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Abstract

In this short note, we present the Gaussian law of gravitation, based on the concept that the mass is collision-
time, see our paper Collision Space-Time, [1].
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1 The Gaussian Law of Gravitation for Modern Newton and Collision-
Space-Time

Newton’s [2] law of gravitation is normally given by

F = G
Mm

r2
(1)

this is the case historically, even though Newton himself never introduced or described the gravitational constant
G, see [1]. We can, therefore, call this the modern version of the Newton formula; the original Newtonian formula
that Newton only stated by words was simply F = M̄m̄

r2 , where we are deliberately using the notation for mass M̄ ,
as Newton’s view on matter was very di↵erent from the modern view on matter, and is much more in line with the
mass definition in collision-space-time. Newton’s law of gravitation has a corresponding Gaussian law of gravitation
that we will look at here. In collision-space-time, the Newton force formula is given by

F̄ = c3
M̄m̄

r2
(2)

when defining mass as M̄ = lp
c

lp
�̄
, where lp is the Planck length, [3, 4], and �̄ is the Compton wavelength [5].

This mass indeed has units of time, and is what we call “collision-time,” as it is related to the collision between
indivisible particles, see [1]. Be aware that the Planck length can be found independent of any knowledge of G, see
[6]. The modern Newtonian formula and the Haug-Newtonian formulas for gravitation do not give the same output,
but after further derivations for all observable gravitational phenomena, they give the same predictions. The Haug
formula is actually closer to Newton’s original description than the modern Newton formula; what is now known as
Newton’s gravitational constant was actually first introduced in a footnote by Cornu and Baille in 1873, see [7].

The Gaussian law of gravitation in di↵erential form, when we use the standard (incomplete) mass definition, is
the well-known formula

r · ggg = �4⇡G⇢ (3)

where ⇢ is the mass density at each point, ⇢ = m
V , and ggg = �r�, where � is a scalar field, so we get the well-known

formula (Poisson’s equation)

r2� = 4⇡G⇢ (4)

while under collision space-time, we get

r · ggg = �4⇡c3⇢c (5)

where ⇢c is the mass density at each point, ⇢c =
m̄
V , and ggg = �r�, where � is the gravitational scalar field, so we

get (Poisson’s equation)
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r2� = 4⇡c3⇢c (6)

The gravitational potential is a function of only one variable, r = |rrr|, in radially symmetric systems. The Poisson
equation then becomes
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◆
= 4⇡c3⇢c(r) (7)

and the gravitational field

ggg(r) = nnnr
@ 

@r
(8)

where nnnr is a unit vector.
In collision space-time it is important to bear in mind that the mass is defined as collision-time, namely m̄ = lp

c
lp
�̄
,

where lp is the Planck length. Further, �̄ is the reduced Compton wavelength, and c is naturally the speed of light
(gravity). We also have that GM = c3M̄ , as discussed by [6]. Our new Gaussian law and its formula of gravitation,
however, give a very di↵erent interpretation than the standard view; it is now at least partly compatible with
quantum gravity, as all masses contain the Planck length. In addition, it seems like the speed of light now plays a
central role in Newtonian gravity as seen from this angle. The mass density in collision-space time is also a collision
time density, where elementary masses are ticking at the Compton frequency.

We could also have expressed our equations in integral form. When using the standard mass definition, we have
the well-known

I

@V
ggg · dAAA = �4⇡G⇢ (9)

while under collision space-time when we are using the collision-time mass definition, we get
I

@V
ggg · dAAA = �4⇡c3⇢c (10)

where dAAA is a vector, whose magnitude is the area of an infinitesimal piece of the surface @V .
It is worth noticing that we actually have

r2� = 4⇡c3⇢c = 4⇡G⇢ (11)

This is because GM =
l2pc

3

h̄
lp
�̄

1
c = c3 lp

c
lp
�̄
= c3M̄ . When we understand that G is nothing more than a composite

universal constant, G =
l2pc

3

h̄ , which actually contains h̄ to remove the Planck’s constant from the incomplete kg
mass definition of modern physics and to incorporate the Planck length into the mass, and also to get the speed
of light (gravity) into the equation, then one can gain a better perspective on what gravity and mass truly are,
see also [1, 6, 8]. This is more than a change of notation, while standard gravity theory here needs three universal
constants, G, h and c we only need two, that is c and lp as discussed in more detail by [11].

2 The Gaussian Law of Gravity from the Lagrangian

The modern Lagrangian density for modern Newtonian gravity is given by the well-known equation

L(xxx, t) = �⇢(xxx, r)�(xxx, r)� 1

8⇡G
(r�(xxx, r)) · (r��(xxx, r)) (12)

where the density L has units of J ·m�3. The mass density here is ⇢ and has units kg ·m�3.
Under collision-space-time we will have

L(xxx, t) = �⇢c(xxx, r)�(xxx, r)�
1

8⇡c3
(r�(xxx, r)) · (r��(xxx, r)) (13)

The mass density ⇢c has units s ·m�3, which represent the collision-time density.
After doing the variation of the integral with respect to � and integrating by parts, the ”final” formula becomes

r2�(xxx, r) = 4⇡c3⇢c(xxx, r) (14)

which basically is the Gaussian law of gravity for collision-space-time.
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3 Further discussion

The formulas we have presented above are robust mathematically from a derivation perspective. One of the main
issues with the field equation for Newton’s gravity r2� = 4⇡G⇢ is that gravity seems to be instantaneous. If the
matter density ⇢ changes, then it seems like the gravity field changes instantaneously. We are not fully certain if
this is also the case with our new field equation: r2� = 4⇡c3⇢c.

One speculative idea would be to follow an approach similar to what Nördstrom [9, 10] originally did with the

standard Newton field equation to change the Laplace-operator, � = r2 with a d’Alembert operator 2 = 1
c2

@2

@t2�r2,
something that would give

2� = 4⇡c3⇢c (15)

This would be a parallel to the Nördstrom 1912 model [9], but based on a collision-time definition of mass. An
alternative would be to create a parallel to the Nördstrom 1913 model [10], which would be

�2� = �4⇡c3Tm (16)

where Tm is the trace of the material stress-energy tensor, Tµv. Both of these alternatives should ensure that
the gravitational information propagates at the speed of light. However, there could be other considerations,
Including issues with the original Nördstrom theories. Further investigation is needed to evaluate whether or
not the potential gravitational field equations are compatible with collision space-time and naturally also with
gravitational observations.

4 Conclusion

We have presented a Gaussian law of gravitation based on original Newtonian gravity, combined with new insights on
mass and gravity from collision space-time theory. This gives a Gaussian law gravitational formula r2� = 4⇡c3⇢c,
which directly contains c and also a collision-time-density ⇢c, that is a deeper and in our view a more correct way to
look at mass. Whether or not this alone gives a speed of gravity equal to the speed of light we need to investigate
further. Interestingly, one can extract the speed of light (gravity) directly from gravitational observations with no
prior knowledge of G, c, or h, as we recently have demonstrated [11, 12].
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