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Abstract 

In this paper we present a remarkable Lienard equation with strong and high 

order nonlinear terms. The equation is explicitly integrable in terms of periodic 

tangent function. The related quadratic Lienard type equations may also exhibit 

the tangent function profile. The presented equation includes for example, the 

cubic and quintic Duffing equations with cubic singularity as special cases. 
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Introduction 

The identification of differential equations susceptible to represent nonlinear 

conservative oscillators is the object of an intensive study in the literature. One 

of these, widely investigated in the literature is the cubic Duffing equation 

   03 =++ xxx βα&&                                                                                                   (1) 

where α  and β  are arbitrary constants and overdot denotes a differentiation 

with respect to time. This equation has been considered for a long time as a 

conservative oscillator having only periodic solutions. These solutions are the 

Jacobi elliptic functions [1-3]. The only way to such periodic solutions to exhibit 

trigonometric functions behavior is when the elliptic modulus is equal to zero. 

To exhibit non-periodic behavior, the hyperbolic behavior for example, as well 

known, the elliptic modulus should be equal to one. However, recently, Adjaï et 

al. [4] have shown that the Duffing equation (1) may exhibit tangent function 

behavior, but also a tanh behavior, that is to say, non-periodic solutions, 

following the sign of α  and β  parameters, without the necessity to have the 
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elliptic modulus to be zero or one. More recently we have shown in [5] that the 

cubic Duffing equation (1) may exhibit, of course, its general solution in the 

complex domain, when βα = . In such a situation the cubic Duffing equation (1) 

is not a conservative oscillator having only periodic solutions. The literature 

shows also another family of conservative systems called truly or purely 

nonlinear oscillators. We have recently investigated some of these nonlinear 

differential equations. In this case we have examined the purely nonlinear 

differential equation 
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where 0>m , and 0>c , presented  in [6] as a purely nonlinear isotonic oscillator. 

No exact or explicit general solution is presented by the authors [6]. In fact only 

the general solution may provide a complete knowledge of the analytical 

properties of a differential equation or oscillator. However, the authors in [6] 

claimed to calculate the positive time period of the equation (2). In [7], we have 

shown, to be brief, that for 1=m , the equation (2) which turns into the Ermakov-

Pinney equation, may exhibit complex-valued general solution while the 

displacement x  is a real quantity. For the same selected model or design 

parameters, the equation (2) for 1=m , may exhibit real periodic or complex-

valued solutions with no integrability criteria to cancel the complex-valued 

solution. Contrarily to the equation (2), the study performed in [7] shows clearly 

that all the general solutions of the Ermakov-Pinney equation of the form 
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where 0>µ , are periodic. In [5, 8] we have shown that the general solution of 

the Mickens truly nonlinear oscillator equation 
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where γ  and λ  are positive parameters, is periodic. Also the general solution of 

the Mickens truly nonlinear oscillator equation of the form [5] 
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where 0c  is a positive parameter, is calculated and found to be periodic. The 

equations (4) for 
3

γ
λ = , and (5), belong to the exceptional equation 
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presented in [5]. For 2> −s , the general solution of (6) is periodic so that this 

equation may represent a nonlinear conservative oscillator. The corresponding 

potential may read 
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a singularity at 0=x , for 0>s , and has not been investigated in the literature. It 

differs from the well-known spiked harmonic oscillator potential studied first by 

Harrell [9] as one may see easily. For 0=s , one may recover the equation of the 

harmonic oscillator. From the equation (6), we have secured under the point 

transformation, the exceptional nonlinear oscillator equation 
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where n  is a positive parameter. The general solution of (7) is periodic and 

exhibit harmonic oscillations. As it is well known, a limited number of Lienard 

nonlinear differential equations have general solution expressed in terms of 

trigonometric functions. It is also very rare to find in the literature Lienard 

nonlinear differential equations having general solution expressed as a power 

law of trigonometric functions. In this respect, we consider in this paper the 

Lienard equation 
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 where 
1c , 

2c , 3c , and q  are arbitrary parameters. For 0=q , the equation (8) 

reduces to the well-known cubic Duffing equation 
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For 1=q , the equation (8) becomes 
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The equation (10) is the quintic Duffing equation with a cubic singularity. It 

may also be defined as the Ermakov-Pinney equation with quintic nonlinearity. 
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As can be seen, the equation (8) may include several nonlinear differential 

equations as special cases. Due to the presence of strong and high order 

nonlinear terms, no one can assure that the equation (8) is explicitly integrable. 

No one can also ensure that its general solution may be expressed in terms of 

elementary function such as the trigonometric functions. Such equations are 

very less investigated in the literature from the explicit integration point of view, 

since it is very complicated to find the parameters scope that may ensure this 

integrability [10, 11]. Even if such parameters are found, the solution is usually 

a complicated formula of special functions [10]. It is rare to find in the literature 

the explicit general solution of such equations expressed in terms of elementary 

functions [5]. Therefore, it is natural to ask whether the equation (8) may be 

explicitly solved in terms of elementary functions to ensure a periodic general 

solution. The existence of such a general solution may allow one to express the 

exact and explicit general solution for several nonlinear differential equations of 

Lienard type like the equations (9) and (10) in terms of elementary functions, 

and may be of physical and engineering importance. The objective in this work 

is to integrate explicitly the equation (8) to secure the periodic general solution 

in terms of trigonometric functions and to study the implications. To do this, we 

establish and solve explicitly the equation (8) (section 2) and discuss its 

implications (section 3). Finally a conclusion is formulated for the work. 

2- General theory 

This section is devoted to the statement of the type of equation (8) and the 

calculation of its explicit general solution. 

2.1 Statement 

To formulate the type of  equation (8), let us consider the differential equation of 

Lienard type stated in [5,7, 8] 
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where a , b , 0≠l , q  and α , are arbitrary parameters. The application of 1=l , 

leads to  

 ( ) ( ) ( ) 02 12212122 =+−−−+ −−−−−− qqq xqbxabqxaqx αα αα&&                                            (12) 

Substituting ( )21+−= qab , and ( )12 += qα , into (12) yields 
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 ( ) ( ) ( ) 02112 322124222 =+−+++− +−− qq xqaxqqaxqax&&                                             (13) 

The equation (13) is the desired Lienard equation to integrate explicitly. This 

equation is identical to (8) for ( )22

1 12 +−= qac ,  ( )42

2 1+= qac , and ( )22

3 +−= qac .  

2.2 Periodic solution of (13) 

Using the corresponding first order differential equation [5,7, 8] 

( )222 1+−=+ + qaxaxx qq
&                                                                                        (14) 

one may obtain  
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where K  is an integration constant. From (15) one may immediately secure the 

exact and periodic general solution of (13) in the form 

 ( ) ( ) ( )[ ]{ } 1

1
2

1tan1)( +++−+= qKtqaqtx                                                                      (16) 

where 1−≠q . The solution (16) is periodic, but not bounded. However, it may 

be usefull for bounded solution applications on the closed interval [-1, 1], 

interval on which the tangent function is bounded. So we may discuss of 

implications of this solution (16). 

3- Discussion 

Illustrative special cases are considered in this section and discussed in 

connection with the periodic general solution. We discuss also of the related 

quadratic Lienard type equations to (13). 

3.1 Illustrative special cases 

The cubic Duffing equation (9) obtained for 0=q , takes the form 

  022 322 =−− xaxax&&                                                                                            (17) 

where its general solution is  



6 

 

   [ ])(tan)( Ktatx +−=                                                                                          (18) 

For 0<2 22 ω−=a , that is 
2

2ωi
a ±= , the solution (18) becomes complex 

solution 
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The result (19) confirms the fact that the cubic Duffing equation (1) may exhibit 

complex-valued solutions when βα = . In other words, for the same selected 

model parameters such that βα = , the cubic Duffing equation may exhibit 

periodic and complex-valued solutions. The Ermakov-Pinney equation with 

quintic nonlinearity (10) obtained for 1=q , becomes 
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with the general solution 
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The cubic Duffing equation 

  02 322 =+− xaxax&&                                                                                              (22) 

is obtained for 2−=q , so that its general solution may read 

  ( )[ ][ ] 1
tan)(

−+= Ktatx                                                                                          (23) 

For 0<2a , the solution becomes complex. Now we may investigate the 

quadratic Lienard type equations related to the equation (13). 

3.2 Quadratic Lienard type equations 

By application of the point transformation 

 pxu =                                                                                                                 (24) 

where p  is an arbitrary parameter, the equation (13) transforms into the 

quadratic Lienard type equation 
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having the general solution 
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The solution (26) becomes very interesting since it may exhibit tangent behavior 

when 1
1
=

+q
p

, that is to say, 1+= qp  , so that the equation (25) takes the form 
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with the general solution 

    ( )( )Ktpaptu +−= 2tan)(                                                                                   (28) 

So with that a conclusion of the work may be performed. 

Conclusion 

A remarkable Lienard differential equation with strong and high order nonlinear 

terms is presented. The equation has an explicit general solution as a power law 

of trigonometric functions. The equation contains also some well-known 

nonlinear differential equations as special cases. The related quadratic Lienard 

type equations may exhibit periodic tangent function solutions behavior. 
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