
ON THE PROXIMITY OF MULTIPLICATIVE FUNCTIONS TO

THE FUNCTION Ω(n)
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Abstract. In this paper we examine how closely a multiplicative function
resembles an additive function. We show that in fact, given any small ǫ > 0,

E(Ω, g;x) ≫
x

(log log x)
1

2
+ǫ

for some choice of multiplicative function, where Ω(n) =
∑

p||n

1. This is there-

fore an extension of an earlier result of De Koninck, Doyon and Letendre [1].

1. Introduction

Let f : N −→ C. Then f is said to be additive if f(mn) := f(m) + f(n),
whenever (m,n) = 1. It is said to be strongly additive if f(pα) := f(p) for all
integers α > 0 and for all primes p. Also let g : N −→ C. Then g is said to be
multiplicative if g(mn) = g(m)g(n) whenever (m,n) = 1. It is said to be strongly
multiplicative if g(pα) := g(p) for all integers α > 0 and for all primes p. Let us set
E(f, g;x) := #{n ≤ x : f(n) = g(n)}, where f and g are arbitrary multiplicative
and additive functions, respectively. One of the basic and natural questions one
can ever ask is how small and how large can this quantity be. This quantity has
been studied extensively by De koninck, Doyon and Letendre (See [1]). In 2014
they showed that, given any ǫ > 0, there exist a strongly multiplicative function g
and some sequence (xn) of positive integers such that

E(ω, g, xn)≫
xn

(log log xn)
1

2
+ǫ

.

Above all, they showed that no additive function can agree with a multiplicative
function on a set of positive density. That is, they showed that for f an integer-
valued additive function such that

ϕ(x) = ϕf (x) =
B(x)

A(x)
−→ 0

as x −→∞, where

A(x) :=
∑

pα≤x

f(pα)

(

1−
1

p

)

and B(x) :=
∑

pα≤x

|f(pα)|2

pα
,

and that

max
z∈R

#{n ≤ x : f(n) = z} = O

(

x

K(x)

)

,
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2 THEOPHILUS AGAMA

where K(x) −→∞ as x −→∞. Then, for any multiplicative function g

E(f, g;x) = o(x)

as x −→ ∞. In this paper we obtain the following uniform version of the result of
De Koninck, Doyon and Letendre (see [1]) at the price of working on a thin subset
of primes:

Theorem 1.1. For any small ǫ > 0, there exists a strongly multiplicative function

g such that

E(Ω, g, x)≫
x

(log log x)
1

2
+ǫ

.

.

2. Notations

Through out this paper a prime number will either be denoted by p or the sub-
scripts of s. Any other letter will be clarified. The functions ω(n) :=

∑

p|n
1 and

Ω(n) :=
∑

p||n
1 counts the number distinct and prime factors of n with multiplicity.

The function f : N −→ C and g : N −→ C will also denote additive and multi-
plicative function, respectively. The inequality |k(n)| ≤Mp(n) for sufficiently large
values of n will be compactly written as k(n)≪ p(n) or k(n) = O(p(n)). Similarly
the inequality |k(n)| ≥ Mp(n) for sufficiently large values of n will be represented

by k(n)≫ p(n). The limit lim
n−→∞

k(n)
p(n) = 0 will be represented in a compact form as

k(n) = o(p(n)) as n −→ ∞. The quantities ǫ and δ are positive numbers that can
be taken arbitrarily small. Also in this paper we will be interested in the regime
where x is a sufficiently large integer. That is to say, x ≥ N0 for some N0 > 0.

3. Preliminary results

Lemma 3.1. Let πk(x) := #{n ≤ x : ω(n) = k} for each positive integer k. Then

the maximum value of πk(x) is (1 + o(1)) x√
log log x

and the value of k for which it

occurs is k = log log x+O(1) .

Proof. This follows from a result of Balazard [2]. �

Lemma 3.2. For any δ > 0,

#{n ≤ x : |ω(n)− log log n| > (log log x)1+δ} = o(x)

as x −→∞.

Proof. This follows from Theorem 8.12 in the book of Nathanson [3]. �

Theorem 3.3. Let ǫ > 0. Then there exist a strongly multiplicative function g and

a sequence (xn) of positive integers such that

E(ω, g, xn)≫
xn

(log log xn)
1

2
+ǫ

.

Proof. This follows from a result of De koninck, Doyon and Letendre [1]. �

Remark 3.4. The above result also holds with ω(n) replaced by Ω(n). But it
depends greatly on some choice of sequence of positive integers. Now, by modifying
the techniques devised by De koninck, Doyon and Letendre [1] we obtain a result
that holds uniformly on the set of positive integers.
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ON THE PROXIMITY OF MULTIPLICATIVE FUNCTIONS TO THE FUNCTION Ω(n) 3

4. Main result

Theorem 4.1. For any small ǫ > 0, there exists a strongly multiplicative function

g such that

E(Ω, g, x)≫
x

(log log x)
1

2
+ǫ

.

Remark 4.2. The above result is telling us that, we can find a multiplicative function
g such that the points of coincidence with the additive function Ω is somewhat
uniformly large. Nevertheless, this improvement comes with the compromise of
working on a thin subset of primes. The proof below follows closely the techniques
of De Koninck, Doyon and Letendre, with some slight modification.

Proof. Let S = {s1, s2, . . .} be an infinite set of primes such that

∞
∑

j=1

1

sj
<∞.

We leverage the regime where x is a sufficiently large integer, that is for all x ≥ N0

for some N0 > 0. Let (zj) be sequence of positive integers maximizing the quantity

#

{

r ≤
x

sj
: si ∤ r for each si ∈ S, Ω(r) = zj − 2

}

,

for sj ≡ 1 (mod 4) for each j ≥ 1, and

#

{

r ≤
x

sj
: si ∤ r for each si ∈ S, Ω(r) = zj

}

,

for sj ≡ 3 (mod 4) for each j ≥ 1, which is well defined in light of Lemma 3.1.
Define g, a strongly multiplicative function, on the primes as

g(p) =











zj − 1 if p = sj ≡ 1 (mod 4), sj ∈ S

zj + 1 if p = sj ≡ 3 (mod 4), sj ∈ S

1 if p /∈ S.

To obtain a lower bound for E(Ω, g, x), it suffices to consider only integers of the
form n = r · sαj for α ≥ 1, si ∤ r for all i ≥ 1. Clearly

E(Ω, g, x) = # {n ≤ x : Ω(n) = g(n)}

≥
∑

α≥1

#{n ≤ x : sαj |n, si ∤ n for i 6= j, Ω(n) = g(n)}

≥
∑

α≥1

#

{

r ≤
x

sαj
: Ω(r) = g(sj)− α, si ∤ r for each si ∈ S, sj ≡ 1 (mod 4)

}

≥ #

{

r ≤
x

sj
: Ω(r) = g(sj)− 1, si ∤ r for each si ∈ S, sj ≡ 1 (mod 4)

}

≥ #

{

r ≤
x

sj
: Ω(r) = zj − 2, si ∤ r for each si ∈ S

}

.

We only need to consider the interval

I = [log log x− (log log x)
1

2
+ǫ, log log x+ (log log x)

1

2
+ǫ],

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65
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since by Lemma 3.2, most values of ω(n) and Ω(n) fall within such interval, for any
ǫ > 0. Let us consider the quantity

#

{

r ≤
x

sj
: si ∤ r for each si ∈ S, sj ≡ 1 (mod 4)

}

.

We observe, in relation to Lemma 3.2

#

{

r ≤
x

sj
: si ∤ r for each si ∈ S, sj ≡ 1 (mod 4), Ω(r) /∈ I

}

= o

(

x

sj

)

as j −→∞. On the other hand by letting

U =

{

r ≤
x

sj
: si ∤ r for each si ∈ S, sj ≡ 1 (mod 4), Ω(r) ∈ I

}

,

then it follows that

#U =
∑

l∈I
#

{

r ≤
x

sj
: si ∤ r for each si ∈ S, Ω(r) = l, sj ≡ 1 (mod 4)

}

≤ 2(log log x)
1

2
+ǫ#

{

r ≤
x

sj
: si ∤ r for each si ∈ S, Ω(r) = zj − 2

}

.

(4.1)

With the size of the quantity

#

{

r ≤
x

sj
: si ∤ r for each si ∈ S, sj ≡ 1 (mod 4), Ω(r) ∈ I

}

being relatively small, It follows from (4.1), by letting

N :=

{

r ≤
x

sj
: si ∤ r for each si ∈ S, Ω(r) = zj − 2

}

that by inversion

#N ≥
1

2(log log x)
1

2
+ǫ

#

{

r ≤
x

sj
: si ∤ r for each si ∈ S, sj ≡ 1 (mod 4)

}

≥
1

2(log log x)
1

2
+ǫ

∑

sj≡1 (mod 4)

#

{

r ≤
x

sj
: si ∤ r for each si ∈ S

}

≥
1

2(log log x)
1

2
+ǫ

∑

sj≡1 (mod 4)

x

sj
(1 + o(1))C(S)

≥
1

2(log log x)
1

2
+ǫ

x(1 + o(1))C(S)
∑

sj≡1 (mod 4)

1

sj

≥
1

2(log log x)
1

2
+ǫ

x(1 + o(1))C(S)K,

for some positive real number K, where

C(S) =
∞
∏

j=1

(

1−
1

sj

)

and
∑

sj≡1 (mod 4)

1

sj
<

∞
∑

j=1

1

sj
<∞.
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ON THE PROXIMITY OF MULTIPLICATIVE FUNCTIONS TO THE FUNCTION Ω(n) 5

Carrying out the same process for the other residue class sj ≡ 3 (mod 4) and
combining the result, we will obtain

E(Ω, g, x)≫
x

(log log x)
1

2
+ǫ

.

�

5. Conclusion

The lower bound obtained in the original work of De koninck, Doyon and Le-
tendre [1] can be made uniform by using a similar choice of multiplicative function
in the main result; that is, if we let

g(p) =











zj − 1 if p = sj ≡ 1 (mod 4), sj ∈ S

zj + 1 if p = sj ≡ 3 (mod 4), sj ∈ S

1 if p /∈ S.

Then

E(ω, g, x)≫
x

(log log x)
1

2
+ǫ

holds uniformly. In a sequel to their first paper (see [4]), De Koninck, Doyon
and Letendre studied the distribution of multiplicative and additive functions on
a global scale. In fact they conjectured that the distribution of multiplicative
functions cannot be as narrow as additive functions, in the sense that if for any
given multiplicative function satisfying

σ

λ
< ǫ

where σ and λ denotes the standard deviation and the mean value, respectively, of
the multiplicative function in question, then that could not be said about additive
functions. There abounds as much open problems concerning the study of distribu-
tions of additive and multiplicative functions. For instance, It is a notorious open
problem to determine if given an additive function with a specified limiting distri-
bution, one can or cannot construct a multiplicative function with the same limiting
distribution. What is known in this regard pertains to multiplicative functions with
finite support [4].
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