On the Irrationality of Roots of 2

James Camacho

December 2, 1992

It is well known that $\sqrt{2}$ is irrational. Here we prove that $\sqrt[n]{2}$ is also irrational for integers $n>2$ using induction on n with the base case $n=3$. First we need to prove a few preliminary lemmas.

Lemma 1: $\sqrt[3]{2}$ is irrational.
Proof: Suppose for the sake of contradiction that $\sqrt[3]{2}$ is rational. So it can be expressed as $\frac{p}{q}$ where $p \geq q \geq 1 \in \mathbb{N}$ and $(p, q)=1$. So,

$$
2=\frac{p^{3}}{q^{3}}
$$

so

$$
\begin{equation*}
p^{3}=q^{3}+q^{3} \tag{1}
\end{equation*}
$$

There are no solutions to the equation $a^{3}=b^{3}+c^{3}$ for positive integers a, b, and c (confirm; the proof should not take more than the margins of this paper), so there are no solutions to (1).

Lemma 2: If r satisfies $\frac{1}{r}=\sqrt[n]{2 r}$ then r is irrational.
Proof: This implies that r is a root to

$$
\frac{1}{x^{n}}=2 x \Longleftrightarrow 2 x^{n+1}-1=0
$$

By the Rational Root Theorem the only possible rational roots are ± 1 and $\pm \frac{1}{2}$ but none of them are roots to this particular equation (confirm). Therefore r must be irrational.

Lemma 3: If $\sqrt[n]{2}$ is irrational, so is $\sqrt[n+1]{2}$.
Proof: Suppose for the sake of contradiction that $\sqrt[n]{2}$ is irrational but $\sqrt[n+1]{2}$ is not. So $\sqrt[n+1]{2}=\frac{p}{q}$ for some positive integers $p \geq q$ and $(p, q)=1$. So,

$$
\sqrt[n]{2}=(\sqrt[n+1]{2})^{1+\frac{1}{n}}=\frac{p}{q} \cdot \sqrt[n]{\frac{p}{q}}
$$

So

$$
\frac{p}{q}=\sqrt[n]{\frac{2 q}{p}}
$$

is rational. But by putting $r=\frac{q}{p}$, we get from Lemma 2 that there is no rational solution to that equation! There is a contradiction, so $\sqrt[n+1]{2}$ is also irrational.

Now we can complete the proof. Lemma 1 shows that the base case, $n=3$, holds. Lemma 3 shows that the inductive step holds. So, the claim is true. $\sqrt[n]{2} \in \mathbb{P} \quad \forall n \in \mathbb{Z}_{\geq 3}$.

