IS THE *abc* **CONJECTURE TRUE?**

ABDELMAJID BEN HADJ SALEM

ABSTRACT. In this paper, we consider the *abc* conjecture. In the first part, we give the proof of the conjecture $c < rad^{1.63}(abc)$ that constitutes the key to resolve the *abc* conjecture. The proof of the *abc* conjecture is given in the second part of the paper, supposing that the *abc* conjecture is false, we arrive in a contradiction.

1. INTRODUCTION AND NOTATIONS

Let *a* be a positive integer, $a = \prod_i a_i^{\alpha_i}$, a_i prime integers and $\alpha_i \ge 1$ positive integers. We call *radical* of *a* the integer $\prod_i a_i$ noted by rad(a). Then *a* is written as:

$$a = \prod_{i} a_i^{\alpha_i} = rad(a) \cdot \prod_{i} a_i^{\alpha_i - 1}$$
(1)

We denote:

$$\mu_a = \prod_i a_i^{\alpha_i - 1} \Longrightarrow a = \mu_a . rad(a) \tag{2}$$

The *abc* conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph Æsterlé of Pierre et Marie Curie University (Paris 6) [8]. It describes the distribution of the prime factors of two integers with those of its sum. The definition of the *abc* conjecture is given below:

Conjecture 1.1. (*abc Conjecture*): For each $\varepsilon > 0$, there exists $K(\varepsilon)$ such that if a, b, c positive integers relatively prime with c = a + b, then :

$$c < K(\varepsilon).rad^{1+\varepsilon}(abc) \tag{3}$$

where K is a constant depending only of ε .

We know that numerically, $\frac{Logc}{Log(rad(abc))} \le 1.629912$ [5]. It concerned the best example given by

E. Reyssat [5]:

$$2 + 3^{10} \cdot 109 = 23^5 \Longrightarrow c < rad^{1.629912} (abc)$$
⁽⁴⁾

A conjecture was proposed that $c < rad^2(abc)$ [3]. In 2012, A. Nitaj [4] proposed the following conjecture:

Conjecture 1.2. Let a, b, c be positive integers relatively prime with c = a + b, then:

$$c < rad^{1.63}(abc) \tag{5}$$

$$abc < rad^{4.42}(abc) \tag{6}$$

Firstly, we will give the proof of the conjecture given by (5) that constitutes the key to obtain the proof of the *abc* conjecture. Secondly, we present in section three of the paper the proof that the *abc* conjecture is true.

²⁰¹⁰ Mathematics Subject Classification. 11AXX; 26AXX.

Key words and phrases. Elementary number theory; real functions of one variable; Eisenstein criterion; number of solutions of elementary Diophantine equations, transcendental numbers.

2. A PROOF OF THE CONJECTURE (1.2) CASE c = a + b

Let a, b, c be positive integers, relatively prime, with c = a + b, b < a and $R = rad(abc), c = \prod_{j' \in J'} c_{j'}^{\beta_{j'}}, \beta_{j'} \ge 1$.

In a previous paper [1], we has given, for the case c = a + 1, the proof that $c < rad^{1.63}(ac)$. In the following, we will give the proof for the case c = a + b.

Proof. If c < rad(abc), then we obtain:

$$c < rad(abc) < rad^{1.63}(abc) \Longrightarrow \boxed{c < R^{1.63}}$$

and the condition (5) is satisfied.

If c = rad(abc), then a, b, c are not coprime, case to reject. In the following, we suppose that c > rad(abc) and a, b and c are not prime numbers.

$$c = a + b = \mu_a rad(a) + \mu_b rad(b) \stackrel{?}{<} rad^{1.63}(abc)$$
(7)

2.1. $\mu_a \neq 1, \mu_a \leq rad^{0.63}(a)$. We obtain :

$$c = a + b < 2a \le 2rad^{1.63}(a) < rad^{1.63}(abc) \Longrightarrow c < rad^{1.63}(abc) \Longrightarrow \boxed{c < R^{1.63}}$$

Then (7) is satisfied.

2.2. $\mu_c \neq 1, \mu_c \leq rad^{0.63}(c)$. We obtain :

$$c = \mu_c rad(c) \le rad^{1.63}(c) < rad^{1.63}(abc) \Longrightarrow \boxed{c < R^{1.63}}$$

and the condition (7) is satisfied.

2.3.
$$\mu_a > rad^{0.63}(a)$$
 and $\mu_c > rad^{0.63}(c)$.

2.3.1. Case:
$$rad^{0.63}(c) < \mu_c \leq rad^{1.63}(c)$$
 and $rad^{0.63}(a) < \mu_a \leq rad^{1.63}(a)$: We can write:

$$\mu_c \leq rad^{1.63}(c) \Longrightarrow c \leq rad^{2.63}(c)$$

$$\mu_a \leq rad^{1.63}(a) \Longrightarrow a \leq rad^{2.63}(a)$$

$$\Longrightarrow a < rad^{1.315}(ac) \Longrightarrow c < 2a < 2rad^{1.315}(ac) < rad^{1.63}(abc)$$

$$\Longrightarrow c = a + b < R^{1.63}$$

2.3.2. **Case:** $\mu_c > rad^{1.63}(c)$ or $\mu_a > rad^{1.63}(a)$. I- We suppose that $\mu_c > rad^{1.63}(c)$ and $\mu_a \le rad^2(a)$:

I-1- Case rad(a) < rad(c): In this case $a = \mu_a . rad(a) \le rad^3(a) \le rad^{1.63}(a) rad^{1.37}(a) < rad^{1.63}(a) . rad^{1.37}(c) \Longrightarrow c < 2a < 2rad^{1.63}(a) . rad^{1.37}(c) < rad^{1.63}(abc) \Longrightarrow \boxed{c < R^{1.63}}.$

 $\begin{aligned} \text{I-2-Case } rad(c) < rad(a) < rad^{\frac{1.63}{1.37}}(c): \text{ As } a \leq rad^{1.63}(a).rad^{1.37}(a) < rad^{1.63}(a).rad^{1.63}(c) \Longrightarrow c < \\ 2a < 2rad^{1.63}(a).rad^{1.63}(c) < R^{1.63} \Longrightarrow \boxed{c < R^{1.63}}. \end{aligned}$

I-3- Case $rad^{\frac{1.63}{1.37}}(c) < rad(a)$:

I-3-1- We suppose $c \le rad^{3.26}(c)$, we obtain:

$$c \le rad^{3.26}(c) \Longrightarrow c \le rad^{1.63}(c).rad^{1.63}(c) \Longrightarrow$$
$$c < rad^{1.63}(c).rad(a)^{1.37} < rad^{1.63}(c).rad(a)^{1.63}.rad^{1.63}(b) = R^{1.63} \Longrightarrow \boxed{c < R^{1.63}}$$

I-3-2- We suppose $c > rad^{3.26}(c) \Longrightarrow \mu_c > rad^{2.26}(c)$. We consider the case $\mu_a = rad^2(a) \Longrightarrow a = rad^3(a)$. Then, we obtain that X = rad(a) is a solution in positive integers of the equation:

$$X^3 + 1 = c - b + 1 = c'$$
(8)

But it is the case c' = 1 + a. If $c' = rad^n(c')$ with $n \ge 4$, we obtain the equation:

$$rad^{n}(c') - rad^{3}(a) = 1$$
⁽⁹⁾

But the solutions of the equation (9) are [2] : (rad(c') = 3, n = 2, rad(a) = +2), it follows the contradiction with $n \ge 4$ and the case $c' = rad^n(c'), n \ge 4$ is to reject.

In the following, we will study the cases $\mu'_c = A.rad^n(c')$ with $rad(c') \nmid A, n \ge 0$. The above equation (8) can be written as :

$$(X+1)(X2 - X + 1) = c'$$
(10)

Let δ any divisor of c', then:

$$X + 1 = \delta \tag{11}$$

$$X^{2} - X + 1 = \frac{c'}{\delta} = c'' = \delta^{2} - 3X$$
(12)

We recall that $rad(a) > rad^{\frac{1.63}{1.37}}(c)$.

I-3-2-1- We suppose $\delta = l.rad(c')$. We have $\delta = l.rad(c') < c' = \mu'_c.rad(c') \Longrightarrow l < \mu'_c$. As δ is a divisor of c', then l is a divisor of μ'_c , we write $\mu'_c = l.m$. From $\mu'_c = l(\delta^2 - 3X)$, we obtain:

$$m = l^2 rad^2(c') - 3rad(a) \Longrightarrow 3rad(a) = l^2 rad^2(c') - m$$

A- Case $3|m \Longrightarrow m = 3m', m' > 1$: As $\mu'_c = ml = 3m'l \Longrightarrow 3|rad(c')$ and (rad(c'), m') not coprime. We obtain:

$$rad(a) = l^2 rad(c') \cdot \frac{rad(c')}{3} - m'$$

It follows that a,c' are not coprime, then the contradiction.

B - Case $m = 3 \implies \mu'_c = 3l \implies c' = 3lrad(c') = 3\delta = \delta(\delta^2 - 3X) \implies \delta^2 = 3(1+X) = 3\delta \implies \delta = lrad(c') = 3$, then the contradiction.

I-3-2-2- We suppose $\delta = l.rad^2(c'), l \ge 2$. If $lrad(c') \nmid \mu'_c$ then the case is to reject. We suppose $lrad(c') \mid \mu'_c \Longrightarrow \mu'_c = m.lrad(c')$, then $\frac{c'}{\delta} = m = \delta^2 - 3rad(a)$.

C - Case $m = 1 = c'/\delta \Longrightarrow \delta^2 - 3rad(a) = 1 \Longrightarrow (\delta - 1)(\delta + 1) = 3rad(a) = rad(a)(\delta + 1) \Longrightarrow \delta = 2 = l.rad^2(c')$, then the contradiction.

D - Case m = 3, we obtain $3(1 + rad(a)) = \delta^2 = 3\delta \Longrightarrow \delta = 3 = lrad^2(c')$. Then the contradiction.

DECEMBER 2020

E - Case $m \neq 1,3$, we obtain: $3rad(a) = l^2 rad^4(c') - m \Longrightarrow rad(a)$ and rad(c') are not coprime. Then the contradiction.

I-3-2-3- We suppose $\delta = l.rad^n(c'), l \ge 2$ with $n \ge 3$. From $c' = \mu'_c.rad(c') = lrad^n(c')(\delta^2 - 3rad(a))$, we denote $m = \delta^2 - 3rad(a) = \delta^2 - 3X$.

F - As seen above (paragraphs C,D), the cases m = 1 and m = 3 give contradictions, it follows the reject of these cases.

G - Case $m \neq 1,3$. Let q be a prime that divides m, it follows $q |\mu'_c \Longrightarrow q = c'_{j'_0} \Longrightarrow c'_{j'_0} |\delta^2 \Longrightarrow c'_{j'_0}| 3rad(a)$. Then rad(a) and rad(c') are not coprime. It follows the contradiction.

I-3-2-4- We suppose $\delta = \prod_{j \in J_1} c_j^{\beta_j}$, $\beta_j \ge 1$ with at least one $j_0 \in J_1$ with $\beta_{j_0} \ge 2$, $rad(c') \nmid \delta$. We can write:

$$\delta = \mu_{\delta}.rad(\delta), \quad rad(c') = m.rad(\delta), \quad m > 1, \quad (m, \mu_{\delta}) = 1$$
(13)

Then, we obtain:

$$c' = \mu'_c .rad(c') = \mu'_c .m.rad(\delta) = \delta(\delta^2 - 3X) = \mu_\delta .rad(\delta)(\delta^2 - 3X) \Longrightarrow$$
$$m.\mu'_c = \mu_\delta(\delta^2 - 3X) \tag{14}$$

- If $\mu'_c = \mu_{\delta} \Longrightarrow m = \delta^2 - 3X = (\mu'_c \cdot rad(\delta))^2 - 3X$. As $\delta < \delta^2 - 3X \Longrightarrow m > \delta \Longrightarrow rad(c') > m > \mu'_c \cdot rad(\delta) > rad^3(c')$ because $\mu'_c > rad^{2.26}(c')$, it follows $rad(c') > rad^2(c')$. Then the contradiction.

- We suppose $\mu'_c < \mu_{\delta}$. As $rad(a) = \mu_{\delta} rad(\delta) - 1$, we obtain:

$$rad(a) > \mu'_{c}.rad(\delta) - 1 > 0 \Longrightarrow rad(ac') > c'.rad(\delta) - rad(c') > 0 \Longrightarrow$$

$$c' > rad(ac') > c'.rad(\delta) - rad(c') > 0 \Longrightarrow 1 > rad(\delta) - \frac{rad(c')}{c'} > 0, \quad rad(\delta) \ge 2$$

$$\Longrightarrow \text{The contradiction} \tag{15}$$

- We suppose $\mu_{\delta} < \mu'_c$. In this case, from the equation (14) and as $(m, \mu_{\delta}) = 1$, it follows we can write:

$$\mu_c' = \mu_1 \cdot \mu_2, \quad \mu_1, \mu_2 > 1$$
 (16)

$$c' = \mu'_{c} rad(c') = \mu_{1} \cdot \mu_{2} \cdot rad(\delta) \cdot m = \delta \cdot (\delta^{2} - 3X)$$
(17)

o that
$$m.\mu_1 = \delta^2 - 3X, \quad \mu_2 = \mu_\delta \Longrightarrow \delta = \mu_2.rad(\delta)$$
 (18)

** We suppose $(\mu_1, \mu_2) \neq 1$, then $\exists c'_{j_0}$ so that $c'_{j_0} \mid \mu_1$ and $c'_{j_0} \mid \mu_2$. But $\mu_{\delta} = \mu_2 \Rightarrow c'^2_{j_0} \mid \delta$. From $3X = \delta^2 - m\mu_1 \Longrightarrow c'_{j_0} \mid 3X \Longrightarrow c'_{j_0} \mid X$ or $c'_{j_0} = 3$.

- If $c'_{i_0}|X$, it follows the contradiction with (c', a) = 1.

S

- If $c'_{j_0} = 3$. We have $m\mu_1 = \delta^2 - 3X = \delta^2 - 3(\delta - 1) \Longrightarrow \delta^2 - 3\delta + 3 - m.\mu_1 = 0$. As $3|\mu_1 \Longrightarrow \mu_1 = 3^k \mu'_1, 3 \nmid \mu'_1, k \ge 1$, we obtain:

$$\delta^2 - 3\delta + 3(1 - 3^{k-1}m\mu_1') = 0 \tag{19}$$

- We consider the case $k > 1 \Longrightarrow 3 \nmid (1 - 3^{k-1}m\mu'_1)$. Let us recall the Eisenstein criterion [7]:

Theorem 2.1. (*Eisenstein Criterion*) Let $f = a_0 + \cdots + a_n X^n$ be a polynomial $\in \mathbb{Z}[X]$. We suppose that $\exists p \ a \ prime \ number \ so \ that \ p \nmid a_n, \ p \mid a_i, \ (0 \le i \le n-1), \ and \ p^2 \nmid a_0, \ then \ f \ is \ irreducible \ in \ Q$.

We apply Eisenstein criterion to the polynomial R(Z) given by:

$$R(Z) = Z^2 - 3Z + 3(1 - 3^{k-1}m\mu_1')$$
⁽²⁰⁾

then:

- $3 \nmid 1$, - $3 \mid (-3)$, - $3 \mid 3(1 - 3^{k-1}m\mu'_1)$, and - $3^2 \nmid 3(1 - 3^{k-1}m\mu'_1)$. It follows that the polynomial R(Z) is irreducible in \mathbb{Q} , then, the contradiction with $R(\delta) = 0$.

- We consider the case k = 1, then $\mu_1 = 3\mu'_1$ and $(\mu'_1, 3) = 1$, we obtain:

$$\delta^2 - 3\delta + 3(1 - m\mu_1') = 0 \tag{21}$$

* If $3 \nmid (1 - m.\mu'_1)$, we apply the same Eisenstein criterion to the polynomial R'(Z) given by:

$$R'(Z) = Z^2 - 3Z + 3(1 - m\mu_1')$$

and we find a contradiction with $R'(\delta) = 0$.

* We consider that $3|(1-m.\mu'_1) \Longrightarrow m\mu'_1 - 1 = 3^i.h, i \ge 1, 3 \nmid h, h \in \mathbb{N}^*$. δ is an integer root of the polynomial R'(Z):

$$R'(Z) = Z^2 - 3Z + 3(1 - m\mu'_1) = 0 \Rightarrow \text{ the discriminant of } R'(Z) \text{ is } :\Delta = 3^2 + 3^{i+1} \times 4.h$$
 (22)

As the root δ is an integer, it follows that $\Delta = l^2 > 0$ with *l* a positive integer. We obtain:

$$\Delta = 3^2 (1 + 3^{i-1} \times 4h) = l^2 \tag{23}$$

$$\implies 1 + 3^{i-1} \times 4h = q^2 > 1, q \in \mathbb{N}^* \tag{24}$$

We can write the equation (21) as :

$$\delta(\delta-3) = 3^{i+1} \cdot h \Longrightarrow 3^3 \mu_1' \frac{rad(\delta)}{3} \cdot \left(\mu_1' rad(\delta) - 1\right) = 3^{i+1} \cdot h \Longrightarrow$$
(25)

$$\mu_1' \frac{rad(\delta)}{3} \cdot \left(\mu_1' rad(\delta) - 1\right) = h \tag{26}$$

We obtain i = 2 and $q^2 = 1 + 12h = 1 + 4\mu'_1 rad(\delta)(\mu'_1 rad(\delta) - 1)$. Then, q satisfies :

$$q^{2} - 1 = 12h \Rightarrow \frac{(q-1)}{2} \cdot \frac{(q+1)}{2} = 3h = (\mu'_{1}rad(\delta) - 1) \cdot \mu'_{1}rad(\delta) \Rightarrow$$
(27)

$$q-1 = 2\mu'_1 rad(\delta) - 2 \tag{28}$$

$$q+1 = 2\mu_1' rad(\delta) \tag{29}$$

It follows that (q = x, 1 = y) is a solution of the Diophantine equation:

$$x^2 - y^2 = N \tag{30}$$

with N = 12h > 0. Let Q(N) be the number of the solutions of (30) and $\tau(N)$ is the number of suitable factorization of N, then we announce the following result concerning the solutions of the Diophantine equation (30) (see theorem 27.3 in [6]):

- If $N \equiv 2 \pmod{4}$, then Q(N) = 0.
- If $N \equiv 1$ or $N \equiv 3 \pmod{4}$, then $Q(N) = [\tau(N)/2]$.
- If $N \equiv 0 \pmod{4}$, then $Q(N) = [\tau(N/4)/2]$.
- [x] is the integral part of x for which $[x] \le x < [x] + 1$.

Let (α', m') , $\alpha', m' \in \mathbb{N}^*$ be another pair, solution of the equation (30), then $\alpha'^2 - m'^2 = x^2 - y^2 = N = 12h$, but q = x and 1 = y satisfy the equation (29) given by $x + y = 2\mu'_1 rad(\delta)$, it follows α', m' verify also $\alpha' + m' = 2\mu'_1 rad(\delta)$, that gives $\alpha' - m' = 2(\mu'_1 rad(\delta) - 1)$, then $\alpha' = x = q = 2\mu'_1 rad(\delta)$ and m' = y = 1. So, we have given the proof of the uniqueness of the solutions of the equation (30) with the condition $x + y = 2\mu'_1 rad(\delta)$. As $N = 12h \equiv 0 \pmod{4} \Longrightarrow Q(N) = [\tau(N/4)/2] = [\tau(3h)/2]$, the expression of $3h = \mu'_1 rad(\delta)$. $(\mu'_1 rad(\delta) - 1)$, then $Q(N) = [\tau(3h)/2] > 1$. But Q(N) = 1, then the

DECEMBER 2020

contradiction and the case $3|(1-m.\mu_1')$ is to reject.

** We suppose that $(\mu_1, \mu_2) = 1$.

From the equation $m\mu_1 = \delta^2 - 3X = \delta^2 - 3(\delta - 1)$, we obtain that δ is a root of the following polynomial :

$$R(Z) = Z^2 - 3Z + 3 - m \cdot \mu_1 = 0 \tag{31}$$

The discriminant of R(Z) is:

$$\Delta = 9 - 4(3 - m.\mu_1) = 4m.\mu_1 - 3 = q^2 \quad \text{with } q \in \mathbb{N}^* \quad \text{as } \delta \in \mathbb{N}^*$$
(32)

- We suppose that $2|m\mu_1 \Longrightarrow c'$ is even. Then $q^2 \equiv 5 \pmod{8}$, it gives a contradiction because a square is $\equiv 0, 1$ or $4 \pmod{8}$.

- We suppose c' an odd integer, then a is even. It follows $a = rad^3(a) \equiv 0 \pmod{8} \implies c' \equiv 1 \pmod{8}$. As $c' = \delta^2 - 3X.\delta$, we obtain $\delta^2 - 3X.\delta \equiv 1 \pmod{8}$. If $\delta^2 \equiv 1 \pmod{8} \implies -3X.\delta \equiv 0 \pmod{8} \implies 8|X.\delta \implies 4|\delta \implies c'$ is even. Then, the contradiction. If $\delta^2 \equiv 4 \pmod{8} \implies \delta \equiv 2 \pmod{8}$ or $\delta \equiv 6 \pmod{8}$. In the two cases, we obtain $2|\delta$. Then, the contradiction with c' an odd integer.

It follows that the case $c > rad^{3.26}(c)$ and $a = rad^3(a)$ is impossible.

I-3-3- We suppose $c > rad^{3.26}(c)$ and large, then $c = rad^3(c) + h$, $h > rad^3(c)$, h a positive integer and $\mu_a < rad^2(a) \Longrightarrow a + l = rad^3(a)$, l > 0. Then we obtain :

$$rad^{3}(c) + h = rad^{3}(a) - l + b \Longrightarrow rad^{3}(a) - rad^{3}(c) = h + l - b > 0$$

$$(33)$$

as $rad(a) > rad^{\frac{1.63}{1.37}}(c)$. We obtain the equation:

$$rad^{3}(a) - rad^{3}(c) = h + l - b = m > 0$$
 (34)

Let X = rad(a) - rad(c), then X is an integer root of the polynomial H(X) defined as:

$$H(X) = X^{3} + 3rad(ac)X - m = 0$$
(35)

To resolve the above equation, we denote X = u + v, It follows that u^3, v^3 are the roots of the polynomial G(t) given by:

$$G(t) = t^2 - mt - rad^3(ac) = 0$$
(36)

The discriminant of G(t) is $\Delta = m^2 + 4rad^3(ac) = \alpha^2$, $\alpha > 0$. The two real roots of (36) are:

$$t_1 = u^3 = \frac{m+\alpha}{2}, \quad t_2 = v^3 = \frac{m-\alpha}{2}$$
 (37)

As $m = rad^{3}(a) - rad^{3}(c) > 0$, we obtain that $\alpha = rad^{3}(a) + rad^{3}(c) > 0$, then from the expression of the discriminant Δ , it follows that $(\alpha = x, m = y)$ is a solution of the Diophantine equation:

$$x^2 - y^2 = N \tag{38}$$

with $N = 4rad^3(ac) > 0$. From the expression of Δ above, we remark that α and *m* verify the following equations:

$$x + y = 2u^3 = 2rad^3(a)$$
(39)

$$x - y = -2v^3 = 2rad^3(c)$$
(40)

then
$$x^2 - y^2 = N = 4rad^3(a).rad^3(c)$$
 (41)

IS THE ABC CONJECTURE TRUE?

Let Q(N) be the number of the solutions of (38) and $\tau(N)$ is the number of suitable factorization of N, and using the same method as in the paragraph I-3-2-4- (case $3|(1-m.\mu_1'))$, we obtain a contradiction.

It follows that the cases $\mu_a \leq rad^2(a)$ and $c > rad^{3.26}(c)$ are impossible.

II- We suppose that $rad^{1.63}(c) < \mu_c \leq rad^2(c)$ and $\mu_a > rad^{1.63}(a)$:

II-1- Case rad(c) < rad(a): As $c \le rad^{3}(c) = rad^{1.63}(c).rad^{1.37}(c) \Longrightarrow c < rad^{1.63}(c).rad^{1.37}(a) < rad^{1.63}(ac) < rad^{1.63}(abc) \Longrightarrow \boxed{c < R^{1.63}}.$

- $\begin{array}{l} \text{II-2- Case } rad(a) < rad(c) < rad^{\frac{1.63}{1.37}}(a) : \text{As } c \leq rad^{3}(c) \leq rad^{1.63}(c).rad^{1.37}(c) \Longrightarrow \\ c < rad^{1.63}(c).rad^{1.63}(a) < rad^{1.63}(abc) \Longrightarrow \boxed{c < R^{1.63}}. \end{array}$
- II-3- Case $rad^{\frac{1.63}{1.37}}(a) < rad(c)$:

$$\begin{array}{l} \text{II-3-1-We suppose } rad^{2.63}(a) < a \le rad^{3.26}(a) \Longrightarrow a \le rad^{1.63}(a) . rad^{1.63}(a) \Longrightarrow a < rad^{1.63}(a) . rad^{1.37}(c) \\ \implies c = a + b < 2a < 2rad^{1.63}(a) . rad^{1.63}(c) < rad^{1.63}(abc) \Longrightarrow c < R^{1.63} \Longrightarrow \boxed{c < R^{1.63}}. \end{array}$$

II-3-2- We suppose $a > rad^{3.26}(a)$ and $\mu_c \le rad^2(c)$. Using the same method as it was explicated in the paragraphs I-3-2, I-3-3 (permuting a, c), we arrive at a contradiction. It follows that the case $\mu_c \le rad^2(c)$ and $a > rad^{3.26}(a)$ is impossible.

Finally, we have finished the study of the case $rad^{1.63}(c) < \mu_c \leq rad^2(c)$ and $\mu_a > rad^{1.63}(a)$.

2.3.3. Case $\mu_c > rad^{1.63}(c)$ and $\mu_a > rad^{1.63}(a)$. Taking into account the cases studied above, it remains to see the following two cases:

- $\mu_c > rad^2(c)$ and $\mu_a > rad^{1.63}(a)$, - $\mu_a > rad^2(a)$ and $\mu_c > rad^{1.63}(c)$.

III-1- We suppose $\mu_c > rad^2(c)$ and $\mu_a > rad^{1.63}(a) \Longrightarrow c > rad^3(c)$ and $a > rad^{2.63}(a)$. We can write $c = rad^3(c) + h$ and $a = rad^3(a) + l$ with h a positive integer and $l \in \mathbb{Z}$.

III-1-1- We suppose rad(c) < rad(a). We obtain the equation:

$$rad^{3}(a) - rad^{3}(c) = h - l - b = m > 0$$
(42)

Let X = rad(a) - rad(c), from the above equation, X is a real root of the polynomial:

$$H(X) = X^{3} + 3rad(ac)X - m = 0$$
(43)

As above, to resolve (43), we denote X = u + v, It follows that u^3, v^3 are the roots of the polynomial G(t) given by :

$$G(t) = t^2 - mt - rad^3(ac) = 0$$
(44)

The discriminant of G(t) is:

$$\Delta = m^2 + 4rad^3(ac) = \alpha^2, \quad \alpha > 0 \tag{45}$$

The two real roots of (44) are:

$$t_1 = u^3 = \frac{m+\alpha}{2}, \quad t_2 = v^3 = \frac{m-\alpha}{2}$$
 (46)

DECEMBER 2020

7

As $m = rad^{3}(a) - rad^{3}(c) > 0$, we obtain that $\alpha = rad^{3}(a) + rad^{3}(c) > 0$, then from the equation (45), it follows that $(\alpha = x, m = y)$ is a solution of the Diophantine equation:

$$x^2 - y^2 = N \tag{47}$$

with $N = 4rad^3(ac) > 0$. From the equations (46), we remark that α and *m* verify the following equations:

$$x + y = 2u^3 = 2rad^3(a)$$
(48)

$$x - y = -2v^3 = 2rad^3(c)$$
(49)

then
$$x^2 - y^2 = N = 4rad^3(a).rad^3(c)$$
 (50)

Let Q(N) be the number of the solutions of (47) and $\tau(N)$ is the number of suitable factorization of N, and using the same method as in the paragraph I-3-2-4- (case $3|(1-m.\mu_1'))$), we obtain a contradiction.

III-1-2- We suppose rad(a) < rad(c). We obtain the equation:

$$rad^{3}(c) - rad^{3}(a) = b + l - h = m > 0$$
(51)

Using the same calculations as in III-1-1-, we find a contradiction.

It follows that the case $\mu_c > rad^2(c)$ and $\mu_a > rad^{1.63}(a)$ is impossible.

III-2- We suppose $\mu_a > rad^2(a)$ and $\mu_c > rad^{1.63}(c) \Longrightarrow a > rad^3(a)$ and $c > rad^{2.63}(c)$. We can write $a = rad^3(a) + h$ and $c = rad^3(c) + l$ with h a positive integer and $l \in \mathbb{Z}$.

The calculations are similar to those in case III-1-. We obtain the same results namely the cases of III-2- to be rejected.

It follows that the case
$$\mu_c > rad^{1.63}(c)$$
 and $\mu_a > rad^2(a)$ is impossible.

We can state the following important theorem:

Theorem 2.2. Let a, b, c positive integers relatively prime with c = a + b, then $c < rad^{1.63}(abc)$.

3. The Proof of the abc conjecture

We note R = rad(abc) in the case c = a + b or R = rad(ac) in the case c = a + 1. We recall the following proposition [4]:

Proposition 3.1. Let $\varepsilon \longrightarrow K(\varepsilon)$ the application verifying the abc conjecture, then:

$$\lim_{\varepsilon \to 0} K(\varepsilon) = +\infty \tag{52}$$

3.1. Case : $\varepsilon \ge 0.63$. As $c < R^{1.63}$ is true, we have $\forall \varepsilon \ge 0.63$:

$$c < R^{1.63} \le R^{1+\varepsilon} < K(\varepsilon).R^{1+\varepsilon}, \quad with \ K(\varepsilon) = e^{\frac{1}{0.63^2}}, \ \varepsilon \ge 0.63$$
 (53)

Then the *abc* conjecture is true.

3.2. **Case:** *ε* < 0.63.

3.2.1. *Case:* c < R. In this case, we can write :

$$c < R < R^{1+\varepsilon} < K(\varepsilon).R^{1+\varepsilon}, \quad with \ K(\varepsilon) = e^{\frac{1}{0.63^2}} > 1, \ \varepsilon < 0.63$$
 (54)

Then the *abc* conjecture is true.

3.2.2. *Case:* c > R. From the statement of the *abc* conjecture 1.1, we want to give a proof that $c < K(\varepsilon)R^{1+\varepsilon} \iff Logc < LogK(\varepsilon) + (1+\varepsilon)LogR \iff LogK(\varepsilon) + (1+\varepsilon)LogR - Logc > 0$. For our proof, we proceed by contradiction of the abc conjecture, so we assume that the conjecture is false:

$$\exists \varepsilon_0 \in]0, 0.63[, \forall K(\varepsilon) > 0, \quad \exists c_0 = a_0 + b_0 \quad \text{so that} \ c_0 > K(\varepsilon_0) R_0^{1+\varepsilon_0} \Longrightarrow c_0 \text{ not a prime}$$
(55)
1

We choose the constant $K(\varepsilon) = e \overline{\varepsilon^2}$. Let $Y_{c_0}(\varepsilon) = \frac{1}{\varepsilon^2} + (1+\varepsilon)LogR_0 - Logc_0, \varepsilon \in]0, 0.63[$. From the above explications, if we will obtain $\forall \varepsilon \in]0, 0.63[, Y_{c_0}(\varepsilon) > 0 \Longrightarrow Y_{c_0}(\varepsilon_0) > 0$, then the contradiction with (55).

About the function Y_{c_0} , we have $\lim_{\varepsilon \to 0.63} Y_{c_0}(\varepsilon) = 1/0.63^2 + Log(R_0^{1.63}/c_0) > 0$ and $\lim_{\varepsilon \to 0} Y_{c_0}(\varepsilon) = +\infty$. The function $Y_{c_0}(\varepsilon)$ has a derivative for $\forall \varepsilon \in [0, 0.63[$, we obtain with $R_0 > 2977$:

$$Y_{c_0}'(\varepsilon) = -\frac{2}{\varepsilon^3} + LogR_0 = \frac{\varepsilon^3 LogR_0 - 2}{\varepsilon^3} \Rightarrow Y_{c_0}'(\varepsilon) = 0 \Rightarrow \varepsilon = \varepsilon' = \sqrt[3]{\frac{2}{LogR_0}} \in]0, 0.63[$$
(56)

Discussion:

- If $Y_{c_0}(\varepsilon') \ge 0$, it follows that $\forall \varepsilon \in]0, 0.63[, Y_{c_0}(\varepsilon) \ge 0$, then the contradiction with $Y_{c_0}(\varepsilon_0) < 0 \Longrightarrow c_0 > K(\varepsilon_0)R_0^{1+\varepsilon_0}$. Hence the *abc* conjecture is true for $\varepsilon \in]0, 0.63[$.

- If $Y_{c_0}(\varepsilon') < 0 \Longrightarrow \exists 0 < \varepsilon_1 < \varepsilon' < \varepsilon_2 < 0.63$, so that $Y_{c_0}(\varepsilon_1) = Y_{c_0}(\varepsilon_2) = 0$. Then we obtain $c_0 = K(\varepsilon_1)R_0^{1+\varepsilon_1} = K(\varepsilon_2)R_0^{1+\varepsilon_2}$. We recall the following definition:

Definition 3.1. The number ξ is called algebraic number if there is at least one polynomial:

$$l(x) = l_0 + l_1 x + \dots + a_m x^m, \quad a_m \neq 0$$
(57)

with integral coefficients such that $l(\xi) = 0$, and it is called transcendental if no such polynomial exists.

We consider the equality $c_0 = K(\varepsilon_1) R_0^{1+\varepsilon_1} \Longrightarrow \frac{c_0}{R} = \frac{\mu_c}{rad(ab)} = e^{\frac{1}{\varepsilon_1^2}} R_0^{\varepsilon_1}.$

i) - We suppose that $\varepsilon_1 = \beta_1$ is an algebraic number then $\beta_0 = 1/\varepsilon_1^2$ and $R_0 = \alpha_1$ are also algebraic numbers. We obtain:

$$\frac{\mu_c}{rad(ab)} = e^{\frac{1}{\varepsilon_1^2}} R_0^{\varepsilon_1} = e^{\beta_0} . \alpha_1^{\beta_1}$$
(58)

From the theorem (see theorem 3, page 196 in [9]):

Theorem 3.1. $e^{\beta_0} \alpha_1^{\beta_1} \dots \alpha_n^{\beta_n}$ is transcendental for any nonzero algebraic numbers $\alpha_1, \dots, \alpha_n, \beta_0, \dots, \beta_n$. we deduce that the right member $e^{\beta_0} . \alpha_1^{\beta_1}$ of (58) is transcendental, but the term $\frac{\mu_c}{rad(ab)}$ is an algebraic number, then the contradiction and the *abc* conjecture is true.

ii) - We suppose that ε_1 is transcendental, in this case there is also a contradiction, and the *abc* conjecture is true.

Then the proof of the *abc* conjecture is finished.

DECEMBER 2020

4. Conclusion

We have given an elementary proof of the *abc* conjecture. We can announce the important theorem:

Theorem 4.1. For each $\varepsilon > 0$, there exists $K(\varepsilon) > 0$ such that if a, b, c positive integers relatively prime with c = a + b, then :

$$c < K(\varepsilon).rad^{1+\varepsilon}(abc) \tag{59}$$

where K is a constant depending of ε .

REFERENCES

- [1] A. Ben Hadj Salem, 2020. Progress in The Proof of The Conjecture $c < rad^{1.63}(abc)$ Case : c = a + 1. Submitted to São Paulo Journal of Mathematical Sciences. November 2020, 10 pages.
- [2] P. Mihăilescu, 2004. Primary cyclotomic units and a proof of Catalan's Conjecture. *Journal für die Reine und Angewandte Mathematik*, Vol. 2004, Issue **572**, pp 167-195.
- [3] P. Mihăilescu, 2014. Around ABC. European Mathematical Society Newsletter N° 93, Sept. pp 29-34.
- [4] A. Nitaj, 1996. Aspects expérimentaux de la conjecture *abc*. Séminaire de Théorie des Nombres de Paris(1993-1994), London Math. Soc. Lecture Note Ser., Vol n°235. Cambridge Univ. Press, pp 145-156.
- [5] B. De Smit, 2012. https://www.math.leidenuniv.nl/ desmit/abc/.
- [6] B.M. Stewart, 1964. Theory of Numbers. 2^{sd} edition, The Macmillan Compagny, N.Y., pp 196-197.
- [7] C. Touibi, 1996. Algèbre Générale (in French). Cérès Editions, Tunis, pp 108-109.
- [8] M. Waldschmidt, 2013. On the abc Conjecture and some of its consequences presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013.
- [9] A. Baker, 1971. Effective Methods in Diophantine Problems. *Proceedings of Symposia in Pure Mathematics*, Vol. XX, 1969 Number Theory Institute. AMS, pp 195-205.

RÉSIDENCE BOUSTEN 8, MOSQUÉE RAOUDHA, BLOC B, 1181 LA SOUKRA RAOUDHA, TUNISIA *Email address*: abenhadjsalem@gmail.com