22 Hilbert machine

Draft chapter of the book Infinity Put to the Test by Antonio León (next publication).
Abstract.Hilbert's machine is a theoretical device, inspired by the emblematic Hilbert's Hotel, whose functioning leads to a contradiction involving the consistency of the hypothesis of the actual infinity subsumed into the axiom of infinity.
Keywords: Hilbert Hotel, Hilbert machine, w-order, inconsistency of the actual infinity.

Hilbert's Hotel

P1 In the next discussion we will make use of a supermachine inspired by the emblematic Hilbert's Hotel. But before beginning, let us relate some of the prodigious, and suspicious, abilities of the illustrious Hotel.

Figura 22.1 - The power of the ellipsis: An infinitist way of making money.

P2 Its director, for example, has discovered a fantastic way of getting rich: he demands one euro to R_{1} (the guest of the room 1); R_{1} recovers his euro by demanding one euro to R_{2} (the guest of the room 2); R_{2} recovers his euro by demanding one euro to R_{3} (the guest of the room 3); and so on. Finally all guests recover his euro, because there is not a last guest losing his money. Our crafty director then demands a second euro to R_{1} which recovers again his euro by demanding one euro to R_{2}, which recovers again his euro by demanding one euro to R_{3}, and so on and on. Thousands of euros coming from the (infinitist) nothingness to the pocket of the fortunate director.

P3 Hilbert's Hotel is even capable of violating the laws of thermodynamics by making it possible the functioning of a perpetuum mobile: in fact
we would only have to power the appropriate machine with the calories obtained from the successive rooms of the prodigious hotel in the same way its director gets the euros.

P4 Incredible as it may seem, infinitists justify all those absurd pathologies, and many others, in behalf of the peculiarities of the actual infinity. They prefer to assume any pathological behaviour of the world before examining the consistency of the pathogene. In the next discussion, however, we will come to a contradiction that cannot be easily justified by the picturesque nature of the actual infinity.

Figura 22.2 - Hilbert's machine just before performing the first L-sliding.

Definitions

P5 In the following conceptual discussion we will make use of a theoretical device, inspired by the emblematic Hilbert Hotel, that will be referred to as Hilbert machine, composed of the following elements (see Figure 22.2):

1) An infinite horizontal wire divided into two infinite parts, the left and the right side:
a) The right side in turn is divided into an ω-ordered sequence of disjoint and adjacent sections $\left\langle S_{i}\right\rangle$ of equal length labeled from left to right as $S_{1}, S_{2}, S_{3}, \ldots$. They will be referred to as right sections.
b) The left side is also divided into an ω-ordered sequence of disjoint and adjacent sections $\left\langle S_{i}^{\prime}\right\rangle$ of equal length, the same length as the right sections, and labeled now from right to left as $\ldots, S_{3}^{\prime}, S_{2}^{\prime}, S_{1}^{\prime}$; being S_{1}^{\prime} adjacent to S_{1}. They will be referred to as left sections.
2) An ω-ordered sequence of labeled beads $\left\langle b_{n}\right\rangle$ strung on the wire, so that they can slide on the wire as the beads of an abacus, being
the center of each bead b_{i} initially placed on the center of the right section S_{i}.
3) All beads are mechanically linked by a sliding mechanism that slides simultaneously all beads the same distance along the wire.
4) The sliding mechanism is adjusted in such a way that it slides simultaneously each bead exactly one, and only one, section to the left (L-sliding).
P6 Obviously, Hilbert's machine is a theoretical artifact, and its functioning is a simple thought experiment that illustrates a formal argument to test ω-order, the order type of the well ordered set \mathbb{N} of the natural numbers in their natural order of precedence, whose ordinal number is ω, the least transfinite ordinal [2, 115 , Theorem A, p.160]. This is not, therefore, a discussion on the physical restrictions and consequences of performing a particular sequence of physical actions.

P7 Since the sections $\left\langle S_{i}^{\prime}\right\rangle$ of the left side of the wire are ω-ordered, each section S_{n}^{\prime} has an immediate successor section S_{n+1}^{\prime} just on its left (ω successiveness). In accord with the hypothesis of the actual infinity all those infinitely many left sections exist as a complete totality in spite of the fact that there is no last section completing the sequence. The same applies to the right sections $\left\langle S_{i}\right\rangle$.

P8 We will assume Hilbert's machine always works according to the following:

Restriction P8.-An L-sliding will be carried out if, and only if, after being performed all beads remain strung on the wire. Otherwise, the Lsliding will be undone so that every bead recover its previous position and then the machine stops.

P9 Let us begin by proving that for each $v \in \mathbb{N}$ the first v L-slidings can be carried out according to Restriction P8. Assume this assertion is not true. There will be a natural number $n \leq v$ such that it is impossible to perform the nth L-sliding according to Restriction P8. But this is impossible because whatsoever be the left section occupied by b_{1} just before performing the nth L-sliding, there always be a left section contiguous to that section, otherwise b_{1} would be in the impossible (ω-successiveness) last left section. So, b_{1} can L-slide to that contiguous left section, and every ball $b_{i, i>1}$ can move to the section previously occupied by b_{i-1}. Therefore, the nth L-sliding can be carried out according to Restriction P8. Consequently
our assumption is not true, and for each $v \in \mathbb{N}$ it is possible to carry out the first v L-slidings according to Restriction P8.

P10 The following inductive argument leads to the same conclusion as the previous one P9 (Modus Tollens). It is clear that the first L-sliding can be performed: b_{1} slides to S_{1}^{\prime} and every $b_{i ; i>1}$ to the section previously occupied by b_{i-1}. Suppose that, for any natural number n, the first n Lslidings can be carried out. Since each L-sliding moves each ball one, and only one, section to the left, all balls will have been moved n sections to the left, so that b_{1} will be in the left section S_{n}^{\prime}, since S_{n}^{\prime} is n sections to the left of the S_{1}, the section initially occupied by b_{1}. And since S_{n}^{\prime} has an adjacent left section $S_{n+1}^{\prime}\left(\omega\right.$-successiveness), b_{1} can slide to S_{n+1}^{\prime} and each $b_{i ; i>1}$ to the section previously occupied by b_{i-1}. So, if for any n the first n L-slidings can be carried out, the first $n+1$ L-slidings can also be carried out. And since the first L-sliding can be carried out, we conclude that for any $v \in \mathbb{N}$ the first v L-slidings can be carried out.

Hilbert machine contradiction

P11 Assume that while the successive L-slidings can be carried out, they are carried out. It is immediate to prove the following:

Theorem P11a.-Once performed all possible L-slidings all balls remain strung on the wire.
Proof.-It is an immediate consequence of Restriction P8: if an L-sliding removes a bead from the wire that L-sliding would be undone and the machine stops with every ball strung on the wire in the section occupied just before that L-sliding. In addition, since an L-sliding simultaneously moves each ball one, and only one, section to the left and the first ball to the left of all balls is b_{1}, it had to be b_{1}, and only b_{1}, the ball that came out of the wire by one L-sliding. Otherwise, if the first n balls were simultaneously removed from the wire by one L-sliding, then each ball $b_{i>1}$ would have been moved i sections to the left by one L-sliding, which is impossible. In consequence, if b_{1} is removed from the wire, b_{2} would have to be in the impossible last section of an ω-ordered collection $\left\langle S_{i}^{\prime}\right\rangle$ of sections. So, once all the possible L-slides are performed, all the balls remain strung on the wire.
Theorem P11b.-Once performed all possible L-slidings no bead remains strung on the wire.
Proof.-Let b_{v} be any bead and assume that once performed all possible L-slidings it is strung on the right section S_{k}. It must be $k<v$ because all L-slidings are towards the left, the direction towards which the indexes of
$\left\langle S_{i}\right\rangle$ decrease. Since b_{v} was initially placed on S_{v} only a finite number $v-k$ of L-slidings would have been performed, and then it would not have been possible to perform the the first $v-k+1$ L-slidings, which goes against P 9 and P 10 , because $v-k+1$ is a natural number. A similar reasoning can be applied if b_{v} were finally strung on a left section S_{n}^{\prime}, being now the number of performed L-slidings exactly $v+n-1$ and then it would not have been possible to perform the first $v+n$ L-slidings, which also goes against P 9 and P 10 , because $v+n$ is also a natural number. Thus, since b_{v} is any bead, if all possible L-slidings have been performed, then no bead remains strung on the wire. Note this is not a question of indeterminacy but of impossibility: the set of possible sections any ball b_{v} could be finally occupying is the empty set.

P12 A point of note on the above argument is that it is only necessary to know that, under the hypothesis of the actual infinity, all possible Lslidinigs have been carried out. A corollary of the theorem P11b that the reader will be able to prove is that all balls stop being inserted in the wire at the same instant, an instant at which L-sliding are no longer performed.

Discussion

P13 Let us compare the functioning of the above Hilbert machine $\left(H_{\omega}\right.$ from now on) with the functioning of a finite version of the machine (symbolically H_{n}). This finite machine has a finite number n of both right and left sections (Figure 22.3). A finite sequence of n beads are initially strung

Figura 22.3 - A finite machine of five sections.
on the right side of the wire, the center of each bead b_{i} placed on the center of the right section S_{i}. It is immediate to prove that H_{n} can only perform n L-slidings because not having a left section S_{n+1}^{\prime}, Restriction P8 will stop the machine with each left section S_{i}^{\prime} occupied by the bead b_{n-i+1} and all right sections empty, and this is all. No contradiction is derived from the functioning of H_{n}. Thus for any natural number n, the corresponding
machine H_{n} is a consistent theoretical artifact. Only the infinite Hilbert's machine H_{ω} is inconsistent.

P14 What contradiction P11a-P11b proves is not the inconsistent functioning of a supermachine. What it proves is the inconsistency of ω-order itself (Principle of Autonomy) because of ω-successiveness. Perhaps we should not be surprised by this conclusion. After all, an ω-ordered sequence is one which is both complete (as the actual infinity requires) and uncompletable (there is not a last element that completes the sequence). On the other hand, and as Cantor proved [1, 2], ω-order is an inevitable consequence of assuming the existence of infinite sets as complete totalities. An existence axiomatically stated in our days by the Axiom of Infinity, in all axiomatic set theories including its most popular versions ZFC and BNG [4, 3]. It is, therefore, that axiom the ultimate cause of contradiction P11a-P11b.

Bibliografía

[1] Georg Cantor, Beiträge zur Begrü̈dung der transfiniten Mengenlehre, Mathematishe Annalen XLIX (1897), 207 - 246.
[2] , Contributions to the founding of the theory of transfinite numbers, Dover, New York, 1955.
[3] Robert R. Stoll, Set Theory and Logic, Dover, New York, 1979.
[4] Patrrick Suppes, Axiomatic Set Theory, Dover, New York, 1972.

