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Abstract

That every Euclidean subset homeomorphic to the ambient Euclidean space is

open, a version of invariance of domain, is a relatively deep result whose typical

proof is far from elementary. When it comes to the real line, the version of invari-

ance of domain admits a simple proof that depends precisely on some elementary

results of “common sense”. It seems a pity that an elementary proof of the ver-

sion of invariance of domain for the real line is not well-documented in the related

literature even as an exercise, and it certainly deserves a space. Apart from the

main purpose, as we develop the ideas we also make present some pedagogically

enlightening remarks, which may or may not be well-documented.
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1 Introduction

There is the deep result: If n ∈ N, and if A ⊂ Rn is homeomorphic to Rn, then A is

open with respect to the usual topology of Rn. We refer the reader to, for instance,

Munkres [2]. In what follows, let us refer to the assertion as invariance of domain.

For what it is worth, a homeomorphism between two topological spaces, by definition,

is precisely a continuous bijection whose inverse is also continuous. The reader is already

more than familiar with some homeomorphism between R and {x ∈ R | x > 0}, e.g.

the (real) exponential function. A topological space is said to be homeomorphic to

a topological space if and only if there is some homeomorphism between the spaces.

Thus, by considering the exponential function on R, the real line R is homeomorphic to

{x ∈ R | x > 0}.1
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1If the reader is not yet familiar with the concept of homeomorphicness, it would be in your interest

to check that the topologies of two homeomorphic spaces can actually be identified with each other; so

the topological structures of the homeomorphic spaces are “the same”. This observation would help

justify the terminology. If the reader is familiar with the concept of isomorphicness, then you can

now see that “topological isomorphism” would in principle be another reasonable choice to address a

homeomorphism.
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Invariance of domain, whose statement is so simple, takes however a serious proof

depending on techniques of algebraic topology. This phenomenon — a simple math-

ematical statement deciding whose truth is far from simple — comes as no surprise in

mathematics; we invite the reader to read, e.g. the statement of Poincaré conjecture, or

of Goldbach conjecture, or of the (famous or infamous) Fermat’s last theorem.

To have a feeling of the importance of invariance of domain, the reader may try

to reason out as a typical exercise that Rn is not homeomorphic to Rm for all natural

numbers n < m by considering, for example, the cylinder Rn × {(0)m−n
j=1 } ⊂ Rm; this

fact contributes to defining the dimension of a manifold.

For n = 1, it is possible to obtain an elementary proof within the scope of elementary

point-set topology. Although the present article is not intended as a technical research

paper, for clarity we find it advisable to present the ideas in terms of a theorem-proof

style. The elementary proof of invariance of domain for R, together with the “common

sense”2 that every open interval of R is homeomorphic to R, which will also be justified

here, jointly lead to the intuitively “apparent” and elegant result that a subset of R
homeomorphic to R is precisely an open interval of R. We will also establish this result

as a proposition here in the present article.

2 Proof

For our purposes, by an interval (of R) we mean either a set of the form ]a, b[ := {x ∈
R | a < x < b} with −∞ ≤ a < b ≤ +∞, or of the form [a, b] := {x ∈ R | a ≤ x ≤ b}
with −∞ < a < b < +∞, or of the form [a, b[ := {x ∈ R | a ≤ x < b} with −∞ <

a < b ≤ +∞, or of the form ]a, b] := {x ∈ R | a < x ≤ b} with −∞ ≤ a < b < +∞.

In other words, an interval, in our setting, is never degenerate (becoming a singleton

or the empty set) and, except for a closed interval, can be unbounded. The standard

terminology associated with intervals carries over into the present context. For example,

an open interval is precisely an interval of the form ]a, b[ ; and R, accordingly, is also

considered as an open interval.

We should like to prove

Theorem 1 (Invariance of Domain for R). If A ⊂ R is homeomorphic to R, then A is

an open subset of R.

Proof. Since every interval is a connected set (subspace) of the topological space R
(by, e.g. the proof of Theorem 1.2 in Chapter 5 of Dugundji [1])3, in particular R is

connected; the assumption then implies that A, being some continuous image of R, is

a connected set of R. Although the empty set and a singleton are (trivially) connected

sets of R, the set A cannot be a singleton nor empty as A is by assumption in bijection

with R. Since a nonempty, non-singleton connected set of R is precisely an interval

(again by, e.g. the proof of Theorem 1.2 in Chapter 5 of Dugundji [1]), it follows that

2If the reader does not yet find it a common sense, let there be no worries; you will take it into your

common-sense account after reading this article.
3Indeed, regardless of the “age” of the reference, there is nothing more mysterious about Dugundji’s

proof; the main proof idea is already well-known. We select it as the reference for its refinedness and

clarity from a pedagogical consideration.
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A is an interval. For what it is worth, to prove that every nonempty, non-singleton

connected set of R is an interval is much less elaborate than the converse; the definition

of an interval implies that every nonempty, nonsingleton subset A of R that is not an

interval admits some x, y ∈ A and some z ∈ Ac such that x < z < y, and we consider

the sets A ∩ ]−∞, z[ and A ∩ ]z,+∞[.

Now, as a closed interval is a compact subset of R, and as R is by assumption a

continuous image of A, the set A cannot be a closed interval. Moreover, the set A

cannot be a half-open interval, i.e. an interval of the form ]a, b] or of the form [a, b[.

To see this, take a left-closed-right-open interval [a, b[. If [a, b[ is homeomorphic to R
via some function f , then, by recalling that a preimage map preserves intersections,

the open interval ]a, b[ = [a, b[\{a} is homeomorphic to R \ {f(a)}; but R \ {f(a)} =

]−∞, f(a)[ ∪ ]f(a),+∞[ is not connected. The argument also applies to every right-

closed-left-open interval, i.e. to every interval of the form ]a, b].

We have shown that A “cannot but be” an open interval. Since every open interval

is an open subset of R, the proof is complete.

The proof of Theorem 1 contains additional information that is helpful in establishing

the following

Proposition 1. Let A ⊂ R. Then A is homeomorphic to R if and only if A is an open

interval.

Proof. The “only if” part follows directly from the proof of Theorem 1; that A is an

open interval was a conclusion.

For the bounded open intervals, the “if” part is probably more than well-known and

well-documented. For a quick check, let a < b be real numbers and consider for intance

the function x 7→ (ex + 1)−1(b + aex) from R to ]a, b[.

For unbounded open intervals, the case that the open interval is the real line is

immediate; one considers the identity automorphism x 7→ x of R.

The unbounded open intervals of the form ]c,+∞[ or of the form ]−∞, c[ with c ∈ R
constitute the remaining case. We show that such open intervals are homeomorphic

to R. If a, b, c ∈ R, and if a < b, then the function x 7→ a + b−a
ex−c from ]c,+∞[ to

]a, b[ serves as a homeomorphism, and the function x 7→ a + b−a
ec−x from ]−∞, c[ to ]a, b[

is also a homeomorphism. Since every bounded open interval is homeomorphic to R,

it follows that every open interval of the form ]c,+∞[ is homeomorphic to R (via the

composition of some homeomorphism between ]a, b[ and R circ some homeomorphism

between ]c,+∞[ and ]a, b[), and likewise for every open interval of the form ]−∞, c[. We

thus have completed the proof.

References

[1] Dugundji, J. (1966). Topology. Allyn & Bacon.

[2] Munkres, J. R. (1984). Elements of Algebraic Topology. Addison-Wesley.

3


	Introduction
	Proof

