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We study the algebraic structure of the eigenvalues of a Hamiltonian that corresponds to a

many-body fermionic system. As the Hamiltonian is quadratic in fermion creation and/or

annihilation operators, the system is exactly integrable and the complete single fermion exci-

tation energy spectrum is constructed using the non-interacting fermions that are eigenstates

of the quadratic matrix related to the system Hamiltonian. Connection to the Riemann Hy-

pothesis is discussed.



Riemann Hypothesis has long been conjectured to be related to the eigenvalues of a Hamil-

tonian1 since Hilbert in early twentieth century. In this paper, we show that the eigenvalues of an

anti-symmetric real matrix that arises from the off-diagonal paring matrix elements of a many-body

fermionic Hamiltonian seems to provide the necessary link between the Berry-Keating1,2 Conjec-

ture and the final proof of Riemann Hypothesis. This work points to the importance of Riemann

Hypothesis to the understanding of intricate quantum entanglement of a many body system.

1 Off-diagonal ordering in many-body fermionic system

We study the following 1-dimensional spin-half many-body fermionic Hamiltonian

Ĥ =
∑
i,σ

σ

2
{p̂†iσp̂iσ − ĥ

†
iσĥiσ} −

{ ∑
i>i′,σ

t(i− i′)p̂†iσĥ
†
i′−σ + h.c.

}

=

[
ξ̂
†
↑ ξ̂†↓

]T↑ 0

0 T↓


ξ̂↑
ξ̂↓

 i ∈ {1, 2, ..., N}, σ ∈ {↑, ↓}, N ≥ 2

(1)

and we further assume t(i+N) = t(i), i.e., the system is a closed loop.

ξ̂†σ =

[
p̂†1σ p̂†2σ ... p̂†Nσ ĥ1−σ ĥ2−σ... ĥN−σ

]
(2)

Tσ = σ

 1
2
IN σ∆

σ∆† −1
2
IN

 (3)

and

∆ =
1

2



0 t(1) t(2) ... t(N − 1)

−t(1) 0 t(1) ... t(N − 2)

...

−t(N − 1) −t(N − 2) −t(N − 3) ... 0


(4)
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is an anti-symmetric matrix, due to the anti-commutative relation of the fermionic operators.

The total charge operator for this system is defined as

N̂c =
∑
iσ

(p̂†iσp̂iσ − ĥ
†
iσĥiσ) (5)

and the total spin operator

Σ̂3 =
∑
iσ

σ(p̂†iσp̂iσ + ĥ†iσĥiσ) = σN̂cσ (6)

where

N̂cσ =
∑
i

(p̂†iσp̂iσ + ĥ†i−σĥi−σ) (7)

And one can show that the total charge operator commutes with the Hamiltonian (1)

[Ĥ, N̂c] = 0, [Ĥ, Σ̂3] = 0 (8)

We will focus on the case where the total charge as well as the total spin of the system is zero, i.e.,

zero chemical potential and zero external magnetic field.

Since the two spin channels are completely decoupled and degenerate, we will only need to

discuss the energy spectrum of T↑ below.

For a Hamiltonian of quadratic form, it can be exactly diagonalized in the subspace of zero

charge as

Ĥ =
∑

(nσ)∈{(nσ)|εn≤0}

εn{|V ach〉〈V ach|+ |V acp〉〈V acp|}+
∑

nσω∈{h,p}

|εn|γ̂†nσωγ̂nσω (9)
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where

γ̂nσp =
∑
i

uσn,ip̂iσ +
∑
j

vσn,jĥ
†
j−σ

γ̂nσh =
∑
i

uσn,iĥi−σ +
∑
j

vσn,j p̂
†
jσ

(10)

and the coefficients and εn are eigenvectors and eigenvalues of the following Hermitian matrix T

defined in Eq.(3)

T

un
vn

 = εn

un
vn

 (11)

Note that we have explicitly retained the two time reversal symmetry related degenerate vacuum

states |V acp〉 and |V ach〉, representing the two degenerate ground states of filled Fermi sea of p-

fermions or h-fermions, and γ̂p, γ̂†p and γ̂h, γ̂
†
h represent the Majorana fermions corresponding to

their respective vacuum states.

Note that the two time reversal symmetry related sets of solutions can be considered decou-

pled to each other at the thermodynamic limit, since the only common eigenstate for each set is the

absolute empty vacuum where all the filled Fermi sea fermions in the 2 vacuum states are all ex-

cited. Thus in the thermodynamic limit, we can consider the two sets of solutions two time-reversal

symmetry related universe.

Expand explicitly the Eq.(11), we have

(1/2− εn)INun + ∆vn = 0

∆†un + (−1/2− εn)INvn = 0

(12)

which leads to

{(εn − 1/2)(εn + 1/2)IN −∆†∆}v = 0 (13)
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That is εn are roots of the following polynomial

P(z) = det

[
(z2 − (1/2)2)IN −∆†∆

]
(14)

The eigenvalues εn are thus

εn =
√

(1/2)2 + t2n (15)

where t2n are singular values of ∆†∆

2 Algebraic structure of an anti-symmetric matrix

To make the connection to Riemann Hypothesis, we first develop the mathematical theory for the

algebraic structure of eigenvalues of anti-symmetric matrices.

Lemma 1. For any given anti-symmetric matrix ∆, it can be unitarily diagonalized. And when ∆

is anti-symmetric real, all its eigenvalues are imaginary.

Proof. Since ∆ = ∆r + i∆i is anti-symmetric, ∆r,∆i are real anti-symmetric,

∆∆† = ∆†∆ = −∆2
r + ∆2

i (16)

Thus both ∆ and ∆† are normal matrices, i.e., they can be unitarily diagonalized

∆ = UDU †, ∆† = UD∗U † (17)

where D is a diagonal matrix.

When ∆ is anti-symmetric real matrix, i∆ is a Hermitian matrix, thus it can be diagonalized

with all eigenvalues being real, i.e., iD is a real diagonal matrix. This completes the proof.
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Next we show that following Lemma concerning the rank of an anti-symmetric matrix

Lemma 2. If M is an anti-symmetric matrix of size N , denote its rank as rM , then rM is an even

number and all non-zero eigenvalues of N come in pairs of ±zi.

Proof. This is because every eigenvalue of M is also an eigenvalue of MT and MT = −M , so if

λ is an eigenvalue of M , then−λ is also an eigenvalue. Thus, all non-zero eigenvalues of M come

in pairs. This completes the proof.

We note that both Lemmas have been established in the literature3.

Lemma 3. For any anti-symmetric matrix M , there exists an anti-symmetric real matrix M̃ , such

that MM † and M̃M̃ † have the same eigenvalues and they are related by a unitary transformation

U or an anti-unitary transformation A = KU , i.e.,

M = UM̃U † = UKM̃KU † (18)

where K is the complex conjugate operator.

Proof. M = UDU † by Lemma 1, and due to Lemma 2, D can be arranged as the following blocks
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of pairs

D =



λ1 0

0 −λ1

 0 ... 0 0

0

λ2 0

0 −λ2

 ... 0 0

...

0 0 ...

λrM/2 0

0 −λrM/2

 0

0 0 0 ... 0



(19)

Define the following phase factors ϕi

λi = iεie
iϕi (20)

where εi = |λi|. Thus we have

D = Φ({ϕi})EΦ†({ϕi}) (21)

where

Φ({ϕi}) =



ei
ϕ1
2 I2 0 ... 0 0

0 ei
ϕ2
2 I2 ... 0 0...

0 0 ... ei
ϕrM/2

2 I2 0

0 0 0 ... 0


(22)
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is a unitary matrix and E is

E =



iε1 0

0 −iε1

 0 ... 0 0

0

iε2 0

0 −iε2

 ... 0 0

...

0 0 ...

iεrM/2 0

0 −iεrM/2

 0

0 0 0 ... 0



(23)

And we have iεi 0

0 −iεi

 = vi

 0 εi

−εi 0

 v†i

where viv
†
i = 1, as

vi =

 1√
2

−i√
2

1√
2

i√
2

 v†i =

 1√
2

1√
2

i√
2

−i√
2


Thus we have

D = Φ({ϕi})V · E · V †Φ†({ϕi}) (24)

where E is an anti-symmetric real matrix and Φ({ϕi})V is a unitary matrix since product of two

unitary matrix is still a unitary matrix. Thus

MM † = UDD†U † = UΦ({ϕi})V EE†V †Φ†({ϕi})U † =
(
UEU †

)
(UE†U †

)
where U

U = UΦ({ϕi})V (25)
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is unitary as products of unitary matrices are unitary. And for the case of anti-unitary transforma-

tion, we observe that both E and E† are real, we have

KEK = E KE†K = E†

Thus, any non-degenerate anti-symmetric real matrix defines an equivalence relationship per

Lemma 3, ifMM † have the same set of pairs of eigenvalues. All members of the equivalence class

are related by a unitary or an anti-unitary transformation.

Definition 1. The real anti-symmetry matrix of an equivalent class of anti-symmetric matrices is

called the characteristic of the class. We use C(M) to denote the characteristic of an anti-symmetric

matrix.

Intuitively, since the anti-symmetric matrices arise from the off-diagonal paring block of

a many-body fermionic system, the topological effect of the anti-symmetric matrix is intricately

related to the quantum entanglement of a many-body fermionic system and any periodicity in the

off-diagonal matrix elements in real space will imply some harmonic resonances in the eigenvalues

of the original Hermitian Hamiltonian, but in a way through the imaginary eigenvalues of the

characteristics of the off-diagonal anti-symmetric matrix.
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3 Connection to Riemann Hypothesis

Next we solve for the eigenvalues of the following anti-symmetric real matrix for a given p, where

p is a prime number that corresponds to the period of the gauge field.

We will solve the eigenvalue problem with each k ∈ [0, 2/p]. Let the anti-symmetric matrix

∆N(p, k) be given explicitly as

∆N(p, k) =
1

2



0 t1(p, k) t2(p, k) ... t(N−1)(p, k)

−t1(p, k) 0 t1(p, k) ... t(N−2)(p, k)

...

−t(N−1)(p, k) −t(N−2)(p, k) −t(N−3)(p, k) ... 0


(26)

and tl(p, k), k ∈ [0, 2/p] is

tl(p, k) = p · l
∫ 1/2

−1/2
dq · q · sin(2π(q+ k) · l) =

(−1)l

π
· cos(2πl · k), l ∈ {1, 2, ..., N − 1} (27)

And the matrix element for ∆N(p, k) is anti-symmetric real:

∆l,l′(p, k) = −∆l′,l(p, k) (28)

Once the eigenvalues λn(p, k) = iεn(p, k) are solved for all k ∈ [0, 2/p], then the following

spectral function can be calculated

GN(p, z) =
p

2N

∑
n

∫ 2/p

0

dk
1

z − λn(p, k)
=

∫ ∞
−∞

dε · ρN(p, ε)
1

z − iε
(29)
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where the normalized density of state ρN(p, ε) is given by

ρN(p, ε) =
2

Np

∑
n

∫ p/2

0

dkδ(ε− εn(p, k)) (30)

and it has the following sum rule ∫ ∞
−∞

dε · ρN(p, ε) = 1 (31)

Note that GN(p, z) contains the periodicity of p of the underlying gauge field, thus poles of

this function are harmonic resonances, that is when N → ∞, we have the density of states ρ(ε)

defined in Eq.(30) diverges at those resonance frequencies.

The poles of GN(p, z) are all expected to be imaginary since all λn(p, k) are imaginary. Thus

poles of the following function

GN(z) =
∏
p<N

GN(p, z) (32)

where p are prime numbers, are all imaginary.

Define the following function

G(z) = lim
N→∞

GN(z) (33)

We conjecture that poles of G(z) are the imaginary part of the non-trivial zeros of the Rie-

mann zeta function, to within a scaling factor.

Note that in the N → ∞ limit, the non-Hermitian anti-symmetric matrix ∆N(p, k) defined

above approaches the operator x̂p̂, with additional topological phase factor picked up by the mo-
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mentum operator. The choice of the particular form of the hopping matrix element is inspired by

Berry-Keating1 conjecture, especially the work of Bender, Brody, and Müller2.
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