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ABSTRACT

Solving inverse problems is central in geosciences and remote
sensing. Very often a mechanistic physical model of the sys-
tem exists that solves the forward problem. Inverting the im-
plied radiative transfer model (RTM) equations numerically
implies, however, challenging and computationally demand-
ing problems. Statistical models tackle the inverse problem
and predict the biophysical parameter of interest from radi-
ance data, exploiting either in situ data or simulated data from
an RTM. We introduce a novel nonlinear and nonparametric
statistical inversion model which incorporates both real obser-
vations and RTM-simulated data. The proposed Joint Gaus-
sian Process (JGP) provides a solid framework for exploiting
the regularities between the two types of data, in order to per-
form inverse modeling. Advantages of the JGP method over
competing strategies are shown on both a simple toy example
and in leaf area index (LAI) retrieval from Landsat data com-
bined with simulated data generated by the PROSAIL model.

Index Terms— Forward, inverse, modeling, Vegetation
monitoring, Gaussian process regression, kernel methods

1. INTRODUCTION

Synoptikos, σύνoψιζ
“Affording a general view of a whole.”

Solving inverse problems is a recurrent topic of research in
Physics in general, and in geosciences and remote sensing in
particular. After all, Science is about making inferences about
physical parameters from sensory data. In general, mecha-
nistic models implement the laws of Physics and allow us to
compute the data values given a model [1]. This is known as
the forward problem. In the inverse problem, the aim is to
reconstruct the model from a set of measurements.

The inverse problem is at the core of remote sensing and
geosciences. A very relevant problem is that of estimating
vegetation properties from remote sensing data. Accurate
inverse models help determine the phenological stage and
health status (e.g., development, productivity, stress) of crops
and forests [2], which has important societal, environmental
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and economical implications. Leaf chlorophyll content (Chl),
leaf area index (LAI), and fractional vegetation cover (FVC)
are among the most important vegetation parameters [3, 4].

Methods for model inversion and parameter retrieval can
be roughly separated in three main families: statistical, phys-
ical and hybrid methods [5]. Statistical inversion predicts a
biogeophysical parameter of interest using a training dataset
of input-output data pairs coming from concurrent measure-
ments of the parameter of interest (e.g. leaf area index -LAI-)
and the corresponding observations (e.g. reflectances). Sta-
tistical methods typically outperform other approaches, but
ground truth measurements are necessary. Physical inversion
reverses RTMs by searching for similar spectra in look-up-
tables (LUTs) and assigning the most closest parameter. This
requires selecting an appropriate cost function, and gener-
ating a rich, representative LUT from the RTM. The use of
RTMs to generate data sets is a common practice, and es-
pecially convenient because acquisition campaigns are very
costly (in terms of time, money, and human resources) and
usually limited in terms of parameter combinations. Finally,
hybrid inversion exploits the input-output data generated by
RTM simulations and train statistical regression models to
invert the RTM model. Hybrid models combine the flexibil-
ity and scalability of machine learning while respecting the
physics encoded in the RTMs. Currently, kernel machines in
general [6], and Bayesian non-parametric approaches such as
Gaussian Process (GP) regression [7] in particular, are among
the preferred regression models [8, 9].

While hybrid inversion is practical when no in situ data
is available, it seems intuitive to let predictions be guided by
actual measurements whenever they are present. Likewise,
when only very few real in situ measurements are available, it
is sensible to incorporate simulated data from RTMs to prop-
erly ground the models. Therefore, in this paper we extend the
hybrid inversion, proposing a statistical method which per-
forms nonlinear and nonparametric inversion blending both
real and simulated data. The Joint Gaussian Process (JGP)
proposed in §2 exploits the regularities between them, and
provides a solid framework for incorporating physical knowl-
edge into a GP. We give empirical evidence of performance
in §4 on LAI retrievals from Landsat observations and PRO-
SAIL simulated data assimilation. We conclude in §5 with
some remarks and an outline of future work.



2. JOINT GAUSSIAN PROCESSES

2.1. Notation: Forward and Inverse Modeling

Notationally, a forward model describing the system is ex-
pressed as x = g(y,ω), where x is a measurement obtained
by the satellite (e.g. radiance); the vector y represents the
state of the biophysical variables of the Earth (which we de-
sire to infer or predict and is often referred to as outputs in
inverse modeling approach); ω contains a set of controllable
conditions (e.g. wavelengths, viewing direction, time, Sun
position, and polarization); and g(·) is a function which re-
lates y with x. Such a function g is typically considered to
be nonlinear, smooth and continuous. Our goal is to obtain
a inverse model f(·) = g−1(·) parametrized by θ, which ap-
proximates the biophysical variables y using given the data
received by the satellite x, i.e. ŷ = f(x,θ).

2.2. Gaussian Process (GP) Regression

GPs are state-of-the-art tools for regression and function ap-
proximation. Let us consider a set of n pairs of observations
or measurements {xi, yi}ni=1, perturbed by an additive inde-
pendent noise. More specifically, we assume the following
model,

yi = f(xi) + ei, ei ∼ N (0, σ2), (1)

where f(x) is an unknown latent function and x ∈ Rd.
In a GP approach, we assume f(x) ∼ GP(0, k(x,x′))
where k(x,x′) is a covariance (kernel) function, for in-
stance, k(xi,xj) = exp(−‖xi−xj‖2/(2λ2)) [7].1 Then, the
hyper-parameters to be tuned of the standard GP model are
θ = [λ, σ] where λ determines the width of the kernel func-
tion and σ is the standard deviation of the additive Gaussian
noise ei. The goal is to learn the latent function f(x) given
the received data points Dn = {xi, yi}ni=1. Considering a
test location x∗ and the noise-free output f∗ = f(x∗), the GP
predictive density is

p(f∗|x∗,Dn) ∼ N (µGP(x∗), σ
2
GP(x∗))

µGP(x∗) = kᵀ
∗(Knn + σ2In)−1y = kᵀ

∗α

σ2
GP(x∗) = k(x∗,x∗)− kᵀ

∗(Knn + σ2In)−1k∗,

where k∗ = [k(x∗,x1), . . . , k(x∗,xn)]ᵀ is a vector of di-
mension n × 1, Knn is a n × n kernel matrix with entries
Ki,j := k(xi,xj), and α = (Knn + σ2In)−1y is the solu-
tion weight vector.

2.3. Joint Gaussian Process (JGP) Regression

In this section, we assume that the dataset Dn is formed
by two disjoint sets: one set of r real data pairs, Dr =
{(xi, yi)}ri=1, and one set of s RTM-simulated pairs Ds =
{(yj ,xj)}sj=1, so that n = r+s andDn = Dr∪Ds. In matrix

1Essentially, a GP is a stochastic process whose marginals are distributed
as a multivariate Gaussian densities.

form, we have Xr ∈ Rr×d, yr ∈ R1×r, Xs ∈ Rs×d, ys ∈
R1×s, containing all the inputs and outputs of Dr and Ds,
respectively. Moreover, the n × 1 vector y = [yr,

√
γys]

>

contains all the n outputs, where the γ > 0 parameter ac-
counts for the importance of the two sources of information
relative to each other.
Let us now define a mapping function to a Hilbert space H
of dimension H , i.e. a transformation φ(x) : Rd → H
which defines a 1 × H vector. Abusing of the notation, the
mapped data matrices Φr = φ(Xr) of dimension r × H ,
Φs = φ(Xs) of dimension s×H , and Φn := [Φᵀ

r ,
√
γΦᵀ

s ]ᵀ

of dimension n × H . We assume that the latent function in
Eq. (1) has the form f(x) = Φnw, where the parameter
vector w is an H × 1 unknown and it must be inferred. Then
the likelihood function is p(y|Φn,w) ∼ N (Φnw, σ2In)
where In is an n×n identity matrix. We consider a Gaussian
prior of zero mean and theH×H covariance matrix Σw over
the parameter vector, w ∼ N (0,Σw). Thus, the posterior
density is p(w|Φn,y) ∝ p(y|Φn,w)p(w) ∼ N (w̄,A−1),
where w̄ = A−1Φᵀ

ny and A−1 = (σ−2Φᵀ
nΦn + Σ−1w )−1.

The predictive distribution of f∗ at x∗ is

p(f∗|x∗,Dn) ∼ N (σ−2φ(x∗)A
−1Φᵀ

ny,φ(x∗)A
−1φ(x∗)

ᵀ).

This primal expression however, is not convenient whenever
we ignore the dimensionality H of the space H or when it is
higher than the number of data points n [6]. Fortunately, after
some algebraic manipulation, and defining the reproducing
kernel function k(xi,xj) := φ(xi)Σwφ(xj)

ᵀ [6, 7], we can
obtain a dual expression of the predictive distribution of JGP
(similarly to the standard GP),

p(f∗|x∗,Dn) ∼ N (µJGP(x∗), σ
2
JGP(x∗))

µJGP(x∗) = kᵀ
∗K̃
−1
nny = kᵀ

∗β

σ2
JGP(x∗) = k(x∗,x∗)− kᵀ

∗K̃
−1
nnk∗,

where

K̃−1nn = (KnrKrn + γKnsKsn + σ2Knn)−1 [Knr γKns],

while the subscripts of the kernel matrices indicate their sizes
and the samples involved in their calculation, with Kij =
ΦiΣwΦᵀ

j , i, j ∈ {r, s, n}. Note that when γ = 0 the stan-
dard GP is obtained, otherwise γ acts as an extra regulariza-
tion term accounting for the relative importance of the real
and the simulated data points. The hyperparameters of the
JGP are θ = [λ, γ, σ], which can be selected by maximizing
the marginal likelihood of the observations as usual in the GP
framework, or by standard cross-validation procedures.

2.4. An illustrative example

Let us exemplify the core idea of JGP in a toy example. Imag-
ine that we are measuring the position of a mass on a per-
fect spring, subject to constant friction. Now, any physicist
knows very well the solution to the damped harmonic oscil-
lator problem and is thus able to simulate data from it which
may then be used in a JGP framework. In remote sensing ap-
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Fig. 1: Illustration of the predictive mean, µ∗, and variance, σ∗
of GP and JGP in a toy example. Training data is confined to the
region [−0.5,+0.5] while the actual range of the input variable and
the corresponding target variable is larger.

plications, real data come from in situ terrestrial campaigns,
while a wealth of simulated data are available through runs
of radiative transfer models. Figure 1 shows the above ex-
plained scenario, where a regular GP has been trained on the
real, noisy data, and a JGP is trained on both the real and
simulated data. Real data is typically available in a restricted
interval, so the predictive mean of the ordinary GP fails to
capture what happens outside this interval. The predictive
variance increases whenever no observations are available, re-
flecting the added uncertainty. On the other hand, the JGP
is more certain in its predictions, and follows the out-of-the-
sample data better.

Unfortunately, radiative transfer models are much more
complex than the one considered here, and not completely
reliable either. Even so, it seems probable that the physical
intuition encoded in the simulated training data would make
the model more robust to generalization, especially in the re-
gions where data is scarce. We see in §4 that this is indeed the
case.

3. DATA COLLECTION

Non-destructive real LAI data were acquired in the frame-
work of the local ERMES field activities within rice fields
in Spain, Italy and Greece (see Fig. 2). The field campaigns
were conducted during the 2014, 2015 and 2016 European
rice seasons. During each season, the temporal frequency
of the campaigns was approximately 10 day starting from
the very beginning of rice emergence (early-June) up to the
maximum rice green LAI development (mid-August). The
same sampling scheme was used over each field following the
guidelines and recommendations of the Validation of Land
European Remote sensing Instruments (VALERI) protocol.
LAI measurements were acquired using a dedicated smart-
phone app (PocketLAI) which uses both smartphone’s ac-
celerometer and camera to acquire images at 57.5◦ below the
canopy and computes LAI through an internal segmentation
algorithm [10,11]. The center of the ESU was geo-located for
later matching and associate the mean LAI estimate with the
corresponding satellite spectra. In this study we used Landsat

Fig. 2: Study areas and parcels where ground measurements were
acquired.

8 surface reflectance data over each area corresponding to the
dates of measurements’ acquisition.

On the other hand, the simulated data set (2000 pairs of
Landsat 8 spectra and LAI) was obtained running the PRO-
SAIL radiative transfer model in forward mode. PROSAIL
simulates leaf reflectance for the optical spectrum from 400 to
2500 nm with a 1 nm spectral resolution and as a function of
biochemistry and structure of the canopy, its leaves, the back-
ground soil reflectance and the sun-view geometry. The leaf
and canopy variables as well as the soil brightness parameter,
were randomly generated following a PROSAIL site-specific
parameterization [12] in order to constrain the behavior of the
model to Mediterranean rice areas (see Table 1).

Table 1: Distribution of the canopy, leaf and soil parameters within
the PROSAIL RTM.

Parameter Min Max Mode Std Type

Canopy

LAI (m2/m2) 0 10 3.5 4.5 Gaussian
ALA (◦) 30 80 60 20 Gaussian
Hotspot 0.1 0.5 0.2 0.2 Gaussian
vCover 0.5 1 1 0.2 Trunc. Gaussian

Leaf

N 1.2 2.2 1.5 0.3 Gaussian
Cab (µg·cm2) 20 90 45 30 Gaussian
Cdm (g·cm2) 0.003 0.011 0.005 0.005 Gaussian
CwREL 0.6 0.8 - - Uniform

Soil βs 0.3 1.2 0.9 0.25 Gaussian

4. EXPERIMENTAL RESULTS

We assessed the effect of blending the real in situ measure-
ments and the simulated data from PROSAIL for different
amounts of data. The JGP model is compared to a regular GP
for LAI-prediction using the real and simulated data detailed
above. The gain in accuracy was measured as the reduction in
root mean square error (RMSE gain [%] = 100×(RMSEGP-
RMSEJGP)/RMSEGP). We evaluated the 9 datasets generated
from the campaigns and simulations for different countries
(SP, GR, IT) and years (2014, 2015, 2016). For each dataset,
one half is used for training, while the other half is used for
fitting the hyperparameters. Due to the scarcity of real data
points for testing, the respective RMSEs were computed on
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Fig. 3: Obtained accuracy gains in RMSE of JGP over GP for the different sites, campaign dates and simulated-to-real data ratios.

the same validation data used for hyperparameter tuning for
both models.

Figure 3 shows the effect of the ratio between simulated
and real data points r = ns/nr on the RMSE gain. When
no simulated data is used, the JGP model reduces to the
canonical GP, but when introducing even a small amount of
PROSAIL-data , i.e. r > 0, a noticeable gain is achieved.
In the case of the data from the field campaigns in Spain
and Greece, the gain appears rather stable (between 5-10%),
indicating that little simulated data is needed for an increase
in accuracy. The results obtained from the models trained
on data from Italy, however, show no clear optimal level of
simulated data. Seeing as the computational complexity is
cubic in the number of data points, it seems the best strat-
egy to include modest amounts of simulated data. However,
as Fig. 3-Italy suggests a significant increase in accuracy
(+10%) might occur as a result of including large amounts
of simulated data to fill in the representation space in regions
with scarce in situ sampling.

5. CONCLUSIONS

This paper presented a novel method based on Gaussian Pro-
cess to perform inverse modeling. The model allows for the
combination of in situ data and simulated data from an RTM
to perform parameter retrieval. The formulation only incor-
porates one additional trade-off parameter. Important gains
in accuracy are obtained in general for the estimation of LAI
from Landsat and PROSAIL simulated data. The model ex-
ploits the space coverage of RTMs in regions where real data
scarcity hampers performance, while at the same time incor-
porates the wealth of information provided by real data. Fu-
ture work is tied to study the capabilities of the model for
transportability across space and time.
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