Assuming $c < rad^2 abc$, A New Proof of the *abc* Conjecture

ABDELMAJID BEN HADJ SALEM

Résidence Bousten 8, Mosquée Raoudha, Bloc B, 1181 Soukra Raoudha, Tunisia (abenhadjsalem@gmail.com)

(Received xx xxx xxxx)

Abstract In this paper, we consider the *abc* conjecture. Assuming that $c < rad^2(abc)$ is true, we give a new proof of the *abc* conjecture, by proceeding with the contradiction of the definition of the *abc* conjecture, for $\epsilon \geq 1$, then for $\epsilon \in]0, 1[$.

Keywords: Elementary number theory; real functions of one variable; transcendental numbers.

2010 Mathematics subject classification: 11AXX, 26AXX, 11JXX.

To the memory of my Father who taught me arithmetic, To my wife, my daughter and my son

1. Introduction and notations

Let a positive integer $a = \prod_i a_i^{\alpha_i}$, a_i prime integers and $\alpha_i \ge 1$ positive integers. We call *radical* of a the integer $\prod_i a_i$ noted by rad(a). Then a is written as :

$$a = \prod_{i} a_i^{\alpha_i} = rad(a) \cdot \prod_{i} a_i^{\alpha_i - 1}$$
(1.1)

We note:

$$\mu_a = \prod_i a_i^{\alpha_i - 1} \Longrightarrow a = \mu_a . rad(a) \tag{1.2}$$

The *abc* conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph Esterlé of Pierre et Marie Curie University (Paris 6) [Wal13]. It describes the distribution of the prime factors of two integers with those of its sum. The definition of the *abc* conjecture is given below:

Conjecture 1.1 (*abc* Conjecture): For each $\epsilon > 0$, there exists $K(\epsilon) > 0$ such that if a, b, c positive integers relatively prime with c = a + b, then :

$$c < K(\epsilon).rad^{1+\epsilon}(abc) \tag{1.3}$$

The author is very grateful to Professors Mihăilescu Preda and Gérald Tenenbaum for their comments about errors found in previous manuscripts concerning proofs proposed of the *abc* conjecture.

where K is a constant depending only of ϵ .

The idea to try to write a paper about this conjecture was born after the publication in September 2018, of an article in Quanta magazine about the remarks of professors Peter Scholze of the University of Bonn and Jakob Stix of Goethe University Frankfurt concerning the proof of Shinichi Mochizuki [Kre18]. The difficulty to find a proof of the *abc* conjecture is due to the incomprehensibility how the prime factors are organized in c giving a, b with c = a + b. So, I will give a simple proof that can be understood by undergraduate students.

We know that numerically, $\frac{Logc}{Log(rad(abc))} \leq 1.629912$ [Wal13]. A conjecture was proposed that $c < rad^2(abc)$ [Mih14]. It is the key to resolve the *abc* conjecture. In my paper, I assume that the conjecture $c < rad^2(abc)$ holds, I propose an elementary proof of the *abc* conjecture. The paper is organized as follows: in the second section, we give the proof of the *abc* conjecture.

2. The Proof of the abc conjecture

We note R = rad(abc) in the case c = a + b or R = rad(ac) in the case c = a + 1. We assume that $c < R^2$ is true. We recall the following proposition [Nit96]:

Proposition 2.1 Let $\epsilon \longrightarrow K(\epsilon)$ the application verifying the *abc* conjecture, then:

$$\lim_{\epsilon \to 0} K(\epsilon) = +\infty \tag{2.1}$$

2.1. Case : $\epsilon \ge 1$

Assuming that $c < R^2$ is true, we have $\forall \epsilon \ge 1$:

$$c < R^2 \le R^{1+\epsilon} < K(\epsilon).R^{1+\epsilon}, \quad with \ K(\epsilon) = e, \ \epsilon \ge 1$$

$$(2.2)$$

Then the abc conjecture is true.

2.2. Case: $\epsilon < 1$

2.2.1. Case: c < R. In this case, we can write :

$$c < R < R^{1+\epsilon} < K(\epsilon).R^{1+\epsilon}, \quad with \ K(\epsilon) = e > 1, \ \epsilon < 1$$

$$(2.3)$$

Then the *abc* conjecture is true.

2.2.2. Case: c > R. From the statement of the *abc* conjecture 1.1, we want to give a proof that $c < K(\epsilon)R^{1+\epsilon} \iff Logc < LogK(\epsilon) + (1+\epsilon)LogR \iff LogK(\epsilon) + (1+\epsilon)R^{1+\epsilon}$

 ϵ)LogR - Logc > 0. For our proof, we proceed by contradiction of the abc conjecture, so we assume that the conjecture is false:

 $\exists \epsilon_0 \in]0,1[,\forall K(\epsilon) > 0, \quad \exists c_0 = a_0 + b_0 \quad \text{so that} \quad c_0 > K(\epsilon_0) R_0^{1+\epsilon_0} \Longrightarrow c_0 \text{ not a prime}$ (2.4)

We choose the constant $K(\epsilon) = e^{\overline{\epsilon^2}}$. Let :

$$Y_{c_0}(\epsilon) = \frac{1}{\epsilon^2} + (1+\epsilon)LogR_0 - Logc_0, \epsilon \in]0,1[$$
(2.5)

From the above explications, if we will obtain $\forall \epsilon \in]0, 1[, Y_{c_0}(\epsilon) > 0 \implies Y_{c_0}(\epsilon_0) > 0$, then the contradiction with (2.4).

About the function Y_{c_0} , we have $\lim_{\epsilon \to 1} Y_{c_0}(\epsilon) = 1 + Log(R_0^2/c_0) > 0$ and $\lim_{\epsilon \to 0} Y_{c_0}(\epsilon) = +\infty$. The function $Y_{c_0}(\epsilon)$ has a derivative for $\forall \epsilon \in]0,1[$, we obtain:

$$Y_{c_0}'(\epsilon) = -\frac{2}{\epsilon^3} + LogR_0 = \frac{\epsilon^3 LogR_0 - 2}{\epsilon^3}$$
(2.6)

$$Y_{c_0}'(\epsilon) = 0 \Longrightarrow \epsilon = \epsilon' = \sqrt[3]{\frac{2}{LogR_0}} \in]0,1[.$$

Discussion:

- If $Y_{c_0}(\epsilon') \geq 0$, it follows that $\forall \epsilon \in]0, 1[, Y_{c_0}(\epsilon) \geq 0$, then the contradiction with $Y_{c_0}(\epsilon_0) < 0 \Longrightarrow c_0 > K(\epsilon_0) R_0^{1+\epsilon_0}$. Hence the *abc* conjecture is true for $\epsilon \in]0, 1[$.

- If $Y_{c_0}(\epsilon') < 0 \Longrightarrow \exists 0 < \epsilon_1 < \epsilon' < \epsilon_2 < 1$, so that $Y_{c_0}(\epsilon_1) = Y_{c_0}(\epsilon_2) = 0$. Then we obtain $c_0 = K(\epsilon_1)R_0^{1+\epsilon_1} = K(\epsilon_2)R_0^{1+\epsilon_2}$. We recall the following definition:

Definition 2.1. The number ξ is called algebraic number if there is at least one polynomial:

$$l(x) = l_0 + l_1 x + \dots + a_m x^m, \quad a_m \neq 0$$
(2.7)

with integral coefficients such that $l(\xi) = 0$, and it is called transcendental if no such polynomial exists.

We consider the equality :

$$c_0 = K(\epsilon_1) R_0^{1+\epsilon_1} \Longrightarrow \frac{c_0}{R} = \frac{\mu_c}{rad(ab)} = e^{\frac{1}{\epsilon_1^2}} R_0^{\epsilon_1}$$
(2.8)

i) - We suppose that $\epsilon_1 = \beta_1$ is an algebraic number then $\beta_0 = 1/\epsilon_1^2$ and $R_0 = \alpha_1$ are also algebraic numbers. We obtain:

$$\frac{\mu_c}{rad(ab)} = e^{\frac{1}{\epsilon_1^2}} R_0^{\epsilon_1} = e^{\beta_0} . \alpha_1^{\beta_1}$$
(2.9)

From the theorem (see theorem 3, page 196 in [Bak71]):

Theorem 2.2. $e^{\beta_0} \alpha_1^{\beta_1} \dots \alpha_n^{\beta_n}$ is transcendental for any nonzero algebraic numbers $\alpha_1, \dots, \alpha_n, \beta_0, \dots, \beta_n$.

we deduce that the right member $e^{\beta_0} . \alpha_1^{\beta_1}$ of (2.9) is transcendental, but the term $\frac{\mu_c}{rad(ab)}$ is an algebraic number, then the contradiction and the *abc* conjecture is true.

ii) - We suppose that ϵ_1 is transcendental, in this case there is also a contradiction, and the *abc* conjecture is true.

Then the proof of the *abc* conjecture is finished. We obtain that $\forall \epsilon > 0, \exists K(\epsilon) > 0$, if c = a + b with a, b, c positive integers relatively coprime, then :

$$c < K(\epsilon).rad^{1+\epsilon}(abc) \tag{2.10}$$

and the constant $K(\epsilon)$ depends only of ϵ .

Q.E.D

Ouf, end of the mystery!

3. Conclusion

Assuming $c < R^2$ is true, we have given an elementary proof of the *abc* conjecture. We can announce the important theorem:

Theorem 3.1. For each $\epsilon > 0$, there exists $K(\epsilon) > 0$ such that if a, b, c positive integers relatively prime with c = a + b, and assuming $c < rad^2(abc)$ holds, then :

$$c < K(\epsilon).rad^{1+\epsilon}(abc) \tag{3.1}$$

where K is a constant depending of ϵ .

References

[Bak71] A. BAKER. Effective Methods in Diophantine Problems. Proceedings of Symposia in Pure Mathematics, Volume XX, 1969 Number Theory Institute. AMS. 451 pages. (1971), pp 195–205.

- [Kre18] K. KREMMERZ, for Quanta Magazine. Titans of Mathematics Clash Over Epic Proof of ABC Conjecture. The Quanta Newsletter, 20 September 2018. www.quantamagazine.org. (2018)
- [Mih14] P. MIHĂILESCU. Around ABC. European Mathematical Society Newsletter N° 93, September 2014, (2014), 29–34.
- [Nit96] A. NITAJ. Aspects expérimentaux de la conjecture *abc*. Séminaire de Théorie des Nombres de Paris (1993-1994), London Math. Soc. Lecture Note Ser., Vol n°235. Cambridge Univ. Press, (1996), 145–156.
- [Wal13] M. WALDSCHMIDT. On the abc Conjecture and some of its consequences presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, (2013).