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Adapted from a chapter of the book Infinity put to the test by Antonio León (next publication).

Abstract.-The argument of Thomson’s lamp and Benacerraf’s critique are reexamined from
the perspective of the w-order legitimated by the hypothesis of the actual infinity subsumed
into the Axiom of Infinite. The conclusions point to the inconsistency of that hypothesis.
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Introduction

P1 To perform an ω-supertask (supertask hereafter) means to perform
an ω-ordered sequence of actions (tasks) in a finite interval of time. Su-
pertasks are useful theoretical devices for the philosophy of mathema-
tics, particularly for the discussions on certain problems related to infinity
[39, 8, 11, 33, 6, 41, 33]. Although their physical possibilities and implica-
tions have also been discussed [28, 29, 33, 35, 17, 19, 18, 29, 30, 31, 15, 32,
27, 3, 4, 34, 41, 21, 13, 14, 27, 12, 36]. In this book all supertasks will be
conceptual.

Figura 22.1 – God performing Gregory’s supertask.

P2 Probably Gregory of Rimini was the first to propose how a supertask
could be accomplished ([26], p. 53):

If God can endlessly add a cubic foot to a stone -which He can- then He
can create an infinitely big stone. For He need only add one cubic foot
at some time, another half an hour later, another a quarter of an hour
later than that, and so on ad infinitum. He would then have before Him
an infinite stone at the end of the hour.
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But the term “supertask” was introduced by J. F. Thomson in his seminal
paper of 1954 [39]. Thomson’s paper was motivated by Black’s argument [7]
on the impossibility to perform infinitely many successive actions and by
the discussions of Black’s argument by R. Taylor [38] and J. Watling [40]. In
his paper Thomson tried to prove the impossibility of supertasks. Thomson
argument was, in turn, criticized in another seminal paper, in this case by
P. Benacerraf [5]. Benacerraf’s successful criticism finally motivated the
foundation of a new infinitist theory independent of set theory: supertask
theory.

P3 The basic idea of Benacerraf’s criticism of Thomson’s argument is the
impossibility to derive formal conclusions on the final state of the superma-
chine that performs the supertask from the sequence of states the machine
traverses as a consequence of performing the supertask. Although Benace-
rraf’s criticism of Thomson’s lamp argument is well founded (see below),
it is far from being complete. As we will see here, it is possible to consider
a new line of argument, which Benacerraf only incidentally considered, ba-
sed on the formal definition of the lamp. That line of argument leads to a
contradiction that put into question the formal consistency of the ω-order
involved in supertasks.

P4 In fact, if the world continues to be the same world it was before the
execution of a supertask, and one is still allowed to think in rational terms
in the same framework of the laws of logic, then Thomson’s argument can
be reoriented towards the formal definition of the machine that performs
the supertask. A definition that is assumed to be independent of the num-
ber of performed tasks with that machine, and then a definition that holds
before, during and after performing the supertask, whenever the comple-
tion, as such a completion, of a supertask does not arbitrarily change a
legitimate definition previously established (Principles of Invariance and
of Autonomy).

P5 The possibilities to perform an uncountable infinitude of actions we-
re examined, and ruled out, by P. Clark and S. Read [11]. Supertasks
have also been considered from the perspective of nonstandard analysis
[25, 24, 2, 23], although the possibilities to perform a hypertask along a
hyperreal interval of time have not been discussed, despite the fact that
finite hyperreal intervals can be divided into hypercountably many suc-
cessive infinitesimal intervals (hyperfinite partitions)[37, 16, 22, 20], etc.
But most of the supertasks are ω-supertasks, i.e. ω-ordered sequences of
actions performed in a finite (or perceived as finite) interval of time.
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Thomson’s lamp

P6 As Thomson did in 1954 ([39], p. 5), in the following discussion we will
make use of one of those:

... reading-lamps that have a button in the base. If the lamp is off and
you press the button the lamp goes on, and if the lamp is on and you
press the button the lamp goes off.

Let us complete Thomson’s definition by explicitly declaring the following
conditions regarding the (theoretical) functioning of the lamp:

a) Thomson’s lamp has two, and only two, states: on and off.

b) The state of the lamp (on/off ) changes if, and only if, its button is
pressed down.

c) Each change of state takes place at a precise and definite instant.

d) The pressing down (clicking) of the button and the corresponding lamp
change of state are both instantaneous and simultaneous events.

e) Thomson’s lamp remains unaltered after performing any finite or infi-
nite number of clickings.

Figura 22.2 – Thomson’s lamp has two, and only two, states: off and on. The
state of Thomson’s lamp changes if, and only if, its button is pressed.

P7 Assume now the button of Thomson’s lamp is clicked at each of the
infinitely many successive instants ti, and only at them, of a strictly increa-
sing and ω-ordered sequence of instants 〈tn〉 defined within a finite interval
of time (ta, tb), being tb the limit of the sequence 〈tn〉. In these conditions,
at instant tb the button of the lamp will have undergone an ω-ordered
sequence 〈cn〉 of clicks (each click ci performed at the precise instant ti)
and, consequently, the state of the lamp will have changed an ω-ordered
infinitude of times. Or in other words, at tb Thomson’s supertask will have
been completed. Don’t forget this is a purely conceptual argument, so that
we are not concerned here with the physical details.

P8 Thomson tried to derive a contradiction from his supertask by specu-
lating on the final state of the lamp at instant tb in terms of the sequence
of switchings completed along the supertask ([39], p. 5):
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[The lamp] cannot be on, because I did not ever turn it on without at
once turning it off. It cannot be off, because I did in the first place turn
it on, and thereafter I never turned off without at once turning it on.
But the lamp must be either on or off. This is a contradiction.

P9 It is worth noting, as we have just seen, that Thomson based his
argument on the sequence of actions carried out on the lamp: it was never
turned on without turning it off after, and viceversa. What Thomson tried
to do is to derive the final state of the lamp, the state of the lamp at
tb, from the successive changes of state the lamp underwent during the
supertask: The reason why the lamp cannot be on is because it was always
turned off after turning it on. And for the same reason it cannot be off
either. This way of arguing was severely criticized by Benacerraf

P10 Benacerraf argued against Thomson’s argument as follows ([5], p.
768):

The only reasons Thomson gives for supposing that his lamp will not be
off at tb are ones which hold only for times before tb. The explanation
is quite simply that Thomson’s instructions do not cover the state of
the lamp at tb, although they do tell us what will be its state at every
instant between ta and tb (including ta). Certainly, the lamp must be on
or off (provided that it hasn’t gone up in a metaphysical puff of smoke
in the interval), but nothing we are told implies which it is to be. The
arguments to the effect that it can’t be either just have no bearing on
the case. To suppose that they do is to suppose that a description of the
physical state of the lamp at tb (with respect to the property of being on
or off ) is a logical consequence of a description of its state (with respect
to the same property) at times prior to tb. [ta and tb appears respectively
as t0 and t1 in Benacerraf’s paper].

P11 In short, according to Benacerraf, the problem posed by Thomson
is not sufficiently described since no constraint have been placed on what
happens at tb [1]. But the only constraint on what happens at tb is that
Thomson’s lamp continue to be Thomson’s lamp. Or in other words, that
the execution of a supertask does not change the formal definitions of the
involved theoretical artifacts (Principle of Invariance). As we will see, the
state of Thomson’s lamp at tb is not “a logical consequence of a description
of its state (with respect to the same property) at times prior to tb”, it
is a logical consequence of remaining a Thomson lamp after performing
Thomson supertask (Principle of Invariance). And this is pertinent to the
case. It will be the key of the next argumentation.
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P12 Consider the instant tb, the limit of the sequence 〈tn〉 of instants
at which the successive clicks 〈cn〉 have been performed. That instant is,
therefore, the first instant after completing the sequence of switchings. The
first instant at which the button of the lamp is no longer clicked. Let now
Sb be the state of the lamp at instant tb. Being the state of a Thomson’s
lamp, it can only be either on or off. And this conclusion has nothing to
do with the number of previously performed switchings. The lamp will be
either on or off because, being a Thomson’s lamp, it has only two states:
on and off, and it is not affected by the number of times it has been turned
on and off (Principle of Invariance). Therefore the sate Sb of the lamp at
the instant tb can only be either on or off, regardless of the number of times
it has been turned on or off.

P13 Some infinitist claim, however, that at tb, after performing Thomson’s
supertask, the lamp could be in any unknown state, even in an exotic one.
But a lamp that can be in an unknown state is not a Thomson’s lamp: the
only possible states of a Thomson’s lamp are on and off. No other alterna-
tive is possible without arbitrarily violating the formal legitimate definition
of Thomson’s lamp. And we presume no formal theory is authorized to vio-
late arbitrarily a formal definition, nor, obviously to change, in the same
arbitrary terms, the nature of the world (Principle of invariance). It goes
without saying that if that were the case any thing could be expected from
that theory, because the case could be applied to any other argument.

P14 Others claim the state Sb is the consequence of completing the ω-
ordered sequence of clicks 〈cn〉, since that sequence, and only that sequence,
has been carried out. But if to complete the sequence of clicks 〈cn〉 means
to perform each and every of the infinitely many clicks c1, c2, c3, . . . of 〈cn〉,
and only them, then we have a problem. The problem that no click ci of 〈cn〉
originates Sb. None. Indeed, if cv is any element of 〈cn〉 it cannot originates
Sb because in such a case the button would have been clicked only a finite
number v of times. That is to say, if we remove from 〈cn〉 all clicks that
do not originate Sb, then all of them would be removed. Or in other, set
theoretical, words, if from the set of performed clicks 〈ci〉 we remove all
clicks that do not originate Sb, all clicks would be removed and we would
get the empty set. It is not, therefore, a question of indeterminacy but of
impossibility: no click of the sequence 〈ci〉 originates Sb. None.

P15 In those conditions, how can it be claimed that the completion of the
sequence of clicks 〈cn〉, none of whose elements originates Sb, originates
just Sb? Is the completion of the sequence an additional click different
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from all elements of 〈cn〉? If that were the case the sequence of performed
clicks would be (ω+1)-ordered in the place of ω-ordered, but ω-supertasks
are ω-ordered not (ω + 1)-ordered.

P16 At this point some infinitists claim the lamp could be at Sb by reasons
unknown. But, once again, that claim violates the definition of the lamp:
the state of a Thomson’s lamp changes exclusively by pressing down its
button, by clicking its button. So a lamp that changes its state by reasons
unknown is not, by definition, a Thomson’s lamp (Principles of Invariance
and of Autonomy).

P17 It makes no sense to argue about the last term of an ω-ordered se-
quence because such a last term does not exist. By contrast, it is always
possible to argue about the limit of an ω-ordered sequence, whenever that
limit exists, because it is a well defined object, though it is not an element
of the sequence. Similarly, whilst it makes no sense to argue about the last
instant at which the button of Thomson’s lamp is clicked, the instant tb
is plenty of meaning: it is limit of the sequence of instants at which the
successive switchings are carried out. It is the first instant after completing
the sequence of switchings. It is the first instant at which the button of the
lamp is no longer clicked. It is the first instant after all instant of (ta, tb).

P18 And the relevant question on the state Sb is: at which instant Thom-
son’s lamp becomes Sb? It is immediate to prove that instant can only be
the precise instant tb. We know the state of the lamp is Sb at instant tb, but
assume there exist an instant t within (ta, tb) at which the lamp becomes
Sb. Since tb is the limit of the sequence 〈tn〉, we will have:

∃v : tv ≤ t < tv+1 (1)

which means that at t only a finite number v of clicks have been carried
out, and then that infinitely many clickings still remain to be carried out.
Therefore, no instant t exists in (ta, tb) at which the lamp becomes Sb.
None. The precise instant at which the lamp becomes Sb is not within
the interval (ta, tb). Therefore, the state Sb can only originate at the first
instant after all instants of (ta, tb). And that instant is just tb.

P19 But at tb the button of the lamp is not clicked. At tb nothing happens
that can cause a change in the state of the lamp. Consequently, the state
Sb, which according to P17 can only originate at the instant tb, cannot
originate at the instant tb. The state Sb is, therefore, an impossible state.
It is the consequence of assuming that it is possible to complete an in-
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completable sequence of actions, incompletable because there is no final
element to complete the sequence.

P20 The fact that the elements of two incompletable sequences can be
paired off by a one to one correspondence, as in the case of the above
sequences of clicks and of instants, does not prove both sequences exist
as complete infinite totalities: they could also be potentially infinite. The
possibility of pairing off the elements of two impossible totalities does not
make them possible

P21 At this point, all that one can expect from infinitists is to be declared
incompetent to understand the meaning of the sentence: “the state of the
lamp at tb is the result of completing the ω-ordered sequence 〈cn〉 of clicks,
a result that manifests for the first time just at tb”. But, wait a moment,
is not Sb the result of a pressing down the button of the lamp? Do not
forget that Thomson’s lamp can only change its state if, and only if, its
button is clicked. And that both events, the clicking and the corresponding
lamp change of state, are instantaneous and simultaneous by definition. In
addition, the lamp is not altered by pressing its button any finite or infinite
number of times. So, if Sb appears for the first time at the precise instant
tb and at tb the button of the lamp is not clicked, then Sb is impossible.

P22 In short, Sb must of necessity be originated just at instant tb, other-
wise only a finite number of clicks would have been performed, according
to P17-P18. But, on the other hand, it cannot be originated at tb because:

1.- The state of the lamp changes only by clicking its button.

2.- The clicking of the button and the corresponding lamp change of
state are instantaneous and simultaneous events that takes place at
a definite and precise instant.

3.- Being the clicking of the button and the corresponding lamp change
of state instantaneous and simultaneous events, and being the state
Sb originated at the precise instant tb, the button must be clicked at
that precise instant tb.

4.- But at tb the button of the lamp is not clicked.

Therefore, it has to be concluded that the state Sb originates and does not
originate at the instant tb. Or what is the same, in the instant tb the button
of the lamp is pressed and it is not pressed. And this is a contradiction.

P23 Sb could only be, therefore, the impossible last state of an ω-ordered
sequence of states in which no last state exists. The imprint of an inconsis-



8
Thomson’s lamp revisited

tency. The consequence of assuming the hypothesis of the actual infinity
from which derives the existence of ω-ordered sequences as complete tota-
lities, in spite of the fact that no last element completes them. The state
Sb forces the actual infinity to leave a trace of its existence and what it
leaves is an inconsistency.

P24 Thomson’s lamp is a theoretical device intentionally invented to faci-
litate a formal discussion on the actual infinity hypothesis that legitimizes
the existence of ω-ordered sequences as complete totalities [9], [10, Theo-
rem 15-A]. Supertasks are an example of such sequences, and contradiction
[P22] clearly indicates the hypothesis on which they are founded is incon-
sistent.

The counting machine

P25 The Counting Machine (CM) we will examine in this section poses
a problem similar to the one posed by Thomson’s lamp we have just exa-
mined. As its name suggests, CM counts natural numbers, and it does
it by counting the successive numbers 1, 2, 3. . . at each of the successive
instants t1, t2, t3. . . of the above sequence 〈tn〉. CM counts each number n
at the precise instants tn. In addition, the machine has a red LED L that
turns on if, and only if, the machine counts an even number; and turns
off if, and only if, the machine counts an odd number, and so that the
counting of the number and the change of state of L are simultaneous and
instantaneous events. Obviously, L is a perfect LED that never fails.

P26 The one to one correspondence f between 〈i〉 and 〈ti〉

f : 〈ti〉 7→ N (2)

f(tn) = n, ∀tn ∈ 〈ti〉 (3)

proves that at tb our machine will have counted all natural numbers. All.
The conclusions on the state of L at tb will not be deduced from its succes-
sive states while performing the supertask of counting all natural numbers,
as Thomson did with his lamp, otherwise Benacerraf’s criticism would be
inevitable. They will deduced from the fact that the LED of CM has two,
and only two, states, on and off, so that no other alternative exist. Thus,
if after performing the supertask, CM continues to be the same counting
machine it was before beginning the supertask, i.e. if performing a super-
task does not arbitrarily violate a legitimate formal definition, as that of
CM , then its LED L can only be either on or off, simply because, accor-
ding to its legitimate definition, L can only be either on or off, and it will
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always be either on or off, independently of the number of times it has
been turned on and off.

P27 Assume then that at tb the red LED is on (a similar argument would
apply if it were off ). One of the following two exhaustive and mutually
exclusive alternatives must be true:

1.- The red LED L is on because CM counted a last even number
that left it on.

2.- The red LED L is on because of any other reason.

The first alternative is impossible if all natural numbers have been in fact
counted: each even number has an immediate odd successor and then there
is not a last natural number, neither even nor odd. The second alternative
would imply the formal definition of CM has been arbitrarily violated: its
red LED L turns on if, and only if, the machine counts an even number,
which excludes the possibility of being turned on by any other reason
(Principle of Invariance).

P28 Since the same argument applies if L is off at tb, we must conclude
that if the ω-ordered list of natural numbers exists as a complete infinite
totality, then, once completed the supertask of counting all of them, L can
be neither on nor off ; though, by definition, it will be either on or off. The
alternative to this contradiction is the arbitrary violation of a legitimate
definition with the only purpose to justify that L can change its state by
reasons different from the reason defined as the unique reason by which L

can change its state: if, and only if, CM counts a natural number, being
both events simultaneous and instantaneous. But assuming the arbitrary
violation of a definition when convenient means any thing can be proved.
So this alternative is formally unacceptable.

P29 Notice again that, as in the case of Thomson’s lamp, the above con-
tradiction on the state of L at tb has not been drawn from its successive
states while performing the supertask, but from the fact of being a LED
with two definite, precise and unique states: on and off, and so that it
turns on if, and only if, CM counts an even number; and it turns off if,
and only if, CM counts an odd number. Thus, as in the case of Thomson’s
lamp, CM definition forces the actual infinity to leave a track of its exis-
tence through the state of L at tb, and what it leaves is an inconsistency.
By contrast, from the hypothesis of the potential infinity, only finite tota-
lities of numbers can be counted, as large as wished but always finite, and
depending of the parity of the last counted number, L will be either on or
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off, in agreement with the definition of CM .
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