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1. Introduction

In their article ”Analytical features of the SIR model and their applications to
COVID-19”, Kudryashov et al. [3] try to establish the analytical solution of the
SIR (Susceptible-Infected-Removed) epidemiological model of Kermack and McK-
endrick [2]. While the article itself is well-written, one of the equations given there
is wrong (eq. 14), which invalidates further the putative solution (eq. 15). Notably,
the wrong equation reads1
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where Y := İ
I and W denotes the Lambert W function. The above equation is

claimed to be the solution of the first integral of the system given below:
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Unfortunately, this is not true. The objective of the present letter is to indicate
this error and present the correct solution.

2. Resolution of the first integral 1

Before presenting the correct solution to eq. 1 and the correct analytical solution,
few remarks about the Lambert W function are in order.

1The present letter uses slightly different labelling of the model – instead of β used in [3] – γ
is used and α = β/N .
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2.1. The Lambert W function. The Lambert W function can be defined im-
plicitly by the equation

W (z)eW (z) = z, z ∈ C (2)

Furthermore, the Lambert function obeys the differential equation for x 6= −1

W (x)′ =
e−W (x)

1 +W (x)

The Lambert W is a multivalued function and in particular it has 2 real-valued
branches denoted by W+ and W−, respectively. Properties of the W function are
surveyed in [1]. Useful identities
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W (z)

z
(3)
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z
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)n
(4)

logW (z) = log z −W (z) (5)

2.2. Solution of the transcendental equation. Starting from the first integral
we apply series of transformations as follows:
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Further, we apply the W function on both sides of the last equation
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where we have used the defining identity eq. 2. So finally
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γ

)
(6)

Therefore,

İ

I
= −γW

(
−e

αI−C
γ

)
using the original notation for the incidence. This is an autonomous system which
can be solved for t by separation of variables. The question remains, however,
whether this is the correct differential equation for the incidence. The authors do
not present the derivation procedure of the first integral so it needs to be verified.
It will be answered in affirmative as will be demonstrated below. At this point
some remarks about the SIR model are in order.
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3. The SIR model

The SIR model is formulated in terms of 3 populations of individuals [4]. The S
population consists of all individuals susceptible to the infection of concern. The
I population comprises the infected individuals. These persons have the disease
and can transmit it to the susceptible individuals. The R poulation cannot become
infected and the individuals cannot transmit the disease to others. The model
comprises a set of three ODEs:

Ṡ(t) = − β
N
S(t)I(t) (7)

İ(t) =
β

N
S(t)I(t)− γI(t) (8)

Ṙ(t) = γI(t) (9)

The model assumes a constant overall population N = S(t) + I(t) + R(t) [2].
The interpretation of the parameters is that a disease carrier infects on average β
individuals per day, for an average time of 1/γ days. The β parameter is called
disease transmission rate, while γ – recovery rate. The average number of infections
arising from an infected individual is then modelled by the numberR0 = β

γ , the basic

reproduction number. Typical initial conditions are S(0) = S0, I(0) = I0, R(0) = 0
[2].

The model can be re-parametrized using normalized variables as

ṡ = −si (10)

i̇ = si− gi, g =
γ

β
=

1

R0
(11)

ṙ = gi, (12)

subject to normalization s+ i+ r = 1 and time rescaling as τ = βt.

4. The analytical solution

Since there is a first integral by construction, the system can be reduced to two
differential equations in the phase plane:

di

ds
= −1 +

g

s
(13)

di

dr
=
s

g
− 1 (14)

In order to solve the model we will consider the two equations separately. Direct
integration of the equation 13 gives

i = −s+ g log s+ c (15)

where the constant c can be determined from the initial conditions. The s variable
can be represented explicitly in terms of the Lambert W function as in the above
section

s = −gW±

(
−e

i−c
g

g

)
(16)

where the signs denote the two different real-valued branches of the function. Note,
that both branches are of interest since the argument of the Lambert W function
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is negative. Therefore, the ODE 11 can be reduced to the first-order autonomous
system

i̇ = −ig

(
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g

g

)
+ 1

)
(17)

valid for two disjoined domains on the real line. The ODEs can be solved for the
time τ as

−
∫

di

i
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i−c
g

g

)
+ 1

) = gτ (18)

Finally, the r variable can also be conveniently expressed in terms of i. For this
purpose we solve the differential equation

dr

di
=

g
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=
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g

)
Therefore,
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g
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by Prop. 1. On the other hand,

g log

(
−gW

(
−e

i−c
g

g

))
= g

(
log

(
e
i−c
g

g

)
−W

(
−e

i−c
g

g

))
=

− gW

(
−e

i−c
g

g

)
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So that

r = gW
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)
− i+ c1

As an independent verification of the first integral 1 and a final remark we observe
that

Y = γ +
İ

I
= Sα

in terms of the original variables. Therefore, eq. 1 can be re-expressed in Kudrashov
et al’s notation as

αS − γ logαS + αI = C

which is equivalent to eq. 15.

Appendix A. Useful integrals

Proposition 1.∫
dy
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Proof. We differentiate
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