IS THE $a b c$ CONJECTURE TRUE?

ABDELMAJID BEN HADJ SALEM

Abstract

In this paper, we consider the $a b c$ conjecture. In the first part, we give the proof of the conjecture $c<\operatorname{rad}^{1.63}(a b c)$ that constitutes the key to resolve the $a b c$ conjecture. The proof of the $a b c$ conjecture is given in the second part of the paper, supposing that the $a b c$ conjecture is false, we arrive in a contradiction.

1. Introduction and notations

Let a be a positive integer, $a=\prod_{i} a_{i}^{\alpha_{i}}$, a_{i} prime integers and $\alpha_{i} \geq 1$ positive integers. We call radical of a the integer $\prod_{i} a_{i}$ noted by $\operatorname{rad}(a)$. Then a is written as:

$$
\begin{equation*}
a=\prod_{i} a_{i}^{\alpha_{i}}=\operatorname{rad}(a) \cdot \prod_{i} a_{i}^{\alpha_{i}-1} \tag{1}
\end{equation*}
$$

We denote:

$$
\begin{equation*}
\mu_{a}=\prod_{i} a_{i}^{\alpha_{i}-1} \Longrightarrow a=\mu_{a} \cdot \operatorname{rad}(a) \tag{2}
\end{equation*}
$$

The $a b c$ conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph Esterlé of Pierre et Marie Curie University (Paris 6) [8]. It describes the distribution of the prime factors of two integers with those of its sum. The definition of the $a b c$ conjecture is given below:

Conjecture 1.1. (abc Conjecture): For each $\varepsilon>0$, there exists $K(\varepsilon)$ such that if a,b,c positive integers relatively prime with $c=a+b$, then :

$$
\begin{equation*}
c<K(\varepsilon) \cdot r a d^{1+\varepsilon}(a b c) \tag{3}
\end{equation*}
$$

where K is a constant depending only of ε.
We know that numerically, $\frac{\log c}{\log (\operatorname{rad}(a b c))} \leq 1.629912$ [5]. It concerned the best example given by E. Reyssat [5]:

$$
\begin{equation*}
2+3^{10} .109=23^{5} \Longrightarrow c<r a d^{1.629912}(a b c) \tag{4}
\end{equation*}
$$

A conjecture was proposed that $c<\operatorname{rad}^{2}(a b c)$ [3]. In 2012, A. Nitaj [4] proposed the following conjecture:

Conjecture 1.2. Let a, b, c be positive integers relatively prime with $c=a+b$, then:

$$
\begin{align*}
c & <\operatorname{rad}^{1.63}(a b c) \tag{5}\\
a b c & <\operatorname{rad}^{4.42}(a b c) \tag{6}
\end{align*}
$$

Firstly, we will give the proof of the conjecture given by (5) that constitutes the key to obtain the proof of the $a b c$ conjecture. Secondly, we present in section three of the paper the proof that the $a b c$ conjecture is true.

[^0]
THE FIBONACCI QUARTERLY

2. A Proof of the conjecture (1.2) CaSE $c=a+b$

Let a, b, c be positive integers, relatively prime, with $c=a+b, b<a$ and $R=\operatorname{rad}(a b c), c=$ $\prod_{j^{\prime} \in J^{\prime}} c_{j^{\prime}}^{\beta_{j^{\prime}}}, \beta_{j^{\prime}} \geq 1$.

In a previous paper [1], we has given, for the case $c=a+1$, the proof that $c<\operatorname{rad}^{1.63}(a c)$. In the following, we will give the proof for the case $c=a+b$.

Proof. If $c<\operatorname{rad}(a b c)$, then we obtain:

$$
c<\operatorname{rad}(a b c)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63}
$$

and the condition (5) is satisfied.
If $c=\operatorname{rad}(a b c)$, then a, b, c are not coprime, case to reject. In the following, we suppose that $c>$ $\operatorname{rad}(a b c)$ and a, b and c are not prime numbers.

$$
\begin{equation*}
c=a+b=\mu_{a} \operatorname{rad}(a)+\mu_{b} \operatorname{rad}(b) \stackrel{?}{<} \operatorname{rad}^{1.63}(a b c) \tag{7}
\end{equation*}
$$

2.1. $\mu_{a} \neq 1, \mu_{a} \leq \operatorname{rad}^{0.63}(a)$. We obtain :

$$
c=a+b<2 a \leq 2 \operatorname{rad}^{1.63}(a)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63}
$$

Then (7) is satisfied.
2.2. $\mu_{c} \neq 1, \mu_{c} \leq \operatorname{rad}^{0.63}(c)$. We obtain :

$$
c=\mu_{c} \operatorname{rad}(c) \leq \operatorname{rad}^{1.63}(c)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63}
$$

and the condition (7) is satisfied.
2.3. $\mu_{a}>\operatorname{rad}^{0.63}(a)$ and $\mu_{c}>\operatorname{rad}^{0.63}(c)$.
2.3.1. $\underline{\text { Case: } \operatorname{rad}^{0.63}(c)<\mu_{c} \leq \operatorname{rad}^{1.63}(c) \text { and } \operatorname{rad}^{0.63}(a)<\mu_{a} \leq \operatorname{rad}^{1.63}(a)}$: We can write:

$$
\begin{array}{r}
\begin{array}{r}
\mu_{c} \leq \operatorname{rad}^{1.63}(c) \Longrightarrow c \leq \operatorname{rad}^{2.63}(c) \\
\left.\begin{array}{rl}
\mu_{a} \leq \operatorname{rad}^{1.63}(a) \Longrightarrow a \leq \operatorname{rad}^{2.63}(a)
\end{array}\right\} \Longrightarrow a c \leq \operatorname{rad}^{2.63}(a c) \Longrightarrow a^{2}<a c \leq \operatorname{rad}^{2.63}(a c) \\
\Longrightarrow a<\operatorname{rad}^{1.315}(a c) \Longrightarrow c<2 a<2 \operatorname{rad}^{1.315}(a c)<\operatorname{rad}^{1.63}(a b c) \\
\Longrightarrow c=a+b<R^{1.63}
\end{array}
\end{array}
$$

2.3.2. Case: $\mu_{c}>\operatorname{rad}^{1.63}(c)$ or $\mu_{a}>\operatorname{rad}^{1.63}(a)$. I- We suppose that $\mu_{c}>\operatorname{rad}^{1.63}(c)$ and $\mu_{a} \leq \operatorname{rad}^{2}(a)$:

I-1- Case $\operatorname{rad}(a)<\operatorname{rad}(c)$: In this case $a=\mu_{a} \cdot \operatorname{rad}(a) \leq \operatorname{rad}^{3}(a) \leq \operatorname{rad}^{1.63}(a) \operatorname{rad}^{1.37}(a)<$ $\operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.37}(c) \Longrightarrow c<2 a<2 \operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.37}(c)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63}$.

I-2- Case $\operatorname{rad}(c)<\operatorname{rad}(a)<\operatorname{rad}^{\frac{1.153}{1.37}}(c):$ As $a \leq \operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.37}(a)<\operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.63}(c) \Longrightarrow c<$ $2 a<2 \operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.63}(c)<R^{1.63} \Longrightarrow c<R^{1.63}$.

I-3- Case $\operatorname{rad}{ }^{\frac{1.63}{1.37}}(c)<\operatorname{rad}(a)$:

I-3-1- We suppose $c \leq \operatorname{rad}^{3.26}(c)$, we obtain:

$$
\begin{gathered}
c \leq \operatorname{rad}^{3.26}(c) \Longrightarrow c \leq \operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}^{1.63}(c) \Longrightarrow \\
c<\operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}(a)^{1.37}<\operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}(a)^{1.63} \cdot \operatorname{rad}^{1.63}(b)=R^{1.63} \Longrightarrow c<R^{1.63}
\end{gathered}
$$

I-3-2- We suppose $c>\operatorname{rad}^{3.26}(c) \Longrightarrow \mu_{c}>\operatorname{rad}^{2.26}(c)$. We consider the case $\mu_{a}=\operatorname{rad}^{2}(a) \Longrightarrow a=$ $\operatorname{rad}^{3}(a)$. Then, we obtain that $X=\operatorname{rad}(a)$ is a solution in positive integers of the equation:

$$
\begin{equation*}
X^{3}+1=c-b+1=c^{\prime} \tag{8}
\end{equation*}
$$

But it is the case $c^{\prime}=1+a$. If $c^{\prime}=r a d^{n}\left(c^{\prime}\right)$ with $n \geq 4$, we obtain the equation:

$$
\begin{equation*}
\operatorname{rad}^{n}\left(c^{\prime}\right)-\operatorname{rad}^{3}(a)=1 \tag{9}
\end{equation*}
$$

But the solutions of the equation (9) are [2]: $\left.\operatorname{rad}\left(c^{\prime}\right)=3, n=2, \operatorname{rad}(a)=+2\right)$, it follows the contradiction with $n \geq 4$ and the case $c^{\prime}=\operatorname{rad}^{n}\left(c^{\prime}\right), n \geq 4$ is to reject.

In the following, we will study the cases $\mu_{c}^{\prime}=A \cdot \operatorname{rad}^{n}\left(c^{\prime}\right)$ with $\operatorname{rad}\left(c^{\prime}\right) \nmid A, n \geq 0$. The above equation (8) can be written as :

$$
\begin{equation*}
(X+1)\left(X^{2}-X+1\right)=c^{\prime} \tag{10}
\end{equation*}
$$

Let δ any divisor of c^{\prime}, then:

$$
\begin{array}{r}
X+1=\delta \\
X^{2}-X+1=\frac{c^{\prime}}{\delta}=c^{\prime \prime}=\delta^{2}-3 X \tag{12}
\end{array}
$$

We recall that $\operatorname{rad}(a)>\operatorname{rad}{ }^{\frac{1.63}{1.37}}(c)$.
I-3-2-1- We suppose $\delta=l \cdot \operatorname{rad}\left(c^{\prime}\right)$. We have $\delta=l \cdot \operatorname{rad}\left(c^{\prime}\right)<c^{\prime}=\mu_{c}^{\prime} \cdot \operatorname{rad}\left(c^{\prime}\right) \Longrightarrow l<\mu_{c}^{\prime}$. As δ is a divisor of c^{\prime}, then l is a divisor of μ_{c}^{\prime}, we write $\mu_{c}^{\prime}=l$.m. From $\mu_{c}^{\prime}=l\left(\delta^{2}-3 X\right)$, we obtain:

$$
m=l^{2} \operatorname{rad}^{2}\left(c^{\prime}\right)-3 \operatorname{rad}(a) \Longrightarrow 3 \operatorname{rad}(a)=l^{2} \operatorname{rad}^{2}\left(c^{\prime}\right)-m
$$

A- Case $3 \mid m \Longrightarrow m=3 m^{\prime}, m^{\prime}>1$: As $\mu_{c}^{\prime}=m l=3 m^{\prime} l \Longrightarrow 3 \mid \operatorname{rad}\left(c^{\prime}\right)$ and $\left(\operatorname{rad}\left(c^{\prime}\right), m^{\prime}\right)$ not coprime. We obtain:

$$
\operatorname{rad}(a)=l^{2} \operatorname{rad}\left(c^{\prime}\right) \cdot \frac{\operatorname{rad}\left(c^{\prime}\right)}{3}-m^{\prime}
$$

It follows that a,c' are not coprime, then the contradiction.
B - Case $m=3 \Longrightarrow \mu_{c}^{\prime}=3 l \Longrightarrow c^{\prime}=3 \operatorname{lrad}\left(c^{\prime}\right)=3 \delta=\delta\left(\delta^{2}-3 X\right) \Longrightarrow \delta^{2}=3(1+X)=3 \delta \Longrightarrow \delta=$ $\operatorname{lrad}\left(c^{\prime}\right)=3$, then the contradiction.

I-3-2-2- We suppose $\delta=l \cdot \operatorname{rad}^{2}\left(c^{\prime}\right), l \geq 2$. If $\operatorname{lrad}\left(c^{\prime}\right) \nmid \mu_{c}^{\prime}$ then the case is to reject. We suppose $\operatorname{lrad}\left(c^{\prime}\right) \mid \mu_{c}^{\prime} \Longrightarrow \mu_{c}^{\prime}=\operatorname{m.lrad}\left(c^{\prime}\right)$, then $\frac{c^{\prime}}{\delta}=m=\delta^{2}-3 \operatorname{rad}(a)$.
C - Case $m=1=c^{\prime} / \delta \Longrightarrow \delta^{2}-3 \operatorname{rad}(a)=1 \Longrightarrow(\delta-1)(\delta+1)=3 \operatorname{rad}(a)=\operatorname{rad}(a)(\delta+1) \Longrightarrow \delta=$ $2=l \cdot \mathrm{rad}^{2}\left(c^{\prime}\right)$, then the contradiction.

D - Case $m=3$, we obtain $3(1+\operatorname{rad}(a))=\delta^{2}=3 \delta \Longrightarrow \delta=3=\operatorname{lrad} d^{2}\left(c^{\prime}\right)$. Then the contradiction.

THE FIBONACCI QUARTERLY

E - Case $m \neq 1,3$, we obtain: $3 \operatorname{rad}(a)=l^{2} \operatorname{rad}^{4}\left(c^{\prime}\right)-m \Longrightarrow \operatorname{rad}(a)$ and $\operatorname{rad}\left(c^{\prime}\right)$ are not coprime. Then the contradiction.

I-3-2-3- We suppose $\delta=l \cdot \operatorname{rad}^{n}\left(c^{\prime}\right), l \geq 2$ with $n \geq 3$. From $c^{\prime}=\mu_{c}^{\prime} \cdot \operatorname{rad}\left(c^{\prime}\right)=\operatorname{lrad}{ }^{n}\left(c^{\prime}\right)\left(\delta^{2}-3 \operatorname{rad}(a)\right)$, we denote $m=\delta^{2}-3 \operatorname{rad}(a)=\delta^{2}-3 X$.

F - As seen above (paragraphs C,D), the cases $m=1$ and $m=3$ give contradictions, it follows the reject of these cases.

G - Case $m \neq 1,3$. Let q be a prime that divides m, it follows $q\left|\mu_{c}^{\prime} \Longrightarrow q=c_{j_{0}^{\prime}}^{\prime} \Longrightarrow c_{j_{0}^{\prime}}^{\prime}\right| \delta^{2} \Longrightarrow$ $c_{j_{0}^{\prime}}^{\prime} \mid 3 \operatorname{rad}(a)$. Then $\operatorname{rad}(a)$ and $\operatorname{rad}\left(c^{\prime}\right)$ are not coprime. It follows the contradiction.

I-3-2-4- We suppose $\delta=\prod_{j \in J_{1}} c_{j}^{\beta_{j}}, \beta_{j} \geq 1$ with at least one $j_{0} \in J_{1}$ with $\beta_{j_{0}} \geq 2, \operatorname{rad}\left(c^{\prime}\right) \nmid \delta$. We can write:

$$
\begin{equation*}
\delta=\mu_{\delta} \cdot \operatorname{rad}(\delta), \quad \operatorname{rad}\left(c^{\prime}\right)=m \cdot \operatorname{rad}(\delta), \quad m>1, \quad\left(m, \mu_{\delta}\right)=1 \tag{13}
\end{equation*}
$$

Then, we obtain:

$$
\begin{gather*}
c^{\prime}=\mu_{c}^{\prime} \cdot \operatorname{rad}\left(c^{\prime}\right)=\mu_{c}^{\prime} \cdot m \cdot \operatorname{rad}(\boldsymbol{\delta})=\delta\left(\delta^{2}-3 X\right)=\mu_{\delta} \cdot \operatorname{rad}(\boldsymbol{\delta})\left(\delta^{2}-3 X\right) \Longrightarrow \\
m \cdot \mu_{c}^{\prime}=\mu_{\delta}\left(\delta^{2}-3 X\right) \tag{14}
\end{gather*}
$$

- If $\mu_{c}^{\prime}=\mu_{\delta} \Longrightarrow m=\delta^{2}-3 X=\left(\mu_{c}^{\prime} \cdot \operatorname{rad}(\boldsymbol{\delta})\right)^{2}-3 X$. As $\delta<\delta^{2}-3 X \Longrightarrow m>\delta \Longrightarrow \operatorname{rad}\left(c^{\prime}\right)>m>$ $\mu_{c}^{\prime} \cdot \operatorname{rad}(\delta)>\operatorname{rad}^{3}\left(c^{\prime}\right)$ because $\mu_{c}^{\prime}>\operatorname{rad}^{2.26}\left(c^{\prime}\right)$, it follows $\operatorname{rad}\left(c^{\prime}\right)>\operatorname{rad}^{2}\left(c^{\prime}\right)$. Then the contradiction.
- We suppose $\mu_{c}^{\prime}<\mu_{\delta}$. As $\operatorname{rad}(a)=\mu_{\delta} \operatorname{rad}(\boldsymbol{\delta})-1$, we obtain:

$$
\begin{gather*}
\operatorname{rad}(a)>\mu_{c}^{\prime} \cdot \operatorname{rad}(\boldsymbol{\delta})-1>0 \Longrightarrow \operatorname{rad}\left(a c^{\prime}\right)>c^{\prime} \cdot \operatorname{rad}(\boldsymbol{\delta})-\operatorname{rad}\left(c^{\prime}\right)>0 \Longrightarrow \\
c^{\prime}>\operatorname{rad}\left(a c^{\prime}\right)>c^{\prime} \cdot \operatorname{rad}(\boldsymbol{\delta})-\operatorname{rad}\left(c^{\prime}\right)>0 \Longrightarrow 1>\operatorname{rad}(\boldsymbol{\delta})-\frac{\operatorname{rad}\left(c^{\prime}\right)}{c^{\prime}}>0, \quad \operatorname{rad}(\boldsymbol{\delta}) \geq 2 \\
\Longrightarrow \text { The contradiction } \tag{15}
\end{gather*}
$$

- We suppose $\mu_{\delta}<\mu_{c}^{\prime}$. In this case, from the equation (14) and as (m, μ_{δ}) $=1$, it follows we can write:

$$
\begin{array}{r}
\mu_{c}^{\prime}=\mu_{1} \cdot \mu_{2}, \quad \mu_{1}, \mu_{2}>1 \\
c^{\prime}=\mu_{c}^{\prime} \operatorname{rad}\left(c^{\prime}\right)=\mu_{1} \cdot \mu_{2} \cdot \operatorname{rad}(\delta) \cdot m=\delta \cdot\left(\delta^{2}-3 X\right) \\
\text { so that } \quad m \cdot \mu_{1}=\delta^{2}-3 X, \quad \mu_{2}=\mu_{\delta} \Longrightarrow \delta=\mu_{2} \cdot \operatorname{rad}(\delta) \tag{18}
\end{array}
$$

** We suppose $\left(\mu_{1}, \mu_{2}\right) \neq 1$, then $\exists c_{j_{0}}^{\prime}$ so that $c_{j_{0}}^{\prime} \mid \mu_{1}$ and $c_{j_{0}}^{\prime} \mid \mu_{2}$. But $\mu_{\delta}=\mu_{2} \Rightarrow c_{j_{0}}^{\prime 2} \mid \delta$. From $3 X=$ $\delta^{2}-m \mu_{1} \Longrightarrow c_{j_{0}}^{\prime}\left|3 X \Longrightarrow c_{j_{0}}^{\prime}\right| X$ or $c_{j_{0}}^{\prime}=3$.

- If $c_{j_{0}}^{\prime} \mid X$, it follows the contradiction with $\left(c^{\prime}, a\right)=1$.
- If $c_{j_{0}}^{\prime}=3$. We have $m \mu_{1}=\delta^{2}-3 X=\delta^{2}-3(\delta-1) \Longrightarrow \delta^{2}-3 \delta+3-m . \mu_{1}=0$. As $3 \mid \mu_{1} \Longrightarrow$ $\mu_{1}=3^{k} \mu_{1}^{\prime}, 3 \nmid \mu_{1}^{\prime}, k \geq 1$, we obtain:

$$
\begin{equation*}
\delta^{2}-3 \delta+3\left(1-3^{k-1} m \mu_{1}^{\prime}\right)=0 \tag{19}
\end{equation*}
$$

- We consider the case $k>1 \Longrightarrow 3 \nmid\left(1-3^{k-1} m \mu_{1}^{\prime}\right)$. Let us recall the Eisenstein criterion [7]:

Theorem 2.1. (Eisenstein Criterion) Let $f=a_{0}+\cdots+a_{n} X^{n}$ be a polynomial $\in \mathbb{Z}[X]$. We suppose that $\exists p$ a prime number so that $p \nmid a_{n}, p \mid a_{i},(0 \leq i \leq n-1)$, and $p^{2} \nmid a_{0}$, then f is irreducible in \mathbb{Q}.

We apply Eisenstein criterion to the polynomial $R(Z)$ given by:

$$
\begin{equation*}
R(Z)=Z^{2}-3 Z+3\left(1-3^{k-1} m \mu_{1}^{\prime}\right) \tag{20}
\end{equation*}
$$

then:
$-3 \nmid 1,-3|(-3),-3| 3\left(1-3^{k-1} m \mu_{1}^{\prime}\right)$, and $-3^{2} \nmid 3\left(1-3^{k-1} m \mu_{1}^{\prime}\right)$.
It follows that the polynomial $R(Z)$ is irreducible in \mathbb{Q}, then, the contradiction with $R(\delta)=0$.

- We consider the case $k=1$, then $\mu_{1}=3 \mu_{1}^{\prime}$ and $\left(\mu_{1}^{\prime}, 3\right)=1$, we obtain:

$$
\begin{equation*}
\delta^{2}-3 \delta+3\left(1-m \mu_{1}^{\prime}\right)=0 \tag{21}
\end{equation*}
$$

* If $3 \nmid\left(1-m \cdot \mu_{1}^{\prime}\right)$, we apply the same Eisenstein criterion to the polynomial $R^{\prime}(Z)$ given by:

$$
R^{\prime}(Z)=Z^{2}-3 Z+3\left(1-m \mu_{1}^{\prime}\right)
$$

and we find a contradiction with $R^{\prime}(\boldsymbol{\delta})=0$.

* We consider that $3 \mid\left(1-m . \mu_{1}^{\prime}\right) \Longrightarrow m \mu_{1}^{\prime}-1=3^{i} . h, i \geq 1,3 \nmid h, h \in \mathbb{N}^{*} . \delta$ is an integer root of the polynomial $R^{\prime}(Z)$:

$$
\begin{equation*}
R^{\prime}(Z)=Z^{2}-3 Z+3\left(1-m \mu_{1}^{\prime}\right)=0 \Rightarrow \text { the discriminant of } R^{\prime}(Z) \text { is }: \Delta=3^{2}+3^{i+1} \times 4 . h \tag{22}
\end{equation*}
$$

As the root δ is an integer, it follows that $\Delta=l^{2}>0$ with l a positive integer. We obtain:

$$
\begin{array}{r}
\Delta=3^{2}\left(1+3^{i-1} \times 4 h\right)=l^{2} \\
\Longrightarrow 1+3^{i-1} \times 4 h=q^{2}>1, q \in \mathbb{N}^{*} \tag{24}
\end{array}
$$

We can write the equation (21) as :

$$
\begin{array}{r}
\delta(\boldsymbol{\delta}-3)=3^{i+1} . h \Longrightarrow 3^{3} \mu_{1}^{\prime} \frac{\operatorname{rad}(\boldsymbol{\delta})}{3} \cdot\left(\mu_{1}^{\prime} \operatorname{rad}(\boldsymbol{\delta})-1\right)=3^{i+1} . h \Longrightarrow \\
\mu_{1}^{\prime} \frac{\operatorname{rad}(\boldsymbol{\delta})}{3} \cdot\left(\mu_{1}^{\prime} \operatorname{rad}(\boldsymbol{\delta})-1\right)=h \tag{26}
\end{array}
$$

We obtain $i=2$ and $q^{2}=1+12 h=1+4 \mu_{1}^{\prime} \operatorname{rad}(\boldsymbol{\delta})\left(\mu_{1}^{\prime} \operatorname{rad}(\boldsymbol{\delta})-1\right)$. Then, q satisfies :

$$
\begin{gather*}
q^{2}-1=12 h \Rightarrow \frac{(q-1)}{2} \cdot \frac{(q+1)}{2}=3 h=\left(\mu_{1}^{\prime} \operatorname{rad}(\boldsymbol{\delta})-1\right) \cdot \mu_{1}^{\prime} \operatorname{rad}(\boldsymbol{\delta}) \Rightarrow \tag{27}\\
q-1=2 \mu_{1}^{\prime} \operatorname{rad}(\boldsymbol{\delta})-2 \tag{28}\\
q+1=2 \mu_{1}^{\prime} \operatorname{rad}(\boldsymbol{\delta}) \tag{29}
\end{gather*}
$$

It follows that $(q=x, 1=y)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{30}
\end{equation*}
$$

with $N=12 h>0$. Let $Q(N)$ be the number of the solutions of (30) and $\tau(N)$ is the number of suitable factorization of N, then we announce the following result concerning the solutions of the Diophantine equation (30) (see theorem 27.3 in [6]):

- If $N \equiv 2(\bmod 4)$, then $Q(N)=0$.
- If $N \equiv 1$ or $N \equiv 3(\bmod 4)$, then $Q(N)=[\tau(N) / 2]$.
- If $N \equiv 0(\bmod 4)$, then $Q(N)=[\tau(N / 4) / 2]$.
$[x]$ is the integral part of x for which $[x] \leq x<[x]+1$.
Let $\left(\alpha^{\prime}, m^{\prime}\right), \alpha^{\prime}, m^{\prime} \in \mathbb{N}^{*}$ be another pair, solution of the equation (30), then $\alpha^{\prime 2}-m^{\prime 2}=x^{2}-y^{2}=N=$ $12 h$, but $q=x$ and $1=y$ satisfy the equation (29) given by $x+y=2 \mu_{1}^{\prime} \operatorname{rad}(\delta)$, it follows $\alpha^{\prime}, m^{\prime}$ verify also $\alpha^{\prime}+m^{\prime}=2 \mu_{1}^{\prime} \operatorname{rad}(\boldsymbol{\delta})$, that gives $\alpha^{\prime}-m^{\prime}=2\left(\mu_{1}^{\prime} \operatorname{rad}(\boldsymbol{\delta})-1\right)$, then $\alpha^{\prime}=x=q=2 \mu_{1}^{\prime} \operatorname{rad}(\boldsymbol{\delta})$ and $m^{\prime}=y=1$. So, we have given the proof of the uniqueness of the solutions of the equation (30) with the condition $x+y=2 \mu_{1}^{\prime} \operatorname{rad}(\delta)$. As $N=12 h \equiv 0(\bmod 4) \Longrightarrow Q(N)=[\tau(N / 4) / 2]=[\tau(3 h) / 2]$, the expression of $3 h=\mu_{1}^{\prime} \cdot \operatorname{rad}(\boldsymbol{\delta}) \cdot\left(\mu_{1}^{\prime} \operatorname{rad}(\boldsymbol{\delta})-1\right)$, then $Q(N)=[\tau(3 h) / 2]>1$. But $Q(N)=1$, then the

THE FIBONACCI QUARTERLY

contradiction and the case $3 \mid\left(1-m . \mu_{1}^{\prime}\right)$ is to reject.
** We suppose that $\left(\mu_{1}, \mu_{2}\right)=1$.
From the equation $m \mu_{1}=\delta^{2}-3 X=\delta^{2}-3(\delta-1)$, we obtain that δ is a root of the following polynomial :

$$
\begin{equation*}
R(Z)=Z^{2}-3 Z+3-m \cdot \mu_{1}=0 \tag{31}
\end{equation*}
$$

The discriminant of $R(Z)$ is:

$$
\begin{equation*}
\Delta=9-4\left(3-m \cdot \mu_{1}\right)=4 m \cdot \mu_{1}-3=q^{2} \quad \text { with } q \in \mathbb{N}^{*} \quad \text { as } \delta \in \mathbb{N}^{*} \tag{32}
\end{equation*}
$$

- We suppose that $2 \mid m \mu_{1} \Longrightarrow c^{\prime}$ is even. Then $q^{2} \equiv 5(\bmod 8)$, it gives a contradiction because a square is $\equiv 0,1$ or $4(\bmod 8)$.
- We suppose c^{\prime} an odd integer, then a is even. It follows $a=\operatorname{rad}^{3}(a) \equiv 0(\bmod 8) \Longrightarrow c^{\prime} \equiv 1(\bmod 8)$. As $c^{\prime}=\delta^{2}-3 X . \delta$, we obtain $\delta^{2}-3 X . \delta \equiv 1(\bmod 8)$. If $\delta^{2} \equiv 1(\bmod 8) \Longrightarrow-3 X . \delta \equiv 0(\bmod 8) \Longrightarrow$ $8|X . \delta \Longrightarrow 4| \delta \Longrightarrow c^{\prime}$ is even. Then, the contradiction. If $\delta^{2} \equiv 4(\bmod 8) \Longrightarrow \delta \equiv 2(\bmod 8)$ or $\delta \equiv 6(\bmod$ $8)$. In the two cases, we obtain $2 \mid \delta$. Then, the contradiction with c^{\prime} an odd integer.

It follows that the case $c>\operatorname{rad}^{3.26}(c)$ and $a=\operatorname{rad}^{3}(a)$ is impossible.
I-3-3- We suppose $c>\operatorname{rad}^{3.26}(c)$ and large, then $c=\operatorname{rad}^{3}(c)+h, h>\operatorname{rad}^{3}(c), h$ a positive integer and $\mu_{a}<\operatorname{rad}^{2}(a) \Longrightarrow a+l=\operatorname{rad}^{3}(a), l>0$. Then we obtain :

$$
\begin{equation*}
\operatorname{rad}^{3}(c)+h=\operatorname{rad}^{3}(a)-l+b \Longrightarrow \operatorname{rad}^{3}(a)-\operatorname{rad}^{3}(c)=h+l-b>0 \tag{33}
\end{equation*}
$$

as $\operatorname{rad}(a)>\operatorname{rad} \mathrm{d}^{\frac{1.63}{1.67}}(c)$. We obtain the equation:

$$
\begin{equation*}
\operatorname{rad}^{3}(a)-\operatorname{rad}^{3}(c)=h+l-b=m>0 \tag{34}
\end{equation*}
$$

Let $X=\operatorname{rad}(a)-\operatorname{rad}(c)$, then X is an integer root of the polynomial $H(X)$ defined as:

$$
\begin{equation*}
H(X)=X^{3}+3 \operatorname{rad}(a c) X-m=0 \tag{35}
\end{equation*}
$$

To resolve the above equation, we denote $X=u+v$, It follows that u^{3}, v^{3} are the roots of the polynomial $G(t)$ given by:

$$
\begin{equation*}
G(t)=t^{2}-m t-\operatorname{rad}^{3}(a c)=0 \tag{36}
\end{equation*}
$$

The discriminant of $G(t)$ is $\Delta=m^{2}+4 \operatorname{rad}^{3}(a c)=\alpha^{2}, \quad \alpha>0$. The two real roots of (36) are:

$$
\begin{equation*}
t_{1}=u^{3}=\frac{m+\alpha}{2}, \quad t_{2}=v^{3}=\frac{m-\alpha}{2} \tag{37}
\end{equation*}
$$

As $m=\operatorname{rad}^{3}(a)-\operatorname{rad}^{3}(c)>0$, we obtain that $\alpha=\operatorname{rad}^{3}(a)+\operatorname{rad}^{3}(c)>0$, then from the expression of the discriminant Δ, it follows that $(\alpha=x, m=y)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{38}
\end{equation*}
$$

with $N=4 \operatorname{rad}^{3}(a c)>0$. From the expression of Δ above, we remark that α and m verify the following equations:

$$
\begin{array}{r}
x+y=2 u^{3}=2 \operatorname{rad}^{3}(a) \\
x-y=-2 v^{3}=2 \operatorname{rad}^{3}(c) \\
\text { then } \quad x^{2}-y^{2}=N=4 \operatorname{rad}^{3}(a) \cdot \operatorname{rad}^{3}(c) \tag{41}
\end{array}
$$

Let $Q(N)$ be the number of the solutions of (38) and $\tau(N)$ is the number of suitable factorization of N, and using the same method as in the paragraph I-3-2-4- (case $3 \mid\left(1-m . \mu_{1}^{\prime}\right)$), we obtain a contradiction.

It follows that the cases $\mu_{a} \leq \operatorname{rad}^{2}(a)$ and $c>\operatorname{rad}^{3.26}(c)$ are impossible.
II- We suppose that $\operatorname{rad}^{1.63}(c)<\mu_{c} \leq \operatorname{rad}^{2}(c)$ and $\mu_{a}>\operatorname{rad}^{1.63}(a)$:
II-1- Case $\operatorname{rad}(c)<\operatorname{rad}(a):$ As $c \leq \operatorname{rad}^{3}(c)=\operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}^{1.37}(c) \Longrightarrow c<\operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}^{1.37}(a)<$ $\operatorname{rad}^{1.63}(a c)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63}$.

II-2- Case $\operatorname{rad}(a)<\operatorname{rad}(c)<\operatorname{rad}^{\frac{1.63}{1.37}}(a):$ As $c \leq \operatorname{rad}^{3}(c) \leq \operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}^{1.37}(c) \Longrightarrow$
$c<\operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}^{1.63}(a)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63}$.
II-3- Case $\operatorname{rad}{ }^{\frac{1.63}{1.37}}(a)<\operatorname{rad}(c)$:
II-3-1- We suppose $\operatorname{rad}^{2.63}(a)<a \leq \operatorname{rad}^{3.26}(a) \Longrightarrow a \leq \operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.63}(a) \Longrightarrow a<\operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.37}(c)$ $\Longrightarrow c=a+b<2 a<2 \operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.63}(c)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63} \Longrightarrow c<R^{1.63}$.

II-3-2- We suppose $a>\operatorname{rad}^{3.26}(a)$ and $\mu_{c} \leq \operatorname{rad}^{2}(c)$. Using the same method as it was explicated in the paragraphs I-3-2, I-3-3 (permuting a, c), we arrive at a contradiction. It follows that the case $\mu_{c} \leq \operatorname{rad}^{2}(c)$ and $a>\operatorname{rad}^{3.26}(a)$ is impossible.

Finally, we have finished the study of the case $\operatorname{rad}^{1.63}(c)<\mu_{c} \leq \operatorname{rad}^{2}(c)$ and $\mu_{a}>\operatorname{rad}^{1.63}(a)$.
2.3.3. Case $\mu_{c}>\operatorname{rad}^{1.63}(c)$ and $\mu_{a}>\operatorname{rad}^{1.63}(a)$. Taking into account the cases studied above, it remains to see the following two cases:

- $\mu_{c}>\operatorname{rad}^{2}(c)$ and $\mu_{a}>\operatorname{rad}^{1.63}(a)$,
- $\mu_{a}>\operatorname{rad}^{2}(a)$ and $\mu_{c}>\operatorname{rad}^{1.63}(c)$.

III-1- We suppose $\mu_{c}>\operatorname{rad}^{2}(c)$ and $\mu_{a}>\operatorname{rad}^{1.63}(a) \Longrightarrow c>\operatorname{rad}^{3}(c)$ and $a>\operatorname{rad}^{2.63}(a)$. We can write $c=\operatorname{rad}^{3}(c)+h$ and $a=\operatorname{rad}^{3}(a)+l$ with h a positive integer and $l \in \mathbb{Z}$.

III-1-1- We suppose $\operatorname{rad}(c)<\operatorname{rad}(a)$. We obtain the equation:

$$
\begin{equation*}
\operatorname{rad}^{3}(a)-\operatorname{rad}^{3}(c)=h-l-b=m>0 \tag{42}
\end{equation*}
$$

Let $X=\operatorname{rad}(a)-\operatorname{rad}(c)$, from the above equation, X is a real root of the polynomial:

$$
\begin{equation*}
H(X)=X^{3}+3 \operatorname{rad}(a c) X-m=0 \tag{43}
\end{equation*}
$$

As above, to resolve (43), we denote $X=u+v$, It follows that u^{3}, v^{3} are the roots of the polynomial $G(t)$ given by :

$$
\begin{equation*}
G(t)=t^{2}-m t-\operatorname{rad}^{3}(a c)=0 \tag{44}
\end{equation*}
$$

The discriminant of $G(t)$ is:

$$
\begin{equation*}
\Delta=m^{2}+4 r a d^{3}(a c)=\alpha^{2}, \quad \alpha>0 \tag{45}
\end{equation*}
$$

The two real roots of (44) are:

$$
\begin{equation*}
t_{1}=u^{3}=\frac{m+\alpha}{2}, \quad t_{2}=v^{3}=\frac{m-\alpha}{2} \tag{46}
\end{equation*}
$$

DECEMBER 2020

THE FIBONACCI QUARTERLY

As $m=\operatorname{rad}^{3}(a)-\operatorname{rad}^{3}(c)>0$, we obtain that $\alpha=\operatorname{rad}^{3}(a)+\operatorname{rad}^{3}(c)>0$, then from the equation (45), it follows that $(\alpha=x, m=y)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{47}
\end{equation*}
$$

with $N=4 \operatorname{rad}^{3}(a c)>0$. From the equations (46), we remark that α and m verify the following equations:

$$
\begin{array}{r}
x+y=2 u^{3}=2 \operatorname{rad}^{3}(a) \\
x-y=-2 v^{3}=2 \operatorname{rad}^{3}(c) \\
\text { then } \quad x^{2}-y^{2}=N=4 \operatorname{rad}^{3}(a) \cdot \operatorname{rad}^{3}(c) \tag{50}
\end{array}
$$

Let $Q(N)$ be the number of the solutions of (47) and $\tau(N)$ is the number of suitable factorization of N, and using the same method as in the paragraph I-3-2-4- (case $3 \mid\left(1-m . \mu_{1}^{\prime}\right)$), we obtain a contradiction.

III-1-2- We suppose $\operatorname{rad}(a)<\operatorname{rad}(c)$. We obtain the equation:

$$
\begin{equation*}
\operatorname{rad}^{3}(c)-\operatorname{rad}^{3}(a)=b+l-h=m>0 \tag{51}
\end{equation*}
$$

Using the same calculations as in III-1-1-, we find a contradiction.
It follows that the case $\mu_{c}>\operatorname{rad}^{2}(c)$ and $\mu_{a}>\operatorname{rad}^{1.63}(a)$ is impossible.
III-2- We suppose $\mu_{a}>\operatorname{rad}^{2}(a)$ and $\mu_{c}>\operatorname{rad}^{1.63}(c) \Longrightarrow a>\operatorname{rad}^{3}(a)$ and $c>\operatorname{rad}^{2.63}(c)$. We can write $a=\operatorname{rad}^{3}(a)+h$ and $c=\operatorname{rad}^{3}(c)+l$ with h a positive integer and $l \in \mathbb{Z}$.

The calculations are similar to those in case III-1-. We obtain the same results namely the cases of III-2- to be rejected.

It follows that the case $\mu_{c}>\operatorname{rad}^{1.63}(c)$ and $\mu_{a}>\operatorname{rad}^{2}(a)$ is impossible.
We can state the following important theorem:
Theorem 2.2. Let a, b, c positive integers relatively prime with $c=a+b$, then $c<\operatorname{rad}^{1.63}(a b c)$.

3. The Proof of the abc conjecture

We note $R=\operatorname{rad}(a b c)$ in the case $c=a+b$ or $R=\operatorname{rad}(a c)$ in the case $c=a+1$. We recall the following proposition [4]:

Proposition 3.1. Let $\varepsilon \longrightarrow K(\varepsilon)$ the application verifying the abc conjecture, then:

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} K(\varepsilon)=+\infty \tag{52}
\end{equation*}
$$

3.1. Case : $\varepsilon \geq 0.63$. As $c<R^{1.63}$ is true, we have $\forall \varepsilon \geq 0.63$:

$$
\begin{equation*}
c<R^{1.63} \leq R^{1+\varepsilon}<K(\varepsilon) \cdot R^{1+\varepsilon}, \quad \text { with } K(\varepsilon)=e^{\frac{1}{0.63^{2}}}, \varepsilon \geq 0.63 \tag{53}
\end{equation*}
$$

Then the $a b c$ conjecture is true.
3.2. Case: $\varepsilon<0.63$.
3.2.1. Case: $c<R$. In this case, we can write :

$$
\begin{equation*}
c<R<R^{1+\varepsilon}<K(\varepsilon) \cdot R^{1+\varepsilon}, \quad \text { with } K(\varepsilon)=e^{\frac{1}{0.63^{2}}}>1, \varepsilon<0.63 \tag{54}
\end{equation*}
$$

Then the $a b c$ conjecture is true.
3.2.2. Case: $c>R$. From the statement of the $a b c$ conjecture 1.1, we want to give a proof that $c<K(\varepsilon) R^{1+\varepsilon} \Longleftrightarrow \log c<\log K(\varepsilon)+(1+\varepsilon) \log R \Longleftrightarrow \log K(\varepsilon)+(1+\varepsilon) \log R-\log c>0$. For our proof, we proceed by contradiction of the abc conjecture, so we assume that the conjecture is false:

$$
\begin{equation*}
\left.\exists \varepsilon_{0} \in\right] 0,0.63\left[, \forall K(\varepsilon)>0, \quad \exists c_{0}=a_{0}+b_{0} \quad \text { so that } c_{0}>K\left(\varepsilon_{0}\right) R_{0}^{1+\varepsilon_{0}} \Longrightarrow c_{0}\right. \text { not a prime } \tag{55}
\end{equation*}
$$

We choose the constant $K(\varepsilon)=e^{\frac{1}{\varepsilon^{2}}}$. Let $\left.Y_{c_{0}}(\varepsilon)=\frac{1}{\varepsilon^{2}}+(1+\varepsilon) \log R_{0}-\log c_{0}, \varepsilon \in\right] 0,0.63$ [. From the above explications, if we will obtain $\forall \varepsilon \in] 0,0.63\left[, Y_{c_{0}}(\varepsilon)>0 \Longrightarrow Y_{c_{0}}\left(\varepsilon_{0}\right)>0\right.$, then the contradiction with (55).
About the function $Y_{c_{0}}$, we have $\lim _{\varepsilon \rightarrow 0.63} Y_{c_{0}}(\varepsilon)=1 / 0.63^{2}+\log \left(R_{0}^{1.63} / c_{0}\right)>0$ and $\lim _{\varepsilon \rightarrow 0} Y_{c_{0}}(\varepsilon)=$ $+\infty$. The function $Y_{c_{0}}(\varepsilon)$ has a derivative for $\left.\forall \varepsilon \in\right] 0,0.63\left[\right.$, we obtain with $R_{0}>2977$:

$$
\begin{equation*}
\left.Y_{c_{0}}^{\prime}(\varepsilon)=-\frac{2}{\varepsilon^{3}}+\log R_{0}=\frac{\varepsilon^{3} \log R_{0}-2}{\varepsilon^{3}} \Rightarrow Y_{c_{0}}^{\prime}(\varepsilon)=0 \Rightarrow \varepsilon=\varepsilon^{\prime}=\sqrt[3]{\frac{2}{\log R_{0}}} \in\right] 0,0.63[\tag{56}
\end{equation*}
$$

Discussion:

- If $Y_{c_{0}}\left(\varepsilon^{\prime}\right) \geq 0$, it follows that $\left.\forall \varepsilon \in\right] 0,0.63\left[, Y_{c_{0}}(\varepsilon) \geq 0\right.$, then the contradiction with $Y_{c_{0}}\left(\varepsilon_{0}\right)<0 \Longrightarrow$ $c_{0}>K\left(\varepsilon_{0}\right) R_{0}^{1+\varepsilon_{0}}$. Hence the $a b c$ conjecture is true for $\left.\varepsilon \in\right] 0,0.63[$.
- If $Y_{c_{0}}\left(\varepsilon^{\prime}\right)<0 \Longrightarrow \exists 0<\varepsilon_{1}<\varepsilon^{\prime}<\varepsilon_{2}<0.63$, so that $Y_{c_{0}}\left(\varepsilon_{1}\right)=Y_{c_{0}}\left(\varepsilon_{2}\right)=0$. Then we obtain $c_{0}=$ $K\left(\varepsilon_{1}\right) R_{0}^{1+\varepsilon_{1}}=K\left(\varepsilon_{2}\right) R_{0}^{1+\varepsilon_{2}}$. We recall the following definition:
Definition 3.1. The number ξ is called algebraic number if there is at least one polynomial:

$$
\begin{equation*}
l(x)=l_{0}+l_{1} x+\cdots+a_{m} x^{m}, \quad a_{m} \neq 0 \tag{57}
\end{equation*}
$$

with integral coefficients such that $l(\xi)=0$, and it is called transcendental if no such polynomial exists.
We consider the equality $c_{0}=K\left(\varepsilon_{1}\right) R_{0}^{1+\varepsilon_{1}} \Longrightarrow \frac{c_{0}}{R}=\frac{\mu_{c}}{\operatorname{rad}(a b)}=e^{\frac{1}{\varepsilon_{1}^{2}}} R_{0}^{\varepsilon_{1}}$.
i) - We suppose that $\varepsilon_{1}=\beta_{1}$ is an algebraic number then $\beta_{0}=1 / \varepsilon_{1}^{2}$ and $R_{0}=\alpha_{1}$ are also algebraic numbers. We obtain:

$$
\begin{equation*}
\frac{\mu_{c}}{\operatorname{rad}(a b)}=e^{\frac{1}{\varepsilon_{1}^{2}}} R_{0}^{\varepsilon_{1}}=e^{\beta_{0}} \cdot \alpha_{1}^{\beta_{1}} \tag{58}
\end{equation*}
$$

From the theorem (see theorem 3, page 196 in [9]):
Theorem 3.1. $e^{\beta_{0}} \alpha_{1}^{\beta_{1}} \ldots \alpha_{n}^{\beta_{n}}$ is transcendental for any nonzero algebraic numbers $\alpha_{1}, \ldots, \alpha_{n}, \beta_{0}, \ldots, \beta_{n}$. we deduce that the right member $e^{\beta_{0}} . \alpha_{1}^{\beta_{1}}$ of (58) is transcendental, but the term $\frac{\mu_{c}}{\operatorname{rad}(a b)}$ is an algebraic number, then the contradiction and the $a b c c$ conjecture is true.
ii) - We suppose that ε_{1} is transcendental, in this case there is also a contradiction, and the $a b c$ conjecture is true.

Then the proof of the $a b c$ conjecture is finished.

THE FIBONACCI QUARTERLY

4. Conclusion

We have given an elementary proof of the $a b c$ conjecture. We can announce the important theorem:
Theorem 4.1. For each $\varepsilon>0$, there exists $K(\varepsilon)>0$ such that if a,b, c positive integers relatively prime with $c=a+b$, then :

$$
\begin{equation*}
c<K(\varepsilon) \cdot r a d^{1+\varepsilon}(a b c) \tag{59}
\end{equation*}
$$

where K is a constant depending of ε.

References

[1] A. Ben Hadj Salem, 2020. Progress in The Proof of The Conjecture $c<\operatorname{rad}^{1.63}(a b c)$ - Case : $c=a+1$. Submitted to São Paulo Journal of Mathematical Sciences. November 2020, 10 pages.
[2] P. Mihăilescu, 2004. Primary cyclotomic units and a proof of Catalan's Conjecture. Journal für die Reine und Angewandte Mathematik, Vol. 2004, Issue 572, pp 167-195.
[3] P. Mihăilescu, 2014. Around ABC. European Mathematical Society Newsletter \mathbf{N}° 93, Sept. pp 29-34.
[4] A. Nitaj, 1996. Aspects expérimentaux de la conjecture $a b c$. Séminaire de Théorie des Nombres de Paris(1993-1994), London Math. Soc. Lecture Note Ser., Vol $\mathbf{n}^{\circ} \mathbf{2 3 5}$. Cambridge Univ. Press, pp 145-156.
[5] B. De Smit, 2012. https://www.math.leidenuniv.nl/ desmit/abc/.
[6] B.M. Stewart, 1964. Theory of Numbers. $2^{\text {sd }}$ edition, The Macmillan Compagny, N.Y., pp 196-197.
[7] C. Touibi, 1996. Algèbre Générale (in French). Cérès Editions, Tunis, pp 108-109.
[8] M. Waldschmidt, 2013. On the abc Conjecture and some of its consequences presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013.
[9] A. Baker, 1971. Effective Methods in Diophantine Problems. Proceedings of Symposia in Pure Mathematics, Vol. XX, 1969 Number Theory Institute. AMS, pp 195-205.

Résidence bousten 8, Mosquée Raoudha, Bloc B, 1181 La Soukra Raoudha,Tunisia
Email address: abenhadjsalem@gmail.com

[^0]: 2010 Mathematics Subject Classification. 11AXX; 26AXX.
 Key words and phrases. Elementary number theory; real functions of one variable; Eisenstein criterion; number of solutions of elementary Diophantine equations, transcendental numbers.

