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ABSTRACT

Many fields of science and engineering require the use of

complex and computationally expensive models to under-

stand the involved processes in the system of interest. Nev-

ertheless, due to the high cost involved, the required study

becomes a cumbersome process. This paper introduces an

interpolation procedure which belongs to the family of active

learning algorithms, in order to construct cheap surrogate

models of such costly complex systems. The proposed tech-

nique is sequential and adaptive, and is based on the opti-

mization of a suitable acquisition function. We illustrate its

efficiency in a toy example and for the construction of an

emulator of an atmosphere modeling system.

Index Terms— Adaptive interpolation, active learning,

Bayesian optimization, experimental design.

1. INTRODUCTION

Approximation theory is vast branch of mathematics embrac-

ing fields such as signal processing, statistics and machine

learning. Approximate models are often used in order to

summarize the behavior of more complex systems with fast

and cheap routines. The so-called radiative transfer mod-

els (RTMs) are clear examples of costly complex systems

widely in geoscience [1, 2]. Since RTMs are computation-

ally expensive and very often impractical for their execution

on a pixel-per-pixel basis [3], large multi-dimensional look-

up tables (LUTs) are precomputed for their later interpola-

tion [4, 5]. More generally, several emulation models have

been proposed in the literature [6–10].

In this work, we address the problem of optimal selection

of the points to be included in the LUT or, more generally,

we propose an adaptive sequential interpolation (ASI) pro-

cedure. This field has received attention from different sci-

entific areas. For instance, the considered topic is related to

several problems such as: (a) optimal sensor placement [11],

(b) optimal nonuniform sampling [12], (c) adaptive quanti-

zation [13], (d) adaptive gridding [6] and (e) adaptive mesh
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refinement [14]. Moreover, the problem has been also cast

as optimal experimental design [15, 16] for regression of ar-

bitrary functions f . It deserves to be mentioned that the use

of random filling strategies for the sequential construction of

LUT (such as Latin Hypercube and Sobol sampling) seem to

be the favorites, at least in the remote sensing community.

The proposed ASI solution belongs to the class of active

learning algorithms [17, 18] where we use the notion of an

acquisition function (AF), often employed in Bayesian op-

timization (BO) methods [19]. More specifically, the ASI

technique provides an approximation f̂(x) of a complicated,

costly function f(x) by using an interpolation scheme based

on a set of support points. This approximation is sequen-

tially improved by adding new points. The position of a new

point is adaptively determined by the algorithm, according

to a suitable AF (which is considered as a pay-off function

or an “oracle”). In the literature, different approaches have

been recently proposed for efficiently solving this problem.

In some of them, the evaluation of the AF is quite expensive

since its construction is based on a Cross-Validation (CV)

“Leave-one-out” procedure [20]. In other approaches, the

construction of the AF is based on a statistical interpretation

of a specific interpolation procedure and its evolution of the

inversion of a square matrix whose dimension increases with

the number of support points [6, 8]. This inversion can make

the method unstable as the number of nodes grows or the

distances among nodes decrease. Another scheme has been

proposed in [21], but its performance strongly depends on the

choice of the parameters used for building the corresponding

AF.

In this paper, we propose a robust construction of a suitable

AF which does not depend on a statistical derivation or a spe-

cific interpolation method (i.e., it can be applied whatever in-

terpolation procedure is used), and does not require any ma-

trix inversion. Its evaluation is fast since it is a polynomial-

based AF and no CV procedures are required. Furthermore,

its evaluation is also stable even when a very high number of

support points has been added. The numerical experiments

also show its benefit compared with other benchmark strate-

gies.



2. ADAPTIVE SEQUENTIAL INTERPOLATION

In this section, we describe the proposed adaptive sequential

interpolation (ASI) scheme. We start by fixing the notation

and presenting the general procedure, and then we discuss

more specific details.

2.1. Generic ASI scheme

Let us consider a D-dimensional bounded input space X , i.e.,

x = [x1, ..., xD]⊺ ∈ X ⊂ R
D. We consider a costly complex

system represented by a function f(x) : X 7→ R. Let t ∈ N
+

denote the index of the ASI algorithm, and mt be the number

of points {xk, yk}
mt

k=1
used by at the iteration t, where

yk = f(xk), (1)

where yk ∈ R and k = 1, . . . ,mt. Thus, given an input ma-

trix of nodes, Xt = [x1, · · · ,xmt
] of dimension D×mt, we

have a vector of outputs, yt = [y1, . . . , ymt
]. At each itera-

tion t, given the pairs of points {xk, yk}
mt

k=1
, the ASI proce-

dure constructs an approximating function f̂t(x) using an ar-

bitrary interpolation technique, such as piecewise polynomial

functions, Splines, and Gaussian Processes (GPs) [8, 20, 22].

An acquisition function At(x) : R
D → R is constructed,

in order to recommend in which part of the input space an

additional node is required. Then, an optimization step is

needed for obtaining an additional node, i.e.,

xmt+1 = arg max
x∈X

At(x). (2)

Thus, we update Xt+1 = [Xt,xmt+1], yt+1 = [yt, ymt+1 =
f(xmt+1)] adding a new node, set mt+1 = mt + 1 and

t ← t + 1. The procedure is repeated until a stopping condi-

tion is met. Table 1 summarizes the generic ASI scheme. The

maximization of At(x) can be performed by different types

of optimization algorithms (see, e.g., [23]).

Stopping rules. One possible stopping condition is to reach

a pre-established maximum number of points M , which is

determined by the available computational resources. More-

over, a more sophisticated rule is stop the algorithm when a

precision error ǫ > 0 is achieved, i.e., ‖f(x) − f̂t(x)‖ ≤ ǫ.

However, generally the system y = f(x) is a costly black-

box mapping, linking the inputs x with the outputs y. At each

new input x′, the system returns y′ = f(x′) but, we cannot

compute integrals and/or other analytical expressions involv-

ing f(x). One alternative is to approximate the error ‖f(x)−

f̂t(x)‖ with the alternative formula ‖f̂t(x)− f̂t−1(x)‖ which

involves only the approximating function in two consecutive

iterations.

Suitable construction of an AF. In this section, we intro-

duce the general properties that a suitable acquisition function

At(x) should satisfy. A complete acquisition function should

be formed by the multiplication two terms, a geometry factor

Gt(x) and a density factor Dt(x), i.e.,

At(x) = [Gt(x)]
βt Dt(x), βt ∈ [0, 1], (3)

where Gt(x) : X 7→ R, Dt(x) : X 7→ R and hence At(x) :
X 7→ R. Moreover, βt is an increasing function with respect

to t, with limt→∞ βt = 1 (or βt = 1 for t > t′).

The density factor Dt(x) depends on the distribution of

the points in the current vector Xt. More specifically, Dt(x)
will have a greater value around empty regions of the input

space, whereas Dt(x) will be virtually zero close to the nodes

and more specifically, Dt(xk) = 0 (exactly zero at the nodes).

Note that, for this reason, we have also that

At(xk) = 0, ∀k = 1, . . . ,mt, ∀t ∈ N. (4)

The geometry factor Gt(x) represents some suitable geomet-

rical information of the system f . Since f is generally a

complex and analytical intractable function, the term Gt(x)

can be only obtained by considering the approximation f̂ .

Clearly, in this case, the approximation f̂ is usually not well-

fitted in the first iterations of the algorithm, so that the in-

formation provided by Gt(x) should be partially excluded in

the first iterations. This is the reason of using a tempering

factor βt ∈ [0, 1], which is a non-decreasing function of t.

If βt = 0, we omit Gt(x) and At(x) = Dt(x) whereas, if

βt = 1, we have At(x) = Gt(x)Dt(x). Strategies only using

the density factor has been often used in the literature, gen-

erally related to GP regressors (see, e.g., [6]). Examples of

acquisition function are given in Figure 1.

3. ACQUISITION FUNCTION OF ASI

In this work, we propose a novel acquisition function inspired

by the Lebesgue functions, employed in the theoretical anal-

ysis of the classical polynomial interpolation [22].1 The den-

sity term is defined as

Dt(x) =

mt∏

k=1

||x− xk||1 =

mt∏

k=1

[
D∑

d=1

|xd − xd,k|

]
, (6)

where ||·||1 represents the L1 distance and xk = [x1,k, ..., xD,k]⊺

are the current interpolation nodes. Note that Dt(xk) = 0 for

all k = 1, ...,mt. The geometry term, taking into account the

variations of the outputs, is defined as

Gt(x) =

mt∏

k=1

|yk − f(x)|. (7)

1In this work, we consider piecewise interpolations, such as piecewise

constant or linear solutions, Splines and GPs interpolators. The location of

the Chebyshev’s nodes is optimal only when the interpolation is performed

with a unique polynomial function of the same order of number of nodes

(then, with several oscillations and worse performance than piecewise inter-

polations).
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Fig. 1. (Top-row) An example of function f(x) (dashed line) and its approximation f̂t(x) built with a piecewise linear in-

terpolation (solid line), at different iterations. (Bottom-row) The acquisition function At(x) of the ASI method with βt = 1,

considering the ideal factor Gt(x) given in Eq. (7) (dashed line), or alternatively the feasible (approximate) factor Gt(x) given

in Eq. (8) (solid line), at different consecutive iterations of the ASI algorithm.

Table 1. Adaptive Sequential Interpolation (ASI) algorithm.

1. Set t = 0, select initial points X0 = [x1, · · · ,xm0
],

and y0 = [y1, . . . , ym0
].

2. While the stopping condition is not satisfied:

(a) Given Xt = [x1, · · · ,xmt
] and yt =

[y1, . . . , ymt
], build function f̂t(x).

(b) Build the acquisition function At(x) from f̂t,

and obtain the new input

xmt+1 = arg max
x∈X

At(x). (5)

(c) Obtain outputs ymt+1 = f(xmt+1).

(d) Update Xt+1 = [Xt,xmt+1], yt+1 =
[yt, ymt+1].

(e) Set mt+1 = mt + 1 and t← t + 1.

3. Build the interpolating function f̂t(x).

4. Return final set of optimal nodes {xk, yk}
mt

k=1
as a

Look-up Table (LUT) and the approximation f̂t(x).

Since we are considering systems f(x) whose evaluation is

costly, we use an approximation by means of the built inter-

polator yielding

Gt(x) =

mt∏

k=1

|yk − f̂t(x)|, (8)

where we have replaced f(x) with the current approxima-

tion f̂t(x). Clearly, the reliability of the geometry factor de-

pends on the quality of the approximation f̂t. The confidence

over Gt(x) is represented by the tempering value βt ∈ [0, 1]
(which is a a non-decreasing function of t). Some possible

choices are βt = 1− 1

t
or βt = 1− e−bt (we recall t ∈ N

+),

and b ≥ 0 should be tuned according to the specific applica-

tion, the number of initial nodes, and the dimension D of the

problem. However, good performance can be obtained with

constant βt, for instance βt = 0 or βt = 1, as shown in the

numerical simulations.

The complete acquisition function of the ASI method is

At(x) = [Gt(x)]
βt Dt(x) where Dt and Gt are given in

Eqs. (6)-(8). It is important to remark that even the case

At(x) = Dt(x) (i.e., βt = 0 for all t) can provide better

results compared with a Sobol sequence and/or a Latin Hy-

percube (LHC) approach. See Section 4 for further details.

In the case that the geometry term is employed (i.e., βt 6= 0),

a practical suggestion, useful in some scenarios, is to scale

outputs and inputs in order to be in the same range of values.

This is not strictly needed, but when the ranges of values is

quite different, is advisable. Note that the use of a proper

factor βt is advisable also to mitigate this effect.

Acquisition function of a Multioutput ASI. In the case

that we have a complex system with P outputs, f(x) : X 7→
R

P×1, i.e.,

y = [y1, . . . , yP ]⊺ = f(x), (9)

where y is a column vector of dimension P . Then, at each it-

eration t ∈ N
+, we have an input matrix Xt = [x1, · · · ,xmt

]
of dimension D ×mt and P ×mt matrix of outputs,

Yt = [y1, . . . ,ymt
], (10)

where yk = [y1,k, . . . , yP,k]⊺ = f(xk) with k = 1, . . . ,mt.

In this scenario, the density term Dt(x) remains unaltered,

whereas the geometry term becomes

Gt(x) =

mt∏

k=1

||yk − f̂t(x)||1 =

mt∏

k=1




P∑

j=1

∣∣yj,k − f̂j,t(x)
∣∣



 ,

where f̂t(x) = [f̂1,t(x), ..., f̂D,t(x)]⊺ is obtained with a

multi-output interpolation procedure. The rest of the algo-

rithm remains unchanged.
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Fig. 2. The L2 distance as function of the number of nodes

mt, obtained by different schemes, using piecewise linear in-

terpolation in all cases.

4. SIMULATIONS

4.1. First numerical analysis

In this example, we compare the approximation f̂t(x) achieved

by using different methodologies. We consider the unidimen-

sional function

f(x) = log(x), x ∈ X = [0.1, 12], (11)

so that we can exactly check the true accuracy of the ob-

tained approximation using several schemes. We consider

X0 = [0.1, 12] i.e, m0 = 2 starting points. We sequen-

tially and automatically add 50 points using different tech-

niques: using (a) the ASI method, (b) Sobol sequences and

(c) a random choice, uniformly within [0.1, 12]. We averaged

the results over 200 independent runs. In all cases, we use

piecewise linear interpolators. We estimate the L2 distance

between f(x) and the approximation f̂t(x) (that is function

of t),

L2(t) =

∫

X

(f̂t(x)− f(x))2dx. (12)

Note that since m0, in this example, we have mt = t + 2,

hence L2(t) can be expressed as function of mt as L(mt) =
L2(t + 2). We consider the two extreme case of constant βt,

i.e., βt = 0 for all t and βt = 1 for all t. The first case

corresponds to At(x) = Dt(x) given in Eq. (6). We can

observe that the ASI schemes outperform the other strategies.

Furthermore, the incorporation of the geometric information

in ASI provides the best results.

4.2. Approximation of MODTRAN5

In this section, we focus on the optimization of selected points

for a MODTRAN5-based LUT. MODTRAN5 is considered

as de facto standard atmospheric RTM for atmospheric cor-

rection applications [1]. This RTM solves the radiative trans-

fer equation in the atmosphere considering the effect of scat-

tering and absorption by gasses and aerosols for a flexible

configuration of viewing and illumination conditions and sur-

face reflectance. In our test application, and for the sake of

simplicity, we have considered D = 2 with the Aerosol Op-

tical Thickness at 550 nm (τ ) and ground elevation (h) as

key input parameters. The underlying function f(x) consists

therefore on the taget-to-sensor transmittance obtained from

the execution of MODTRAN5 at given values of τ and h at

the single output wavelength of 760 nm (i.e. bottom of the

O2-A band). The input parameter space is bounded to 0.05-

0.4 for τ and 0-3 km for h. In order to test the accuracy of

the different schemes, we have evaluated f(x) at all the pos-

sible 1750 combinations of 35 values of τ and 50 values of

h. Namely, this thin grid represents the ground-truth in this

example.

We test (a) a random approach choosing points uniformly

within X = [0.05, 0.4]× [0, 3], (b) the Latin Hypercube sam-

pling (see, e.g., [6]), (c) AGAPE in [8] and (d) ASI with

βt = 0 (with the algorithm in [23] for obtaining the maximum

of the AF). We start with m0 = 5 points, randomly chosen in

each run, uniformly within the square [0.05, 0.4] × [0, 3], for

all the techniques. We compute the final number of nodes mt

required to obtain an L2 distance between f and f̂ smaller

than 0.03, defined in Eq. (12). The results, averaged over 200
runs, are given in Table 2. ASI requires the addition of ≈ 5
new points to obtain a distance smaller than 0.03.

Table 2. Averaged (over 200 runs) number of nodes mt.

Random Latin Hypercube [6] AGAPE [8] ASI

20.02 13.39 10.77 9.83

5. CONCLUSIONS

We introduced an adaptive sequential interpolation scheme

inspired in active learning procedure. The method can be

employed for approximating complex and expensive sys-

tems. For instance, it can efficiently construct emulators and

optimal look-up-tables for costly radiative transfer models

(RTMs). We illustrated the good capabilities of the method in

two examples, one involving a complex atmospheric model

widely used on Earth observation.
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