\square

Fermat's Last Theorem as a consequence of the little one

Victor Sorokine

Abstract

In one of Fermat's equivalent equalities, the 3rd digit in the sum of powers $a^{\wedge} n+b^{\wedge} n-c^{\wedge} n$ is not zero and there is a single-valued function of only the last digits $a^{\prime}, b^{\prime}, c^{\prime}$; therefore it cannot be zeroed out with the 2nd and 3rd digits in the sum of bases a+b-c.
Apart from the simplest foundations of the theory of a prime number and the consequences of the little theorem, this is, strictly speaking, the proof of the FLT in the first case.
See the proof of the second case here: https://vixra.org/pdf/1908.0072v1.pdf.
In memory of wife, mother and grandmother

Fermat's Theorem:

Equality (for prime degree $n>2$; все числа даны в базе n)
$\left.1^{*}\right) a^{n}+b^{n}-c^{n}=0$ in positive integers a, b, c does not exist.

The notation and lemmas /Pour les preuves des lemmes, voir l'annexe in https://vixra.org/pdf/1908.0072v1.pdf и https://vixra.org/pdf/1707.0410v1.pdf)
a', a", a'" - 1st, 2nd, 3rd digit from the end in the number a;
$\mathrm{a}_{[2]}, \mathrm{a}_{[3]}, \mathrm{a}_{[4]}-$ two-, three-, four-digit ending of the number a ;
nn - n*n.
$S(g), S\left(g^{n}\right), S\left(g^{n n}\right)$, sum of $g, g^{n}, g^{n n}, g=1,2, \ldots n-1, G=(1,2, \ldots n-1)$, where L1a. $S\left(g^{1}\right)_{[2]}=0 v$ with the second digit $v=(n-1) / 2$ (see sum of arithmetic progression); $S\left(g^{n}\right)_{[3]}=00 \mathrm{v}$; $\mathrm{S}\left(\mathrm{g}^{\mathrm{nn}}\right)_{[4]}=000 \mathrm{v}$; etc. (When calculating the sums, the terms are pre-summed in pairs equally spaced from the ends of the series.)

If digit a' is not 0 , then
L1. $\left(a^{n-1}\right)^{\prime}=1$ (Fermat's little theorem); $\left(a^{n-1}\right)^{n}{ }_{[2]}=01 ;\left(a^{n-1}\right)^{n n}{ }_{[3]}=001$.
L1c. $\left(a^{\prime n}-a^{\prime}\right)_{[11]}=0 ;\left(a^{\prime n n}-a^{\prime n}\right)_{[2]}=0 ;\left(a^{\prime n n}-a^{\prime n n}\right)_{[3]}=0$.
L2a (key!). There is such a digit d that the second digit (d^{n})" in the number d^{n} is not zero. (Indeed, if second digits in all d^{n} are equal to zero, then the second digit of the sum of the number series d^{n}, where $d=1,2, \ldots n-1$, is not zero and is equal to ($\mathrm{n}-1$)/2, which is incorrect. See L1a.)
L2b. Similarly: there is a digit d such that digit ($\left.\mathrm{d}^{\mathrm{nn}}\right)^{\prime \prime}$ is not zero.

L2c. There is a digit d such that the digit [$\left.d^{n n}\left(a^{n n}+b^{n n}-c^{n n}\right)\right]{ }^{\prime \prime}$, where $(a+b-c)^{\prime}=0 n$ $(\mathrm{abc})^{\prime}=/=0$, is not zero. (The proof is the same as in the case of L2a.)

L3. For $k>1$, the k-th digit in the number a^{n} does not depend on the k-th digit of the base a. (Corollary from Newton's binomial in prime base.)
L3a. Consequence. If a^{\prime} is not equal to 0 , then digits $a^{n}{ }_{[2]}$ and $a^{n n}{ }_{[3]}$ are functions of only a' and do not depend on the digits of higher ranks.
$2 a^{*}$) In Fermat's equality 1^{*} two-digit endings of numbers a, b, c, not multiples of n, there are two-digit endings of degrees $a^{\prime n}, b^{\prime n}, c^{\prime n}$.
$2 b^{*}$) Therefore, the number a (like b and c) can be represented as $a=a^{\prime n}+A n^{2}$, where $\mathrm{A}=\left(\mathrm{a}-\mathrm{a}_{[2]}\right) / \mathrm{n}^{2}$, and the number a^{n} (and b^{n} and c^{n}) can be represented as
$\left.3^{*}\right) a^{n}=\left(a^{\prime n}+a^{\circ} n^{2}\right)^{n}=a^{\prime n n}+A n^{3}$ (similarly for b^{n} and $\left.c^{n}\right)$, with the value $\left(a^{\prime n n}+b^{\prime n n}-c^{\prime n n}\right)_{[3]}=0$ in the original equality 1^{*}.

And now the equality 1^{*} can be written by four-digit endings in the form:
$\left.4^{*}\right)\left(a^{\prime n n}+b^{\prime n n}-c^{\prime n n}\right)_{[4]}+(a+b-c)^{\prime} n^{3}+F n^{4}=0$.

Proof of the last theorem in the first case $-(a b c)^{\prime}=/=0$

According to L2c, in at least one of the $\mathrm{n}-1$ equivalent equalities obtained from equality 1^{*} by multiplying it by the numbers $\mathrm{g}^{\mathrm{nnn}}$, where $\mathrm{g}=1,2, \ldots \mathrm{n}-1$, the third digit in the number $\left(a^{n}+b^{n}-c^{n}\right)$ Is NOT equal to zero, since two-digit endings of the base a, b, c are two-digit endings of degrees $a^{\prime n}, b^{\prime n}, c^{\prime n}$ (see $2 a^{*}$), and three-digit endings of degrees a^{n}, b^{n}, c^{n} are three-digit endings of degrees $a^{\prime n n}, b^{\prime n n}, c^{\prime n n}$, which are single-valued functions of only the last digits $\mathrm{a}^{\prime}, \mathrm{b}$ ', c^{\prime} and, therefore, by changing the values of the second and third digits of the bases a, b, c, the value of the third digit cannot be changed!

Thus, in one of the equivalent equalities $1 a^{*}$, the third digit of the number $a^{n}+b^{n}-c^{n}$ is not equal to zero, which proves the truth of the first case of FLT.
16.10.2020. Mézos, France. (victor.sorokine2@gmail.com)

