Fermat's Last Theorem: Proof in 1 Operation of Multiplication

Victor Sorokine

Abstract

After multiplying Fermat's equality by $\mathrm{d}^{\wedge} \mathrm{n}$, where prime $\mathrm{n}>2$, d is a single-digit number with base $\mathrm{n}, 0<\mathrm{d}<\mathrm{n}$, the penultimate digit in the number $\mathrm{d}^{\wedge} \mathrm{n}$ is not zero (such exists!), the equality turns into inequality.

Fermat's Last Theorem. Proof in 1 operation of multiplication

In memory of wife, mother and grandmother

Fermat's Theorem: Equality (for prime degree $n>2$)
$\left.1^{*}\right) a^{n}+b^{n}-c^{n}=0$ in positive integers a, b, c does not exist.

The notation and lemmas /Pour les preuves des lemmes, voir l'annexe https://vixra.org/pdf/1707.0410v1.pdf /

$a^{\prime}, a^{\prime \prime} ; a^{\prime \prime \prime}-1 s t, 2 n d, 3 r d$ digit from the end in the number a in the number system with a prime base $n>2$;
$a_{[2]}, a_{[3]}, a_{[4]}-$ two-, three-, four-digit ending of the number a;
$n n-n^{*} n$.

L1. If digit a^{\prime} is not 0 , then $\left(a^{n-1}\right)^{\prime}=1$. (Fermat's little theorem.)

L1a. Therefore: $\left(a^{n-1}\right)_{[2]}^{n}=01,\left(a^{n-1}\right)^{n n}{ }_{[3]}=001$.
L2a (key!). There is such a digit d that the second digit (d^{n})" is not zero. [Indeed, if second digits in all d^{n} are equal to zero, then the second digit of the sum of the number series d^{n}, where $d=1,2, \ldots n-1$, is not zero and is equal to $(n-1) / 2$, which is incorrect.]
L2b. There is such a digit d that the digit $\left(d^{n n}\right)^{\prime \prime \prime}$ is not zero.
L2c. There is a digit d such that the digit $\left(a^{n n}+b^{n n}-c^{n n}\right)^{\prime \prime \prime}$, where $(a+b-c)^{\prime}=0$ and $(a b c)^{\prime}=/=0$, is not zero.

L3. For $k>1$, the k-th digit in the number a^{n} does not depend on the k-th digit of the base a.
L3a. Consequence. If a' is not equal to 0, then digits $a^{n}{ }_{[2]}$ and $a^{n n}{ }_{[3]}$ are functions of only a' and do not depend on the digits of higher ranks.

2*) In Fermat's equality 1* two-digit endings of numbers a, b, c, not multiples of n, there are two-digit endings of degrees $\mathrm{a}^{\prime n}, \mathrm{~b}^{\prime n}, \mathrm{c}^{\prime n}$.

Therefore, the number a (like b and c) can be represented as $a=a^{\prime n}+A n^{2}$, where $A=\left(a-a_{[2]}\right) / n^{2}$, and the number a^{n} (and b^{n} and c^{n}) can be represented as
$\left.3^{*}\right) a^{n}=\left(a^{\prime n}+A n^{2}\right)^{n}=a^{\prime n n}+A_{[2]} n^{3 *} a^{\prime n(n-1)}+A^{0} n^{5 *} a^{\prime n(n-2)}+\ldots$, (and similarly $b^{n}=\ldots$ and $c^{n}=\ldots$), where $\left[\left(A^{\prime}+B^{\prime}-C^{\prime}\right) / n^{3}\right]_{[2]}=-\left[\left(a^{\prime n n}+b^{\prime n n}-c^{\prime n n}\right) / n^{3}\right]_{[2]}$ and [insofar as $\left.\left(a^{n-1}\right)^{\prime}=\left(b^{n-1}\right)^{\prime}=\left(c^{n-1}\right)^{\prime}=1\right] a^{\prime n(n-1)}{ }_{[2]}=b^{\prime n(n-1)}{ }_{[2]}=c^{\prime n(n-1)}{ }_{[2]}=01$.

And now the equality 1^{*} can be written by five-digit endings in the form:
$\left.4^{*}\right)\left(a^{\prime n n}+b^{\prime n n}-c^{\prime n n}\right)_{[5]}+(a+b-c)_{[2]} n^{3}+D n^{5}=0$.

L4. If in the equality 1^{*} the number a ends, for example, with k zeros (k is always greater than 1!), then by multiplying the equality by some number $g^{n n n}$ one can convert the ending of the number $b(o r c)$ of length $k n+5$ digits into 1 .

And now the very PROOF of Fermat's theorem.

5^{*}) Multiply equalities 1^{*} and, accordingly, 4^{*} by the number d^{n} from L.2.

And we see that the two-digit ending of the number ($a+b-c)_{[2]}$ multiplied by the single-digit number d, and the two-digit ending of the number $\left[\left(a^{\prime n n}+b^{\prime n n}-c^{\prime n n}\right) / n^{3}\right]_{[2]}-$ EQUAL IN VALUE (but with the opposite sign) - multiplied by the two-digit ending of the number d^{n} with a non-zero second digit. And, therefore, the equivalent equality 4* turned into INEQUALITY.

The second case (for example, the number a ends in k zeros) is proved similarly and even somewhat easier.

After converting the $(k n+5)$-digit ending of b into 1 , we obtain the equality of the three-digit ending of the significant part of the power a^{n} to the three-digit ending of the base of the number c^{n} without the unit (kn)-digit ending. And now, after multiplying Fermat's equality by d^{n} (out of $5{ }^{*}$), the two-digit ending of the number c will be multiplied by a single-digit d, and the two-digit ending of the number a with an EQUAL ending will be multiplied by the two-digit ending of the number d^{n} with an equal last digit $\left(\mathrm{d}^{\mathrm{n}}\right)^{\prime} \quad\left[\ldots=\mathrm{d}^{\prime}\right]$ but with positive $\mathrm{d}^{\prime \prime}$, thus turning equality into an equivalent inequality.

This proves the truth of Fermat's great theorem for a prime degree.

http://rm.pp.net.ua/publ/fermat_39_s_last_theorem_proof_in_1_operation/21-1-0-21 40

Victor Sorokine (victor.sorokine2@gmail.com)
03.09.2020. Mézos, France.

