
+

∫
ξ

ξξ
                                                                                     (66) 

where 10 ≤xp . The integral in (66) is known as hyperelliptic integral and its 

evaluation gives [19] 

   ( )44

4
1

2

2
,

1

1

4

1
cti

x

x
Cn +±=









+

−−                                                                         (67) 

which may be rearranged in the form 

   ( ) 







+±=

+

−
2

2
,4

1

1
44

4

ctiCn
x

x
                                                                            (68) 
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From (68) one may get 

  

( )

( ) 







++









+−

=

2

2
,41

2

2
,41

4

4

4

ctiCn

ctiCn

x                                                                                 (69) 

so that the general solution )(tx  may take the expression 

 

( )

( )

4
1

4

4

2

2
,41

2

2
,41

)(





























++









+−

=

ctiCn

ctiCn

tx                                                                           (70) 

or in the definitive form 

       

( )

( )

4
1

4

4

1
2

2
,4

1
2

2
,4

)(





















+







+

−







+

=

ctCn

ctCn

tx                                                                   (71) 

Thus, the above shows that under the conditions that 1=
b

a
, and 42 ≤≤ n , the 

explicit general solutions of (11) are periodic. 

In the sequel of this work, the related quadratic Lienard type equations to the 

equation (13) is examined. 

4. Quadratic Lienard type equations 

To determine the quadratic Lienard type equations related to (13), consider the 

change of variable 

        px=ϑ                                                                                                    (72) 

Thus one may obtain 

       p

p

pdt

dx
−

=
1

1
ϑϑ&                                                                                             (73) 

and 
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    p

p

p

p

p

p

pdt

xd
21

2

2

1

2

2
11

−−
−

+= ϑϑϑϑ &&&                                                                        (74) 

Substituting (74) into (13) and taking into account (72), yields 

  03
1

442

=++
−

+
−+

p

p

p

p

bpap
p

p
ϑϑ

ϑ
ϑ

ϑ
&

&&                                                                   (75) 

The solution (65) ensures the general periodic solution of (75) in the form 

   ( )
2

3
2

2
,22)(

p

ctCnt 

















+=ϑ                                                                          (76)   

where 1== ba .                           

By application of 2=p , the equation (75) reduces to 

  0
2

6
2

1 3
2

=++−
ϑ

ϑ
ϑ
ϑ

ϑ
&

&&                                                                                     (77) 

  and its general solution becomes 

  ( ) 







+=

2

2
,22)( 3ctCntϑ                                                                                (78) 

which shows for the first time that the Jacobi elliptic function Cn  [19] may be 

solution of second order autonomous non-polynomial differential equations. 

Now a conclusion of this work may be addressed. 

Conclusion  

In this paper a general class of truly nonlinear oscillator equations is presented. 

The conditions of existence of periodic solutions are shown and periodic and 

explicit general solutions are examined. The general solutions of a well known 

Ermakov-Pinney type equation are also calculated. Finally it has been shown 

that the Jacobi elliptic function Cn  may be solution of second-order autonomous 

non-polynomial differential equations. 
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