Existence of a Prime Number Between the Double of Other Primes Conjecture.

Juan Millas
Zaragoza (Spain)

November 2020

0- Abstract:

In this paper I show how is possible to do a new application to the Bertrand's postulate doing a conjecture with 3 prime numbers and the double of 2 of them.

1- Introduction:

First we are going to define some useful tools: the set of the naturals, the subset of the composite numbers and the subset of the prime numbers,

$$
\text { (1) } \quad A=m \cdot n \quad \forall(m, n) \in(\mathbb{N}-[1])
$$

(2) $\quad P=(\mathbb{N}-A)-1$

Bertrand's postulate says that is always a prime between a natural number and the double of that number,

$$
\text { (3) } n<p<2 n \quad \forall n \in \mathbb{N} ; p \in P
$$

Following the logic, if the prime numbers are a subset of the naturals,

$$
\text { (4) } P \subset \mathbb{N}
$$

We can affirm that the next inequality is true.

$$
\text { (5) } p_{1}<p_{2}<2 p_{1} \quad \forall\left(p_{1}, p_{2}\right) \in P
$$

2- Conjecture:

There always exits a prime p_{n+1} between p_{n} and $2 p_{n}$ and there always exists a prime p_{m} between $2 p_{n}$ and $2 \mathrm{p}_{\mathrm{n}+1}$.
(6) $p_{n}<p_{(n+1)}<2 p_{n}<p_{m}<2 p_{(n+1)} \quad \forall\left(p_{n}, p_{m}\right) \in P$

References: https://en.wikipedia.org/wiki/Bertrand\'s_postulate

