MODULAR LOGARITHM UNEQUAL

WU SHENG-PING

Abstract

The main idea of this article is simply calculating integer functions in module. The algebraic in the integer modules is studied in completely new style. By a careful construction, a result is proven that two finite numbers is with unequal logarithms in a corresponding module, and is applied to solving a kind of high degree diophantine equation.

In this paper, p is prime, C means a constant. All numbers that are indicated by Latin letters are integers unless with further indication.

1. Function in module

Theorem 1.1. Define the congruence class in the form:

$$
\begin{aligned}
& {[a / b]_{q} }:=[a / b+k q]_{q}, \forall k \in \mathbf{Z} \\
& {[a=b]_{q}:[a]_{q}=[b]_{q} } \\
& {[a]_{q}[b]_{q^{\prime}}:=[x]_{q q^{\prime}} }:[x=a]_{q},[x=b]_{q^{\prime}},\left(q, q^{\prime}\right)=1
\end{aligned}
$$

then

$$
\begin{gathered}
{[a+b]_{q}=[a]_{q}+[b]_{q}} \\
{[a b]_{q}=[a]_{q} \cdot[b]_{q}} \\
{[a+c]_{q}[b+d]_{q^{\prime}}=[a]_{q}[b]_{q^{\prime}}+[c]_{q}[d]_{q^{\prime}},\left(q, q^{\prime}\right)=1} \\
{[k a]_{q}[k b]_{q^{\prime}}=k[a]_{q}[b]_{q^{\prime}},\left(q, q^{\prime}\right)=1}
\end{gathered}
$$

Theorem 1.2. The integer coefficient power-analytic functions modulo p are all the functions from $\bmod p$ to $\bmod p$

$$
\begin{gathered}
{\left[x^{0}=1\right]_{p}} \\
{\left[f(x)=\sum_{n=0}^{p-1} f(n)\left(1-(x-n)^{p-1}\right)\right]_{p}}
\end{gathered}
$$

Theorem 1.3. (Modular Logarithm) Define

$$
\begin{gathered}
{\left[m_{a}(x):=y\right]_{p^{m-1}(p-1)}:\left[a^{y}=x\right]_{p^{m}}} \\
{\left[E:=\sum_{i=0}^{m^{\prime}} p^{i} / i!\right]_{p^{m}}} \\
1 \ll m \ll m^{\prime}
\end{gathered}
$$

then

$$
\left[E^{x}=\sum_{i=0}^{m^{\prime}} x^{i} p^{i} / i!\right]_{p^{m}}
$$

Date: Jan 27, 2020.
Key words and phrases. Diophantine Equation; Discrete Logarithm.

$$
\begin{aligned}
& {\left[\operatorname{lm}_{E}(1-x p)=-\sum_{i=1}^{m^{\prime}}(x p)^{i} /(i p)\right]_{p^{m-1}}} \\
& {\left[Q(q) l m(1-x q)=-\sum_{i=1}^{m^{\prime}}(x q)^{i} / i\right]_{q^{m}}} \\
& Q(q):=\prod_{p \mid q}[p]_{p^{m}}
\end{aligned}
$$

Define

$$
\left[\operatorname{lm}(x):=\operatorname{lm}_{e}(x)\right]_{p^{m-1}}
$$

e is the generating element in $\bmod p$ and meets

$$
\left[e^{1-p^{m^{\prime}}}=E\right]_{p^{m}}
$$

It's proven by comparing to the Taylor expansions of real exponent and logarithm.

Definition 1.4.

$$
[\operatorname{lm}(p x):=p \operatorname{lm}(x)]_{p^{m}}
$$

Definition 1.5.

$$
P(q):=\prod_{p \mid q} p
$$

Definition 1.6.

$$
{ }_{q}[x]:=y:[x=y]_{q}, 0 \leq y<q
$$

2. Unequal Logarithms of Two Numbers

Theorem 2.1. If

$$
\begin{gathered}
P(q) b+a<q \\
a>b>0 \\
(a, b)=(a, q)=(b, q)=1
\end{gathered}
$$

then

$$
[\operatorname{lm}(a) \neq \operatorname{lm}(b)]_{q}
$$

Proof. Define

$$
\begin{gathered}
r:=P(q) \\
\beta:=(a / b)^{v-1}, v:=\prod_{p: p \mid q}[p]_{p^{m}(p-1)}, 1 \ll m
\end{gathered}
$$

Set

$$
\begin{gathered}
0<x, x^{\prime}<q \\
0<y, y^{\prime}<q r+r \\
d:=\left(x-x^{\prime}, q^{m}\right)
\end{gathered}
$$

Consider

$$
\begin{gathered}
{\left[\left(x, y, x^{\prime}, y^{\prime}\right)=(b, a, b, a)\right]_{r}} \\
{\left[\beta^{2} a^{2} x^{2}-b^{2} y^{2}=\beta^{2} a^{2} x^{\prime 2}-b^{2} y^{\prime 2}=:(2, q) q N\right]_{q^{2}},(N, q)=1}
\end{gathered}
$$

Checking the freedom and determination of $(x, y),\left(x^{\prime}, y^{\prime}\right)$, and using the Drawer Principle, we find that there exist distinct $(x, y),\left(x^{\prime}, y^{\prime}\right)$ satisfying the previous conditions.

Presume

$$
\begin{gathered}
\left(q r^{n}, p^{m}\right) \| a^{v-1}-b^{v-1}, n \geq 0 \\
\left(d, p^{m}\right) \mid q / r
\end{gathered}
$$

Make

$$
\left(s, t, s^{\prime}, t^{\prime}\right):=\left(x, y, x^{\prime}, y^{\prime}\right)+q Z(b, \beta a, 0,0)
$$

to set

$$
\left[\beta^{2} a^{2} s^{2}-b^{2} t^{2}=\beta^{2} a^{2} s^{\prime 2}-b^{2} t^{\prime 2}\right]_{p^{m}}
$$

Make

$$
\left(X, Y, X^{\prime}, Y^{\prime}\right):=\left(s, t, s^{\prime}, t^{\prime}\right)+q Z^{\prime}\left(s^{\prime},-t^{\prime}, s,-t\right)
$$

to set

$$
\left[a X-b Y=a X^{\prime}-b Y^{\prime}\right]_{p^{m}}
$$

hence

$$
\left[\beta^{2} a\left(X+X^{\prime}\right)=b\left(Y+Y^{\prime}\right)\right]_{p^{m}}
$$

The variables of fraction z, z^{\prime} meet the equation

$$
\left[(a X+z)^{2}-\left(b Y-\beta z^{\prime}\right)^{2}=\left(a X^{\prime}+z^{\prime}\right)^{2}-\left(b Y^{\prime}-\beta z\right)^{2}\right]_{p^{m}}
$$

It's equivalent to

$$
\begin{gathered}
{\left[2\left(a X-\beta b Y^{\prime}\right) z-2\left(a X^{\prime}-\beta b Y\right) z^{\prime}+\left(1+\beta^{2}\right)\left(z^{2}-z^{\prime 2}\right)+\left(a^{2} X^{2}-a^{2} X^{\prime 2}\right)\left(1-\beta^{2}\right)=0\right]_{p^{m}}} \\
{\left[(1+\beta)\left(a X-a X^{\prime}\right)\left(z+z^{\prime}\right)+\left(1-\beta^{3}\right)\left(a X+a X^{\prime}\right)\left(z-z^{\prime}\right)+\left(1+\beta^{2}\right)\left(z^{2}-z^{\prime 2}\right)\right.} \\
\left.=-\left(a^{2} X^{2}-a^{2} X^{\prime 2}\right)\left(1-\beta^{2}\right)\right]_{p^{m}} \\
{\left[\left(z-z^{\prime}+\frac{1+\beta}{1+\beta^{2}} a\left(X-X^{\prime}\right)\right)\left(z+z^{\prime}+\frac{1-\beta^{3}}{1+\beta^{2}}\left(a X+a X^{\prime}\right)\right)=\frac{\beta\left(1-\beta^{2}\right)}{\left(1+\beta^{2}\right)^{2}}\left(a^{2} X^{2}-a^{2} X^{\prime 2}\right)\right]_{p^{m}}}
\end{gathered}
$$

In another way
$\left.\left[\left(a X-b Y+z+\beta z^{\prime}\right)\left(a X+b Y+z-\beta z^{\prime}\right)=\left(a X^{\prime}-b Y^{\prime}+\beta z+z^{\prime}\right)\left(a X^{\prime}+b Y^{\prime}-\beta z+z^{\prime}\right)\right)\right]_{p^{m}}$
Make by choosing a valid $z-z^{\prime}$

$$
\left[a X+b Y+z-\beta z^{\prime}=a X^{\prime}+b Y^{\prime}-\beta z+z^{\prime}\right]_{p^{m}}
$$

then

$$
\left[a X-b Y+z+\beta z^{\prime}=a X^{\prime}-b Y^{\prime}+\beta z+z^{\prime}\right]_{p^{m}}
$$

It's invalid, hence

$$
\begin{equation*}
\left[x=x^{\prime}\right]_{\left(q, p^{m}\right)} \vee \neg\left(q r^{n}, p^{m}\right) \| a^{v-1}-b^{v-1} \tag{2.1}
\end{equation*}
$$

The case for $p=2$ is similar.
If

$$
\left[a^{v-1}-b^{v-1}=0\right]_{p^{l}}
$$

then

$$
\begin{gathered}
{\left[a^{p-1}-b^{p-1}=0\right]_{p^{l}}} \\
l<C
\end{gathered}
$$

Furthermore

$$
\begin{equation*}
q \mid a^{v-1}-b^{v-1} \wedge\left[x=x^{\prime}\right]_{q}=0 \tag{2.2}
\end{equation*}
$$

because if not

$$
\begin{gathered}
{\left[a^{v} x-b^{v} y=a^{v} x^{\prime}-b^{v} y^{\prime}\right]_{q^{2}}} \\
{\left[a x-b y=a x^{\prime}-b y^{\prime}\right]_{q^{2}}} \\
\left|a x-b y-\left(a x^{\prime}-b y^{\prime}\right)\right|<q^{2}
\end{gathered}
$$

$$
a x-b y=a x^{\prime}-b y^{\prime}
$$

therefore

$$
x-x^{\prime}=0=y-y^{\prime}
$$

It contradicts to the previous condition.
So that with the condition 2.1

$$
\neg\left(q r^{n}, p^{m}\right)\left\|a^{v-1}-b^{v-1}=\left[x=x^{\prime}\right]_{\left(q, p^{m}\right)} \wedge \neg\left(q r^{n}, p^{m}\right)\right\| a^{v-1}-b^{v-1} \vee\left[x \neq x^{\prime}\right]_{\left(q, p^{m}\right)}
$$

Wedge with $\left(q r^{n}, p^{m}\right) \mid a^{v-1}-b^{v-1}$

$$
\left(q r^{n+1}, p^{m}\right)\left|a^{v-1}-b^{v-1}=\left(q r^{n+1}, p^{m}\right)\right| a^{v-1}-b^{v-1} \wedge\left[x=x^{\prime}\right]_{q}
$$

With the condition 2.2

$$
q r \mid a^{v-1}-b^{v-1}=0
$$

Therefore we find the proof.
Theorem 2.2. For prime p and positive integer q the equation $a^{p}+b^{p}=c^{q}$ has no integer solution (a, b, c) such that $(a, b)=(b, c)=(a, c)=1, a, b>0$ if $p, q>8$.
Proof. Reduction to absurdity. Make logarithm on a, b in $\bmod c^{q}$. The conditions are sufficient for a controversy.

