Fibonacci-Zeta infinite series associated with the
polygamma functions

Kunle Adegoke
adegoke00Ogmail. com

Department of Physics and Engineering Physics,
Obafemi Awolowo University, 220005 Ile-Ife, Nigeria

October 2020

Abstract
We derive new infinite series involving Fibonacci numbers and Riemann zeta num-

bers. The calculations are facilitated by evaluating linear combinations of polygamma
functions of the same order at certain arguments.

1 Introduction

The Fibonacci numbers, F;,, and the Lucas numbers, L,, are defined, for all integers n by
the Binet formulas:
B a — Bn

F, = , L,=a" " 1.1

- @+ (1)
where o and 3 are the zeros of the characteristic polynomial, 22 — 2 — 1, of the Fibonacci
sequence. Thus o + 8 = 1 and a3 = —1; so that a = (1 4+ v/5)/2 (the golden ratio) and
B =—1/a = (1 —+/5)/2. Koshy [§] and Vajda [10] have written excellent books dealing
with Fibonacci and Lucas numbers.

Our purpose in writing this paper is to employ the properties of the polygamma functions
to derive infinite series identities involving Fibonacci numbers, Lucas numbers and the
Riemann zeta numbers. We will obtain sums such as

Z ml;#((j +3)Fy; = 2\;% tan (W\ﬁ/g) sec? (%\/g) :

j=1
and N
D (ST + DLy = 7 sec? (#) -
j=1
and, in fact, more general series. Here ((n) is the Riemann zeta function.

The digamma function, 1(z), is the logarithmic derivative of the Gamma function:

0(z) = T1ogT(z) = I;(()) ,
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where the Gamma function is defined for R(z) > 0 by

I(z) = /O T et gr = /0 " (log(1/6)" dt,

and is extended to the rest of the complex plane, excluding the non-positive integers,
by analytic continuation. The Gamma function has a simple pole at each of the points
z=---,-3,—2,—1,0. The Gamma function extends the classical factorial function to the
complex plane: I'(z) = (z — 1)!

The nth polygamma function ¥(™(z) is the nth derivative of the digamma function:

N dnJrl 4" .
V) = g 108T(3) = ™), 90 = w()
The polygamma functions satisfy the recurrence relation,
U (z+1) = ™ (2) + (1) e (1.2)
and the reflection relation,
dm
(=)™ (1 = 2) — ™ (2) = T cot(mz) . (1.3)
Zm
The Taylor series for the polygamma functions is
> ‘ ! ,
> (—1)m+ﬂ+1wc(m +i4+ D)7 =™ (z+1), m>1, (1.4)
j=0 I
) (FTCG D =z 1), (1.5)
j=1

where v is the Euler-Mascheroni constant and ((n), n € C, is the Riemann zeta function,
defined by

() =S~ Rw)>1,
=17

and analytically continued to all n € C with ®(n) > 0, n # 1 through
1 (=17t
¢(n) > —

- _ 91-n
1-2 = J

Further information on the polygamma functions can be found in the books by Erdé-
lyi et al. [3, §1.16] and Srivastava and Choi [J, p. 33]. The book by Edwards [2] is a good
treatise on the Riemann zeta function.

Infinite series involving Fibonacci numbers and Riemann zeta numbers were also derived
by Frontczak |4, 5] 6], Frontczak and Goy [7] and Adegoke [1].

2 Preliminary results

Here we derive more functional equations for the polygamma functions. We also evaluate
required linear combinations of the polygamma function at appropriate arguments.

2



2.1 Functional equations

Writing —z for z in the recurrence relation (1.2) and making use of the reflection rela-
tion (1.3)), we obtain the duplication formula

m m!

(M) — (1™ () = (—1)r —— _
P (=2) = (=1 (z) = (=1 cot(me) + o (21)
and consequently,
m! m!
w(m)(_x) - @Z)(m)(_y) = (™ (z) — ¢(m)(y) + m+l ymtl
+m —— cot(mz) —m ——cot(rz)| , meven,
dz I dz =y
! !
0O(=a) + 9 (=) =~ @)+ 9 ) + i+
—m —— cot(72) —m ——cot(rz)| , modd.
dz — dz =y
In particular, if z + y = 1, then,
m m! m!
P (—z) = " (—y) = —m o—cot(mz)| 4 = g, moeven, (2.4)
z=y
V" (=) + P\ (—y) = -7 T cot(mz) + o +— =5, modd. (2.5)
z=y
Writing 1/2 — z for z in (1.3) gives
1 1 am
(—1)map(m) (— + z) — p™ (— - z) =7 —— cot(rx) : (2.6)
2 2 dx v=1/2—2
Eliminating 1™ (2) between (1.2) and (1.3) gives
am (=1)™m]!
(m) (1™ (1 — ) = Al A
P14+ 2) — (1) (1 — 2) T cot(mz) + porees (2.7)
If x — y = 1, then the recurrence relation gives
) (z) — ™ (y) = BT (2.8)
while if z + y = 1, the reflection relation gives
P (@) = (1)) = o cot(nz)| (2.9
The recurrence relation has the following consequences:
P (@ +1) =9y +1) = 9 (z) - Y™ (y)
( 1)m ‘merl _ ym+1 (2‘10)
— —_— m‘—
(zy)m+t



YUz +1) + 9 (y + 1) = ¢ (@) + 9™ (y)
. xm—i—l +ym+1 (2]_1)

For any = and y such that 1 —2 ¢ Z~, 1 —y ¢ Z~ and = # 1, y # 1, relation (2.7) implies

P+ a) =M1+ y) = ()" (@0 —2) =0 (1))

M €O (rx) + Wdy_m cot(my) (2.12)
—1)™m! —1)™m!
+ ( )+1m o : )+1m )
xm ym

P14 2) + M (1 +y) = (1) (B (1 —2) + M (1 —y))

" cot(mr) — 7 cot(ry)
— T—— CO Xr) — T——CO
e T Wdym Y (2.13)
—1)mml (=1)mm!
+( )Hm ( )+17n
x’m ym

From the functional equation (2.12), it follows that if m is even and = + y = 1, then,

am m! m!
(m) EWAGO) -7 — —
P A +z) P (A +y) =7 Tom cot(7z) . + i (2.14)
From the functional equation (2.13), it follows that if m is odd and = + y = 1, then,
m | !
(m) (m) . el . m. . m.
Y1 +x) (1 4y) =7 o cot(mz) T (2.15)
If m is an even number and = + y = 2, equation (2.12) gives
m | | |
(m) . (m) _ i m- m. . m.
V(1 +z)—yp"™(1+y) =—7 T cot(mz) . + T + i (2.16)
while if m is an odd number and x 4+ y = 2, equation (2.13)) gives
m | ! |
(m) (m) _ el . m- . m- . m-
Y1 +z)+ "™ (1+y)=—n T cot(mz) T T (2.17)
Note that we used
T cot(mz) ) +7 T cot(mz) N =0, meven,
z=y z=1l=-y
and
am am
—m —— cot(mz) + 7 —— cot(mz) =0, modd
dzm =y dzm i1y




From (2.6) we have

o () wom o)) - G -2) -0 )

+ d” cot(mz) - cot(mz)
T — cot(m — 1 — cot(m
dz z=1/2—x dz z=1/2—y
(2.18)
1 1 1 1
—1)ym [ m [ = (m) [ = — o pm [ Z _pm [ Z
(=1) (w (2+x)+w 5Ty e Rl B i
+ 7 — cot(mz) + 7 —— cot(mz)
dzm z=1/2—x dzm z=1/2—y
(2.19)

Thus, if m is even and = + y = 1, then from (2.18) and the duplication formula, we have

1 1 am
w(m) (5 + .T}> _ w(m) <§ -+ y) = —7T dz_m COt(?TZ)

and if m is odd and z + y = 1, then from (2.19) and the duplication formula, we have

m!

RSO

z=1/2—y

(2.20)

m!

1 1 am !
(m) [ Z (m) [ Z e - 2.21
(0 (2 + :E) + 1 (2 + y> U cot(mz) i, @i (2.21)

2.2 Evaluation at various arguments
Lemma 1. We have
(m) m)(gy = —p
P () =P (B) = -7 Tom cot(mz) , m even, (2.22)
(m) m gy — —x L
P () + "™ (B) = =7 o cot(mz) , m odd, (2.23)
dm
Y™ (a?) — ™ (3% = o cot(mz) +m!Fp V5, m even, (2.24)
z=03
dm
P () + ™ (3%) = -7 T cot(mz) —m!Lpyy1, m odd, (2.25)
z=0
P (a®) — M (33 =7 a cot(mz) + m! + m! Fr V5, m even, (2.26)
dzm =28 (\/5)m+1 om+1
P (Q3) + M (3%) = —r a cot(mz) o Ly, modd, (2.27)
dzm mag (VB)mHL 2R 7
dm ml2m+l
Y™ (a?/2) — ™ (5%/2) = -1 —— cot(72) + ——=——, m even, (2.28)
/ / dz =v3/2 (\/5)m+1



@/J(m)(a?’/Q) + ¢(m)(ﬁ3/2) =7 a cot(mz) — w, m odd, (2.29)
dzm =5 /2 (v/5)m+1
™ (a" /L) — "™ (37 /L,) = —7 d_”:n cot(mz) , m even, (2.30)
dz z=a" /Ly
Y™ (a” /L) + "™ (87 /L) = —7 d_”:n cot(7z) , m odd, (2.31)
dz z=a" /Ly,
w(m) <FO‘:/5> _ w(m) (Fﬁ:/g) _ (_1)rm+r+mm!FZn+l<ar\/g)m+l’ (2.32)

YO +207 /L) — ™ (14 267/ L)

. m m'Lm+1 (—1)Tm!L:”+1Fr(m+1)\/g
=T cot(mz) s, (F N - SIS , m even,
(2.33)
W (14207 /L) + " (1 + 267/ Ly)
=7 —mcot(m) _ iy m L modd, 23
dzm =907 (Fr\/g)mﬂ om+1 ) )
Y (—a" /L) = (=" /L)
m 2.35
=T cot(mz) — L™ (= 1) FomynyV5, m even, (2:35)
Zm z:BT/L,«
WO (=a"[Ly) + ™ (=7 Ly)
m 2.36
=T cot(mz) + m!L:”HLT(mH), m odd. ( )
& =07/ L

Proof. To prove (2.22) and (2.23), set x = o, y = [ in (2.9). To prove (2.24) and (2.25),
set © = a, y = [ in (2.14) and (2.10). Setting x = 2«, y = 20 in (2.10) and (2.17)
gives (2.20) and (2.27). To prove (2.28) and (2.29) set = o, y = ( in (2.20) and (2.21).
Use of z = o"/L, and y = ("/L, in (2.9) gives (2.30) and (2.31). Identity (2.32) is
obtained by setting z = " /(F,/5) and y = 8" /(F,v/5) in (2.8). Identities (2.33) and (2.34)
follow from (2.16) and (2.17), upon setting x = 2a" /L, and y = 23" /L,. Identities (2.35)
and (2.30) are obtained from (2.4) and (2.5), with x = " /L, and y = "/ L,. O

3 Main results

Theorem. If r is an integer, then,
!
> (- J“—‘”C(m + i+ )Ey
i=1 (F)
\/_ {1 +a"z) =™ (1 +672)},  m even, m >0,



N mﬂ) I ot j 4+ 1)L,
Jj=0 (L)

= (m (1+a 2) 4™ (14 32), m odd, m>1.

Proof. Writing oz for z in the Taylor series (1.4)), we obtain

> (= ! ;j—)'é(m i+ Dad = (a"z +1). (3.1)
Jj=0 .

Similarly,

(—1)mHt (m; j)—C(m +j+1)B72 =72+ 1). (3.2)

'M8

I
o

J

If m is even, then subtraction of (3.2) from (3.1) gives (F) while if m is odd, their addition
produces (L), on account of the Binet formulas. ]

Note that, in view of identities (2.10)) and (2.11), the right hand side of (F) and (L) can be
expressed as:

% {w(m)(a’”z 1) = (e 1))

3.3)
—1)"m! (
\/— {T/J w(m (ﬁT )} (Zm—)HFr(m+1)> m even,
M@z +1) + ™ (B2 + 1)
m! (3.4)
— ¢(m)(ar2) + q/)(m) (ﬁrz) _ Zer_l Lr(erl)’ m odd.
Corollary 1. We have
Z( 1)J+1(m+J) C(m+j+ )ng
— ,]‘ 2.7
]7
L L. mi2" N g )
=—— | m—— cot(nz - m! 3mi3, M even,
\/g dZm z=\/g/2 (\/g)m+1
- m—i—j'C(m—i—j—i—l)
2 (- Ly
9
j=
m m) 2m+1 (3'6)
= —ﬂg cot(mz) . — W —m! 2" Ly s, m odd.
2=v5/2

Proof. Set r =3, z=1/21n (F) and (L), noting (3.3) and (3.4) and using (2.28) and (2.29)).
[l



Example 1. We have

= (3.7)
23 /5 , (75 13616
= ———=cot | —— | csc + ,
V5 2 2 25
= ' 5) 364
Z ) C(j +2)Ls; = 7 csc (%) - (3.8)
7=0
Proof. To prove (3.7), set m = 2 in (3.5), while m = 1 in (3.0) proves (3.8). O
Corollary 2. If r is an integer, then,
i (_1)j+lwg(m +i+1)F,;
: Jins / "
i=t . (3.9)
T m
—— cot(7z) — (=1)"m!\ L g1y, M even,
\/_ dzm z=0" /L,
- (m+ j)! .
Z Y7 22 (m A+ + 1)L,
j= (3.10)
=T cot(mz) - m!L;”+1LT(m+1), m odd.
Z:/BT/LT

Proof. Set z=1/L, in (F) and (L), noting (3.3) and (3.4) and using (2.30) and (2.31). O
Example 2. We have

i ]+1 j+1)(j+2)<(j+3)F2J

BY
= 3 (3.11)
2
= itaun iﬁ sec? iﬁ — 432,
NG 6 6
= 5
Z C(j+1)L; 1 = 7°sec? (%) - 3. (3.12)
j=1
Proof. Set m =2, r =2 in (3.9) to prove (3.11) and m = 1, » = 1 in (3.10) to prove (3.12).
[
Corollary 3. If r is an integer with |r| > 1, then,
Z J+1M2jc(m +j+1)F,
|L]
J=1 ’
. 1 dm " m!L:,nJrl rm!L;n'i_lFr(m_,_l)
[ S R T o B T,
(3.13)



S -1 i 4 1)L,

|L]
=0 (3.14)
m m!L;nJrl m!LT+1Lr(m+1)
= — 17— cot(7z) - - — ,  m odd.
dZ Z:2OtT/Lr (Fr,-\/S)erl 2
Proof. Set z=2/L, in (F) and (L) and use (2.33) and (2.34). O
Example 3. We have
= DG +2) ..
> -y UEDUED g,
= (3.15)
13616  27° ™5 , [ 7V5
= — = —F—cot | — |esc" | — | ,
2% 5 2 2
S ' 5\ 364
Z ) C(j +2)Ls; = n°csc (%) - (3.16)
j=
Proof. Set m =2, r = 3 in (3.13) to prove (3.15) and m = 1, r = 3 in (3.14)) to prove (3.10).
[
Corollary 4. If r is an integer with |r| > 1, then,
= (m+5)! , T d™
——=C(m+j+1)F; =—= —— cot(rz2) , m even, (3.17)
; J' Ly T VB dz =7/ Ly
Z MC( m+j+1)L,; =—m o cot(mz) , m odd. (3.18)
= J'Lr z 2=p" /L,
Proof. Set z=—1/L, in (F) and (L) and use (2.35) and (2.30). O

Example 4. We have

i WCU +3)Fy = 2 tan (W\/g) sec? <ﬂ) ; (3.19)

j=1 ¥ V5 6 6
Z U+1) C(j +2)Ly; = 7° sec? (322/5) : (3.20)
=0

Proof. To prove (3.19), set m = 2, r = 2 in (3.17). To prove (3.20), set m = 1, r = 4
n (3.18). O
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