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We propose a general variational fermionic many-body wavefunction that generates an ef-

fective Hamiltonian in quadratic form which can then be exactly solved. The theory can be

constructed within density functional theory framework and a self-consistent scheme is pro-

posed for solving the exact density functional theory. We apply the theory to structurally

disordered system and a symmetric and asymmetric Hubbard dimer and corresponding lat-

tice models and the the single fermion excitation spectra show a persistent gap due to the

fermionic entanglement induced pairing condensate. For disordered system, density of state

at the edge of the gap diverges in the thermodynamic limit, suggesting a topologically ordered

phase and a sharp resonance is predicted as the gap is not dependent on the temperature of

the system. For the symmetric Hubbard model, the gap for both half filling and doped case

suggests quantum phase transition between the AFM and SC is a continuous phase transi-

tion.



Exact solutions to many-body fermionic systems with interactions, especially in dimensions

higher than 1, have always been the holy grail for quantum physicists. Computationally, the ex-

ponential growth of the dimension of the Fock-Hilbert space with the size of the system (number

of fermions, for example), also makes it a benchmark problem for quantum computations. In

this paper, we proposed an exact variational wavefunction approach based on the non-empty na-

ture of the renormalized fermion vacuum state. In section one, the renormalized fermion vacuum

state is introduced as a Bogolyubov transformation of the original fermion creation and annihi-

lation operators, and by constraining the number of local basis for the renormalized ground state

to 3 for each onsite band, we proposed a dynamical mechanism for the spontaneous time reversal

symmetry. In Section 2, we present the many-body variational wavefunction in the framework of

Density Functional Theory1 and the single fermion excitations are solutions of the quadratic effec-

tive Hamiltonian. In section 3, we apply the theory to quantum proton transport in liquid water and

show that the fermionic nature of the proton exchange in Hydrogen bonds in water2 will drive the

system into a topologically ordered state and a sharp electric resonance at low frequency is pre-

dicted. In section 4, we apply the theory to Hubbard dimer and A-B lattice problem and show that

a persistent gap opens up at around the chemical potential of the single fermions. The application

of the theory is clearly not confined to these two examples, and can be applied to all fermionic

many-body systems.
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1 Vacuum Engineering and Time Reversal Symmetry Breaking

For any fermionic system, we can always decompose the full Hilbert space into the tensor product

of the two sub-Hilbert space, S
⊗

E, where S is a single band fermionic system at spatial location

x, and E is the rest of the system. For each x, we have the following complete set of orthonormal

local states, defined by the fermion creation operators

|0〉, ψ̂†↑(x)|0〉, ψ̂†↓(x)|0〉, ψ̂†↑(x)ψ̂†↓(x)|0〉, (1)

We define the following Bogolyubov vacuum at x as

|V ac(x)〉 = α(x)|0〉+ β(x)ψ̂†↑(x)ψ̂†↓(x)|0〉 (2)

where α(x) and β(x) are c-numbers and

|α(x)|2 + |β(x)|2 = 1, 2|β(x)|2 = nV ac(x) (3)

where nV ac(x) is the density of particle at x of the non-empty Bogolyubov vacuum. And we

further define the following Bogolyubov transformed operators

ξ̂↓(x) = β(x)ψ̂†↑(x) + α(x)ψ̂↓(x)

ξ̂†↓(x) = β∗(x)ψ̂↑(x) + α∗(x)ψ̂†↓(x)

ξ̂↑(x) = β(x)ψ̂†↓(x)− α(x)ψ̂↑(x)

ξ̂†↑(x) = β∗(x)ψ̂↓(x)− α∗(x)ψ̂†↑(x)

(4)

It is straightforward to verify the following

ξ̂σ(x)|V ac(x)〉 = 0

ξ̂†σ(x)|V ac(x)〉 = −σψ̂†σ(x)|0〉 = −σ|xσ〉
(5)
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and the following anti-commutation relations

{ξ̂†σ(x), ξ̂σ′(x′)} = δx,x′δσ,σ′ (6)

{ξ̂σ(x), ξ̂σ′(x′)} = {ξ̂†σ(x), ξ̂†σ′(x
′)} = 0 (7)

We note that the ξ†σ(x) creates a fermion from |V ac(x)〉, with a fractional charge of |e|(|α(x)|2−

|β(x)|2) = |e|(1− 2|β(x)|2) and spin σ.

The transformation effectively defines a general class of fermions, b-fermions, that turn into

electrons when β = 0, positrons when α = 0, Majorana fermions when |β| = 1/2.

For non-interacting fermionic system, the Bogolyubov transformation is not expected to

change the eigenvalues of the system. These transformations correspond to local U(2)
⊕

AU(2)

transformation on the |V ac(x)〉 state.

On the other hand, even a small interaction will break the above U(2)
⊕

AU(2) symmetry

between particle vacuum (|0〉) and hole vacuum (ψ̂†↑(x)ψ̂†↓(x)|0〉) states. Thus the renormalized

(self-consistent) ground state is expected to have fixed |α(x)| and |β(x)|.

We note the striking mathematical similarity between the local quantum charge field [α(x), β(x)]

and the fermion spin. We will from now now call it the espin, as we will show that it gives rise to

the quantum electric-dipole moment, or quantum electric moment, an electrical counter part to the

magnetic moment which is related to the electron spin. So when the charge at x is not 1, we will

have a local effective espin field that fixes the angle between the espin and the effective espin field.
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The value of the polar angle θ(x)is determined by the local charge as

tan(θ(x)/2) =
|β(x)|
|α(x)|

, θ(x) ∈ [0, π] (8)

These espins can thus be represented by the Pauli matrices with the polar direction, i.e., the

eigenstate of the σ3 matrix identified to be |0〉 and | ↑↓〉 respectively:

σ̂ · e

α
β

 =

α
β

 (9)

where e is the unit vector in the espin space.

The fermionic hopping terms together with the on-site intra-band effective electric field are

expected to be responsible for the ordering of these espins, just the same as the regular spins.

Without loss of generality, we can also have the following gauge convention

α(x) = |α(x)| β(x) = |β(x)|eiϕ(x) (10)

From here point on, we will always assume the above gauge convention and assume α, β to

be positive real numbers and keep the phase field ϕ(x) explicitly. The self-consistent effective

Hamiltonian theory is then casting the ground state solution to variational problem in finding

α(x), β(x), ϕ(x) that minimizes the energy.

In espin space, the net charge is the 〈σ3〉, and ξ̂†, ξ̂ are the espin raising and lowering opera-

tors. The chemical potential can be expressed as

−µN̂ = 2µ
∑
x,n,σ

σn,σ3 (x) (11)
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i.e., the global espin symmetry is broken with a non-zero chemical potential, i.e., gap in single

fermion excitation spectrum. Here, we have explicitly used n to denote that at x, they may be

different bands, in addition to different spins.

Using the local Bogolyubov vacuum states, we can define the following global Bogolyubov

vacuum state

|V ac〉 =
∏
x

|V ac(x)〉 (12)

The ground state |Gnd〉 can be viewed as the resulting adiabatic switching on of the coupling

term that gives rise to the inter-site couplings between the espins, i.e., the intersite kinetic hopping

terms that exchange fermions. The intersite coupling terms will induce the ordering of the espins,

thus, the spontaneous time reversal symmetry breaking in the thermodynamic limit.

Another way to understand the espin ordering comes from the realization that when ground

state is a degenerate fermi liquid, each of the degenerate ground states is fermi sea of b-fermions,

and these degenerate ground state is related to each other by a local espin rotation. Any onsite and

intraband coupling, however small that may be, that break the espin local symmetry, will select the

espin direction for each site and band so that the total energy is lowered.

At time zero, we assume the whole system is in the mixture of these two orthogonal ”vac-

uum” states related by a global espin flip, and then the inter-site kinetic hopping term is turned

on adiabatically, the two states |Gnd〉 and | ˜Gnd〉 evolved from these two orthogonal states remain

orthogonal, as the Hamiltonian commutes with total espin projection Σ3 due to Eq. (11)
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In the following, we will present the local basis reduction argument for understanding of the

above mathematical constructs3. Any pure state for the total system can be expressed as

|Ψ〉 =
∑
iµ

Ciµ|i〉|µ〉 (13)

where {|i〉} is the complete orthonormal basis for the subsystem S, and {|µ〉} is the complete

orthonormal basis of subsystem E. We apply the Singular Value Decomposition (SVD) to the

matrix Ciµ, with unitary matrices U and V :

Ciµ =
∑
j

Uijρj(V
†)jµ (14)

such that

|Ψ〉 =
∑
j

ρj|S, j〉|E, j〉 (15)

where because U is unitary, we have

|S, j〉 =
∑
i

Uij|i〉 〈S, i|S, j〉 = δij (16)

and because V is unitary, we have

|E, j〉 =
∑
µ

Vµj|µ〉 〈E, i|E, j〉 = δij (17)

Apply the above result to an eigenstate, we have that any eigenstate, ground state in particu-

lar, of the full Hamiltonian can always be expressed as

|Ψ〉 = cΨ,↑(x)|x ↑〉|E+〉+ cΨ,↓(x)|x ↓〉|E−〉

+ cΨ,0(x)|V ac(x)〉|E0〉+ cΨ,2(x)ξ̂†↑(x)ξ̂†↓(x)|V ac(x)〉|E2〉
(18)

where all |Ei〉 are normalized to 1.
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The effective single site Hamiltonian for solving the variational coefficients cΨ(x) is

hee heo

hoe hoo

 =



h0,0 h0,2 h0,↑ h0,↓

h2,0 h2,2 h2,↑ h2,↓

h∗0,↑ h∗2,↑ h↑,↑ h↑,↓

h∗0,↓ h∗2,↓ h∗↑,↓ h↓,↓


(19)

Now the local effective Hamiltonian is ranked no more than 4. we will prove that unless all

eigenvalues are degenerate, effective Hamiltonian for the ground state has to be ranked less than

4, that is the highest energy state will be orthogonal to the ground state and the other two excited

states of the local effective Hamiltonian. The proof is straightforward. Since −H has the exact

same eigenstates as H , except complete reverse the order of eigenvalues, i.e., ground state for H

becomes the highest energy state for −H and vice versa, unless they are the same energy and in

that case, all 4 states are degenerate. Thus in a self-consistent solution for an interacting fermion

system, we expect that only three local states are needed for variational solutions of ground state

and single fermion excitations.

For interacting system, due to the expected symmetry breaking for interacting fermion sys-

tem, the self-consistent condition for ground state is then

c2(x) = 0,∀x (20)

and c0(x) satisfying ∑
x

{1− |c0(x)|2 + |c0(x)|2nV ac(x)} = N. (21)
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Thus the self-consistent effective single site Hamiltonian for ground state is reduced to
ε0(x) h0,↑(x) h0,↓(x)

h∗0,↑(x) h↑,↑(x) h↑,↓(x)

h∗0,↓(x) h∗↑,↓(x) h↓,↓(x)

 (22)

The reduction of basis only happens at self-consistency, where the double occupancy of the b-

fermions has been renormalized away in the self-consistent vacuum state.

The ground state |Gnd〉 can be viewed as the resulting adiabatic switching on of the coupling

term that gives rise to the off-diagonal terms h0,σ(x), i.e., the intersite kinetic hopping terms that

exchange fermions between S and its environment. The reduced single site Hamiltonian can be

solved analytically. The intersite coupling terms will induce the spontaneous time reversal symme-

try breaking, as it mixed the even number particle states with odd number fermionic state at each

site x.

The rest of the paper will discuss the practical implications of the theory.

2 Constructive Density Functional Theory

The Ansatz for choosing only three local many-body basis states for a full many body variational

reconstruction of the Hamiltonian to an effective Hamiltonian will naturally lead to the quadratic

form of the effective Hamiltonian, as we explicit show in this section. Using the reduced 3 local

states |V ac(x)〉, ξ̂σ(x), and explicitly consider at each x, we have multiple bands indexed by n,

we have the following effective (renormalized) Hamiltonian for the full system, in terms of ξ̂ b-
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fermions:

Ĥeff =
∑
x

Ĥeff (x) + ĤTB
eff + ĤPairing

eff + Evac (23)

where Evac = 〈V ac|Ĥ|V ac〉 and

Ĥeff (x) =
∑
n,σ,x

εnσ(x)ξ̂†nσ(x)ξ̂nσ(x)+

∑
(nσ)6=(n′σ′),x

ησσ
′

n,n′(x)ξ̂†nσ(x)ξ̂n′σ′(x)

(24)

ĤTB
eff =

∑
〈x 6=x′〉;nσn′σ′

λσσ
′

nn′(x,x′)ξ̂†nσ(x)ξ̂n′σ′(x′) + h.c. (25)

ĤPairing
eff =

∑
〈x 6=x′〉;nσn′σ′

∆σσ′

nn′(x,x′)ξ̂†nσ(x)ξ̂†n′σ′(x
′)

+
∑

x,nσ,n′σ′

Un,n′(x)ξ†nσ(x)ξ†n′σ′(x)〈ξn′σ′(x)ξnσ(x)〉

+
∑
x,n,n′

Jn,n′(x)ξ†n↑(x)ξ†n′↓(x)〈ξn↓(x)ξn′↑(x)〉

+ h.c.

(26)

where the on-site pairing term comes from the on-site 2-particle Coulomb, and exchange interac-

tion terms, and

εnσ(x) =〈V ac(x)|ξ̂nσ(x)Ĥ(x)ξ̂†nσ(x)|V ac(x)〉

−〈V ac(x)|Ĥ(x)|V ac(x)〉
(27)
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ησσ
′

n,n′(x) = 〈V ac(x)|ξ̂nσ(x)Ĥ(x)ξ̂†n′σ′(x)|V ac(x)〉 (28)

and λσσ′

n,n′(x,x′), ∆σσ′

n,n′(x,x′) are given by the following inter-site hopping term:

tσσ
′

n,n′(x,x′)ψ̂†nσ(x)ψ̂n′σ′(x′) + h.c. (29)

using the inverse-Bogolyubov transformation

ψ̂↓(x) = α(x)ξ̂↓(x) + β(x)eiϕ(x)ξ̂†↑(x)

ψ̂†↓(x) = α(x)ξ̂†↓(x) + β(x)e−iϕ(x)ξ̂↑(x)

ψ̂↑(x) = β(x)eiϕ(x)ξ̂†↓(x)− α(x)ξ̂↑(x)

ψ̂†↑(x) = β(x)e−iϕ(x)ξ̂↓(x)− α(x)ξ̂†↑(x)

(30)

The intersite hopping matrix elements can also be calculated directly as

λσσ
′

n,n′(x,x′) = 〈V ac(x)|ξ̂nσ(x)Ĥ − Ĥ(x)− Ĥ(x′)ξ̂†n′σ′(x
′)|V ac(x′)〉 (31)

The effective Hamiltonian of b-fermions is of the generalized quadratic Gor’kov-Bogolyubov-

De Gennes4 form

Ĥeff =
∑

ω,µ,σ;ω′,µ′,σ′

T ωω
′

µ,σ;µ′,σ′ ξ̂ωµ,σ ξ̂
ω′

µ′,σ′ + E({β(x)}) (32)

where ω = {+/creation,−/annihilation}. Note that since T contains the pairing terms, the

matrix T is Hermitian, as the Hamiltonian remains to be Hermitian. In block presentation of T :Λ Γ

Γ† 0

 (33)

10



The diagonal blocks remain to be Hermitian, they are the regular tight binding Hamiltonian for

b-fermions and the off-diagonal blocks are the pairing terms. The Hermitian Hamiltonian can be

diagonalized by the following generalized Bogolyubov transformation (mathematically equivalent

to Singular Value Decomposition)

T = U †|E| · Sign(E)U (34)

such that

Ĥeff = E({α(x), β(x), ϕ(x)}) +
∑
i

εiγ̂
†
i γ̂i; εi > 0, ∀i (35)

where εi are singular values of T and

γ̂i =
∑

ω′,µ′,σ′

Ui;ω′,µ′,σ′ ξ̂ω′,µ′,σ′ = uiξ̂iu + viξ̂
†
id, i = {ω, µ, σ} (36)

Here we have effectively derived an exact density functional for total energy1 E({α(x), β(x), ϕ(x)}),

and it corresponds to the expectation value of the total Hamiltonian with respect to the following

pairing ground state,

|Gnd〉 =
∑

i∈{i|ei≤0}

γ̂†i |V ac〉 (37)

where ei are the eigenvalues. Note that for Hermitian matrices, single values and eigenvalues are

related by taking an absolute value. The variational total energy functional for the ground state is

Etot({nk(x), ϕkσx)}) = 〈V ac|Ĥ|V ac〉+
∑

ı∈{i|ei≤0}

ei, (38)

where k is the band index. Note that in this functional, the charge density nk(x) can be fixed by the

self-consistency loop that requires all the filled state gives the expected total charge of the system.
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For the gauge field ϕk(x)x, which gives rise responsible for bosonic collective excitations (es-

pinons and spinons) in long wavelength limit. It is entirely possible that there are many degenerate

ϕi(x) configurations for large cluster or large supercell lattices.

The theory is exact in that it not only gives the exact ground state energy functional, it

also gives the single fermion excitation spectrum with respect to the ground state specified by the

ground state gauge field ϕk(x)

Note that this variational wavefunction is then used to calculate the on-site pairing potential

〈ξn↑(x)ξn↓(x)〉 in Equation (26) which is zero when self-consistency is achieved.

We thus can define the following energy gap for single fermion excitation energy as the

minimum energy of the Bogolyubov-De Gennes equation, and by the way it is constructed, the gap

is a functional of the U(1) gauge field ϕ(x), and the charge density field 2β2(x).

The self-consistency condition for 2β2(x) is ensuring that the condensate of the ground state

generated b-fermions condensate charge density is consistent with the doping level, i.e., the charge

density.

Note that the algorithm is polynomial in number of sites Nx, as opposed to the full diagonal-

ization of a full many-body Hamiltonian which scales exponentially withNx. Furthermore, we can

use the traditional LDA for an initial guess of β(x), and calculate the tight binding hopping param-

eters from first principles LDA calculation, which will further improve the scaling performance to
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O(N).

Before we move on to some example applications of the theory, we want to point out that

the ϕ(x) phase can be absorbed in ψ̂† operators. This would bring the dependency on ϕ(x) to the

hopping matrix elements of the Hamiltonian. For dimer solution below, this turned out to be a

convenience.

3 Low frequency resonance in water due to off-diagonal topological order of protons

For water, for each water molecule, we map the proton states into the following local states

|V ac(x)〉 = |H2O〉,

|pσ(x)〉 = p̂†σ(x)|V ac(x)〉 = |H3O
+
σ 〉,

|hσ(x)〉 = ĥ†σ(x)|V ac(x)〉 = p̂−σ(x)|H2O〉 = |HO−σ 〉

(39)

where x is the center of charge of the H2O molecular. Then we have the following effective

quadratic Hamiltonian for protons, with the kinetic hopping terms has the built-in disorder due to

the nature of the water being liquid.

Ĥeff =
∑
xσ

{εpp̂†σ(x)p̂σ(x) + εhĥ
†
σ(x)ĥσ(x)}

+
∑
xx′

t(x,x′)p̂†σ(x)ĥ†−σ(x′) + h.c.

(40)

The diagonal single particle energy for protons and holes are the same for pure water and they may

differ when the number of protons and number of holes differ, resulting in the pH level deviates

from 7. When spin-orbit coupling is considered, the two degenerate state due to parity conservation

will be split and the energy splitting between the two levels is then
√
ζ2
SO + w(pH − 7)2 with w a
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positive scaling factor.

The eigenvalues E of Hamiltonian Eq. (40) satisfy

∑
x′

(εp − E)δ(x,x′) t(x,x′)

t†(x,x′) (εh − E)δ(x,x′)

 ·
up(x′)

uh(x′)

 = 0 (41)

which can be reduced to

{T †T − (εp − E)(εh − E)} · uh = 0 (42)

Thus the eigenvalues of Eq. (40) are the roots of the following polynomial

∏
i

(t2i − (εp − E)(εh − E)) = 0 (43)

where t2i are the eigenvalues of the matrix T †T .

The single fermion eigenvalues are then solved as

Ei± =
εp + εh ±

√
(εp − εh)2 + 4t2i
2

(44)

with he chemical potential in the middle

µ =
εp + εh

2
(45)

This energy spectrum is completely determined by the energy spectrum of T †T , and the gap

of the proton-hole pair ∆ = |εp − εh|, which determines the density of the hydrogen bond.

In our theory, the topological order of water is originated from the high density of states at

zero eigenvalues of T †T . Note that the range of the eigenvalues is bounded by the largest nearest
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neighbor hopping, due to the long range disorder, the density of states for T †T will diverge at

t2 = 0 in the thermodynamic limit, leading to topological order. Without long range disorder,

the density of state at zero energy will not diverge and the topological order will be quenched.

For H2O, for example, below freezing temperature, crystalline ice forms and the topological order

shall be expected to be destroyed.

Under the topological order phase (liquid water), and non-zero εp − εh, we shall conclude

to have two sharp peaks in single fermion excitation density of states, one below the chemical

potential and one above. As a consequence, a sharp electrical resonant absorption is expected at

the frequency ∆/h̄. We do expect ∆ to change with relative pH level of the water, for pH= 7, we

expect to have the minimum ∆, which is the size of spin-orbit coupling of the hopping proton at

the local hydrogen bond. In other words, the excitations for pH= 7, the Majorana fermions gain

mass due to spin-orbit coupling, another topological effect found similarly for topological insu-

lators5 in electronic systems. ∆ increases with |pH − 7|. The mass of the Majorana fermion is

not temperature sensitive and the excitation is considered elementary particle-like, i.e., the corre-

sponding resonant width is extremely sharp and the resonance has a extremely long lifetime. Using

the estimate of spin-orbit coupling of electrons of 1meV and scale it with the proton mass factor

1/1840, we get the Majorana fermion mass of 0.5µeV , which put it at 100MHz range.

Thus ∆ is expected to be very sensitive to local pH levels in a heterogeneous aqueous system,

as well as the the details in the hydrogen bond and the strength of spin-orbit coupling of protons at

the hydrogen bond.
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Our theoretical framework opened the door to treat the large bio-molecules in aqueous so-

lutions. An important observation is that although the off-diagonal topological ordering are very

important in maintaining the long life times of resonances, the channel specificity of these reso-

nances is due to the local energy splitting, e.g., for hydrogen bonds.

4 Hubbard Model Example

For asymmetric Hubbard dimer, and the lattice version of it, without spin-orbit coupling, applying

the theory, we have the single b-fermion excitation spectrum can be solved with the following

quadratic form of Hamiltonian

Ĥeff = v̂†

HAB 0

0 HBA

 v̂ (46)

where v̂† is the complex conjugate of the column vector operator v̂, given, e.g., for dimer and

periodic lattice of the dimer as

v̂† =

[
ξ̂†A↑ ξ̂A↓ ξ̂†B↑ ξ̂B↓ ξ̂†B↓ ξ̂B↑ ξ̂†A↓ ξ̂A↑

]
(47)

Note that if spin-orbit coupling is zero, the two diagonal blocks are degenerate due to parity sym-

metry. Otherwise, we would have a spin-orbit coupling split two bands for the single b-fermion

excitation that do not couple to each other. In the thermodynamic limit, these two bands corre-

spond to two different boundary condition or edge states with different chirality. Without loss of

generality, we will discuss the excitation spectrum of one of them here.

Assume we have reached the self-consistency for charge condition so that β(x) are fixed by
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the chemical potential and the asymmetry between the two dimer site are captured by the onsite

energy differences of the self-consistent b-fermions, we would have for the reduce effective Hamil-

tonian HAB, the following general form HAB =

|εA|sign(A) T

T † |εB|sign(B)

 where εA, εB are

diagonal but alternate in sign. The singular value of the above matrix are the square root of the

eigenvalues of the following non-negative definite matrix

HABHAB =

ε2
A + TT † ∆

∆† ε2
B + T †T

 (48)

where

∆ = εAT
† + TεB (49)

Define the following Hermitian matrix

T = TT † = U †TE
2
T UT (50)

we have

sign(E2
T ) = I (51)

i.e., all eigenvalues of T are non-negative, and they are all positive when spin-orbit coupling is not

zero

ET =
√
E2
T (ζSO = 0) + wζ2

SO (52)

We then have

T †T = UTE
2
T U
†
T (53)

17



So we can perform the following unitary transformation to H2
AB as

H̃2
AB =

U †T 0

0 UT

H2
AB

UT 0

0 U †T

 (54)

which has the same eigenvalues and singular values as H2
AB. Explicitly H̃2

AB is

H̃2
AB =

ε2
A + E2

T ∆̃

∆̃† ε2
B + E2

T

 (55)

The singular values of the matrix H̃2
AB−(E2

T +
ε2A+ε2B

2
)
⊗

I2, E2
κ , is then solved using the following

E2
κ =

√
(∆̃†∆̃)κ + (ε2

A − ε2
B)2 (56)

where (∆̃†∆̃)κ are the κth singular value of the matrix ∆̃†∆̃ So the excitation spectrum of the HAB

is then √
E2
T +

ε2
A + ε2

B

2
+ E2

κ (57)

That is, the single fermion excitation always has a gap, as long as E2
κ > 0.

At symmetric case, the Hubbard model has been proposed as the simplest model for high-Tc

superconductors and the Anti-ferromagnetic Neel phase at zero doping. An early phenomenolog-

ical model6 points out the role of doping can be viewed as an mechanism for breaking the SO(5)

symmetry, driving the system from AFM to SC. Our theory is consistent with these conjectures.

On the other hand, we think to ultimately settle down on the theory of HTC, an application of our

theory to the real materials is needed.
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5 conclusion

It is clear that the problems and systems the proposed theory can be applied to are not limited

to the examples presented in this paper. Most importantly from the computational perspective,

the existing enterprise on first principles Local Density Functional electronic calculations provides

an enormous leverage and starting point for our theory as it provides an excellent starting charge

density for each band. On the theoretical front, since the theory is based on the eigenstate solutions

of a Hamiltonian, the bosonic collective excitations of the Hamiltonian will be studied as the

excitations of the phase field ϕn(x), or gauge fields. The rich Lee-group symmetry structure

offered by going beyond single band model, namely p-band, d-band, f-band and beyond, and the

additional espin U(2)
⊕

AU(2) symmetry coupling to spin U(2)
⊕

AU(2) symmetry will also be

explored.
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