Existence of a Prime Number Between the Double of Other Primes Conjecture.

Juan Millas

Zaragoza (Spain)

November 2020

0-Abstract:

In this paper I show how is possible to do a new application to the Bertrand's postulate doing a conjecture with 3 prime numbers and the double of 2 of them.

1- Introduction:

First we are going to define some useful tools: the set of the naturals, the subset of the composite numbers and the subset of the prime numbers,

(1)
$$A = m \cdot n \quad \forall (m, n) \in (\mathbb{N} - [1])$$

(2)
$$P = (\mathbb{N} - A) - 1$$

Bertrand's postulate says that is always a prime between a natural number and the double of that number,

(3)
$$n $\forall n \in \mathbb{N}; p \in P$$$

Following the logic, if the prime numbers are a subset of the naturals,

(4)
$$P \subset \mathbb{N}$$

We can affirm that the next inequality is true.

(5)
$$p_1 < p_2 < 2 p_1 \quad \forall (p_1, p_2) \in P$$

2- Conjecture:

There always exits a prime p_{n+1} between p_n and $2p_n$ and there always exists a prime p_m between $2p_n$ and $2p_{n+1}$.

(6)
$$p_n < p_{(n+1)} < 2 p_n < p_m < 2 p_{(n+1)} \quad \forall (p_n, p_m) \in P$$

References: https://en.wikipedia.org/wiki/Bertrand%27s_postulate