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Abstract

We show how every power series gives rise to a Fibonacci series and a companion
series involving Lucas numbers. For illustrative purposes, Fibonacci series arising
from trigonometric functions, inverse trigonometric functions, the gamma function and
the digamma function are derived. Infinite series involving Fibonacci and Bernoulli
numbers and Fibonacci and Euler numbers are also obtained.

1 Introduction

The Fibonacci numbers, F;,, and the Lucas numbers, L,, are defined, for all integers n by
the Binet formulas: g

a”
Fr,=—— L,=0a" ", 1.1
a—p '+ p (1.1)

where o and 3 are the zeros of the characteristic polynomial, 22 — 2 — 1, of the Fibonacci
sequence. Thus a + 8 = 1 and a3 = —1; so that a = (1 4+ v/5)/2 (the golden ratio) and
B =—1/a = (1—-+/5)/2. Koshy [10] and Vajda [13] have written excellent books dealing
with Fibonacci and Lucas numbers.

Our task in this paper is to show how every power series gives rise to a Fibonacci series
and a companion series involving Lucas numbers. For example, in §4, we shall demonstrate
that the inverse tangent series,

2]1

Z 2]_1 =tan 'z, |2|<1,

Jj=1

gives rise to the following Fibonacci series:
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valid for any integers r and s and any real or complex variable z such that |z| < 1; with a
companion result for the Lucas numbers.

We have the particularly beautiful identity

> T
Fyy = —— .
Zgj_l 2j-1 25

J=1

Take another example. The power series
00 . Zj
ZC(])7 =logl'(1—2)—~vz, 2] <1,
=2

where v is the Euler-Mascheroni constant, ((n) is the Riemann zeta function and I'(x) is
the gamma function, leads to the following series involving Lucas numbers and the zeta
function (Theorem (13} §7):

ZC(J

= =logl'(1 —a"2)I'(1 — "2) — yzL,;
J
7j=2

particular instances of which are

S (1Y) L~ og(—mese(mp)) + 1

Jj=2 J

and
- 5
Z (—1) Y )ng =lo ( V5 sec(wﬁ)) + 2.
274 8
=2
In §2, we prove the theorem regarding how to obtain Fibonacci series from power series.
[lustrative Examples are then presented in §3/ — §7.

2 Fibonacci series from power series

Theorem. For real or complex z, let a given well-behaved function h(z) have, in its domain,
the representation h(z) = > 72 g(7)2f9) where f(j) and g(j) are given real sequences and
1,09 € [—00,00]. Let r and s be integers. Then,

D Fteat)#9 = 2 ey 1 nrra) + L o) —ne )

Jj=ca

Ls
Z Ly sy+59(7)2"9 = 2 (h(a"z) + h(B"2)) +

2
j=c1

P (harz) ~h(@=) (L)

whenever the series on the left hand side of each of (F) and (L) converges.



Proof. We have
> 9()V = n(z). (2.1)
Jj=c1

Writing oz for z in (2.1) and multiplying both sides by a*, we obtain

Cc2

Z g(j)arf(j)+szf(j) _ Ozsh(a’”z) ) (2.2)

j=c

Similarly, writing "z for z in (2.1) and multiplying both sides by (3°, we obtain

S g()FIOI0) = gra(az) (2.3)

Jj=ci

From (2.2) and (2.3)), we have

= Z st + — Z 9(G) Frpiyrs?’% = a*h(a’2), (2.4)

] c1 j=ci
and

a Z g rf ])+SZ G Z g f(J) = ﬁsh(ﬁr’z> ) (25)

Jcl Jj=c1

where we have used the fact that, for any integer m,

L E L,, — F,
o™ — Lo+ Fn /5 and g™ = m—m\/g (2.6)
2 2
Subtraction of (2.5) from (2.4) while making use of (2.0) again to resolve a® and (3° produces
identity (F). Addition of (2.4) and (2.5) gives identity (L). O
Setting s = 0 in (F) and (L), we have the particular cases,
. . j 1 r T
Y Fsa()eY = —= (h(a’z) = h(572)) | (F1)
Jj=c1 \/3
co '
Z Lyp(y9(5)z" = h(a"z) + h(5"2) . (L1)
Jj=c1

In §3 — §7 we will apply identities (F) and (L) to derive Fibonacci series from certain power
series.

3 Fibonacci series from trigonometric functions

Theorem 1. If r and s are integers and z is a real or complex variable, then,

: mF2rj+Sz2j+l = str S 5 COSs 5

+ Lsfr . FTZ\/S ZLT
S1n COS
V5 2 2 )7




= / L, F.2\/5
L2r3+sz2j+1 =L, ,sin (Z ) cos 2v/5
— 2] —|— 2 2

F L
+Fs—’r\/58in< TZ2\/5> cos (Z r> .

Proof. Consider the Maclaurin series expansion of sin z:

J

2j+1

Z 2]+1) =smz.

Jj=0

Use g(j) = (—=1)7/((254+1)!), f(j) =2j+1, ¢1 =0, cg = 0o and h(z) = sin z in identities (F)
and (L); noting the identities

+
sinx £ siny = 2sin <¥) coS (a:22|iy> .

In particular,

= (—1) o 2 F,2\/5 2L,
ZmFM%_;,.D J \/ESIH 9 COSs 9 s (33)

7=0
9] (_1)j 9it1 . ZLT FTZ\/S
Z ————L,0j4127 T = 2sin cos ) (3.4)
| J
= (25 4+ 1)! 2 2
Example 1. If r is an integer, then,
= Frojvy 1
=, 3.5
g 2] + 1 BQJ 2J+15J 2 ( )
29H2) + 1)Byy LFTH AL, '
i ((2)) LT(Q'J'-H) _ 1 (3.7)
= Qi+ 1By L7 2
i C(zj) LT(2j+1) — LT (3 8)
227+1(25 4+ 1) By F¥ 5 4F, '

Proof. To prove (3.5) and (3.6), set z = 2r/(F\/5), 2 = 7/L,, in (3.3), in turn. To
prove (3.7) and (3.8), set z = 27 /L,, 2 = ©/(F,\/5), in (3.4), in turn. Note the use of (7.1).
[l



Theorem 2. If r and s are integers and z is a real or complex variable, then,

= (—1)/ : L, F,zV/5
> uF%jJrsZ% = Fycos [ 57 cos alt]
(27)! 2 2

=0 (3.9)
LS . ZLT . FTZ\/S
- sin sin
V5 2 2 ’
> ' L, F.2\/5
Z L2m+sz = L,cos cor Cos 2V/5
2 2
= (3.10)

L, E,
_ FS\/gsin <Z2 ) sin ( 22\/5> .

Proof. Consider the Maclaurin series for cos z:

Use f(7) =27, 9(7) = (=1)7/(27!), ¢; =0, co = 0o and h(z) = cos z in (F) and (L), noting

the identities
Tty rT—-Y
cos T + cosy = 2 cos — cos 5 ,

. (m—l—y) <x—y)
COsST — Ccosy = —2sin — sin 5 )

N —(_1)j_1 2j—isin L, sin Fra/5
S ge(Hm(5Y).

= (—1) 9 2L, F.2\/5
jZWLQTjZ —2cos< 5 )COS( 5 ) . (3.12)

In particular,

o C(27) Fory
I _ ), (3.13)
jz:; By L%
- C(zj) F2rj
—— = () 3.14
Z By F5i ’ (3:14)
7j=1
— ((2)) Lorj
Z 2B, 13 = 1, (3.15)
7j=1
, — = ]. 1
Z 925 B2j Fr295j 1 (3 6)
7=1
Proof. Set z = 2n/L,, z = 2r/(F,+/5) in (3.11) to prove (3.13) and (3.14). Set z = 7/L,,
2z =m/(FW/5) in (3.12) to prove (3.15) and (3.16). Note the use of (7.1) O



4 Fibonacci series from the inverse tangent function

Theorem 3. Let r and s be integers. Let z be a real or complex variable such that |z| < 1.
Then,

(-1 g1 _ Fsrr #Ly
FT. R J = 1t P
2 95 — 1 2t o N \1T- (e

= (4.1)
Low o FazVb
+ tan~! [ — Y2 )
2v/5 14+ (—=1)r22
X (—1)i1 S 2L,
L 29T = t -
Z_; 9j —1 2t o M \T—(—1re2
= (4.2)

Proof. Consider the inverse tangent series

& »27-1

Z 2]—1 = tan "' z.

7=1

Use f(j) =25 —1, g(j) = (-1)7/(2j = 1), 1 =1, cg = 0o and h(z) = tan"! z in identi-
ties (F) and (L). Note the arctangent identities

tan ™'z +tan 'y = tan ' i , ifay <1, (4.3)
1 —ay
tan 'z — tan"'y = tan* f_;xyy , ifxy>-—1. (4.4)
O
In particular, we have
> )yt B 1 B F.2\5
Z s Py =t (= | (4.9)
T v\
L (—1)7! 0i 1 1 zL,
Lz " =t — | . 4.6
T A Gy 46)
Example 3. We have
= (ap :
- F 1= ——, 4.7
; 2] -1 2j—-1 2\/5 ( )
> =1 (19
= 29 -1 2(2j-1) — 9



Example 4. If r is a non-zero integer, then,

— — tan , (4.9)
o 2j—1 p¥! V& F._1Frp
- = Lyr2j-1) 1 [ FVB
=—t — . 4.10
J; 2] -1 FQ] RV . (LT‘ILT+1 (4.10)
Proof. Set z =1/F, in (4.5) and z = 1/(F,/5) in (4.6).
Note the use of Cassini’s formulas:
Fo 1 Fp=EF2+(—-1)", (4.11)
Ly 1Lpy1 =5F2+ (—1)" 1. (4.12)
Il

5 Infinite series involving Fibonacci numbers and Bernoulli
numbers

The Bernoulli numbers, B;, are defined by the generating function

2z e
1:ZBjﬁ, z<2m. (5.1)
=0
The first few Bernoulli numbers are
1 1 1 1
By=1 Bi=—— By=—- B3y=0 By=———, B-=0. Bg=—, B-=0..... 5.2
0 5 1 27 2 67 3 ) 4 307 5 y 6 427 7 ) ( )

Basic properties of the Bernoulli polynomials are highlighted in recent articles by Frontczak [3]
and by Frontczak and Goy [7] where new identities involving Fibonacci and Bernoulli num-
bers, and Lucas and Euler numbers are presented. Additional information on Bernoulli
polynomials can be found in Erdélyi et al |2, §1.13].

Theorem 4. Letr and s be integers and z any real or complex variable such that z < 2ma™".

Then,
> B 7 D a’'z Gz
> (- 2] F2m+522’ 4* <cot< 5 ) +cot( 5 )> ~F,
i=1 (5.3)

2L, a’z ﬁ”z))
+ cot | — ] — cot ,
i (7)o (5
0 B ] Lr s r r
> (= 2] Lopjys?® == 4* <c0t <a2z) + cot <622)) — L
=1

J
Z T8 5




Proof. Setting x = iz, z real, in the following identity |9, Formula 1.213]:

> BQj 25 xZ Xz
S | <2
Z(Zj)!x w-1 T3 b lel<2m

j=1
and taking the real part, we have

= BQJ 22 z
_Z t(—>—1.
> (- 5 cot 5

J=1

Now use f(j) = 24, g(j) = B2;/(2j)!, c1 = 1, ¢ = oo and h(z) = z/2cot(z/2) — 1
in (F) and (L). The identities of Theorem 4! follow after some algebra, including also the
use of identities (2.0). Note that in the final simplification, we used

F.Ls+ F,L,. =2F,.,, Vajda |13, (16a)],
and

L.Ly+5F.F, =2L,.,, Vajda [13, (17a)+(17b)].

In particular, for integer r» and z < 2ma™",

i (—1)3‘%&(2“)% = % (cot (O‘;Z> — cot (ﬂ;)) +(-1)F,, (5.5)

we have

= - By; 202 "z Bz ,
jzl <—1)]®L r(2j— 1) ) = § <COt < ) + cot ( 9 - (—].) LT (56)
Example 5. Let r be an integer. Then,
S B2J r(2j—1) 2j
: 2m)¥ = (-1)"F,, r#0, 5.7
> (1 G B = I 2 1)
= BQ (2j—1 ; .
> (-1 R R ) = (-1 L (5.5)
7j=1
Proof. Set z = 2r/(F,/5) in (5.5) and 2z = 27/L, in (5.6). O

Note that, in view of identity (7.1)), identities (5.7) and (5.8) can also be written as

0 -1 r—1
Z Fioy = 0 F2. (5.9

2]1
Fo50

f: ' r(2j—1) = (_1)TL37 (5-10)

which are the same identities (7.59) and (7.62) of Example 7.



6 Infinite series involving Fibonacci numbers and Euler
numbers

The Euler numbers £ are defined by the exponential generating function:

)
e +e s 7!
The first few Euler numbers are
EOZ 1, EQZ—l, E4:5, E6:—61, ceey WithEngrl :OfOI'j 20

Theorem 5. If r and s are integers and z is a real or complex variable, then,

Z E2;| Fwﬁs = % (sec(a”z) +sec(0"2))
2 (6.1)

LS r T
o (oclars) - see(72).

o0

5 L
Z |(2]2;1L2m+s 4= 9 (sec(a’z) + sec(372))

7=0 (6.2)
Fy
+ V5 (sec(a”z) —sec(8"z2)) .
Proof. Consider the identity |9, Formula 1.411 9.|
E
Z | 27| 2% =secz, 2*<m/4,
Use f(j) =24, 9(J) = |E2;]/(27)!, c1 =0, ¢a = 00 and h(z) =secz in (F) and (L).
[
In particular,
= |E2]’ 1 T T
Z Fo ;2% = — (sec(a”z) —sec(f8"2)) , (6.3)
i ’E 27 __ T
Ly, ;27 = sec(az) + sec(f"z) . (6.4)

JO(

7 Infinite series involving Fibonacci numbers and the
Riemann zeta function

As noted by Frontczak and Goy [8], studies in infinite series involving Fibonacci numbers
and Riemann zeta numbers have not been previously documented. The narrative has
changed, however, following research results by the aforementioned authors, as contained



in their recent papers: Frontczak |4, 5, 0] and Frontczak and Goy [§]. In this section, we
explore more infinite series involving the Fibonacci numbers and the Riemann zeta numbers.

The Riemann zeta function, {(n), n € C, defined by
1
¢(n) = Z]_w R(n) > 1,
j=1

is analytically continued to all n € C with ®(n) > 0, n # 1 through

o0

() = == X

=1 7

For positive even arguments, the numbers ((2n) are directly related to the Bernoulli num-
bers, Bs,:
27T)2n
on) = (=1 ”“(—Bn. 7.1

No such simple formula is known for the zeta function at odd integer arguments.

More information on the Riemann zeta function can be found in the books by Edwards [I]
and Srivastava and Choi [12].

The zeta number generating functions, found in Srivastava and Choi [12, p. 270-271, p. 280
281], also Erdélyi et al [2, §1.7.1], which we require to establish the infinite series here, are
expressed in terms of the Gamma function and the digamma fumction.

The Gamma function is defined for $(z) > 0 by

I'(z) = /OOO e it dt = /OOO (log(1/t))*~" dt,

and is extended to the rest of the complex plane, excluding the non-positive integers,
by analytic continuation. The Gamma function has a simple pole at each of the points
z=---,-3,—2,—1,0. The Gamma function extends the classical factorial function to the
complex plane: T'(z) = (z — 1)l

The digamma function, 1(z), is the logarithmic derivative of the Gamma function:

"(2)

b(z) = LlogT(z) = e

dz

7.1 Functional equations for the Gamma and the digamma fumc-
tion

Here is a list of basic functional equations for the gamma function (see Erdélyi et al |2,

§1.2|):

I'(z+1) =2I'(2), (7.2)
[(2)(—z) = —mese(nz)/z, (7.3)
['(2)(1 —2) =mese(mz), (7.4)

10



I'(1/2+ 2)I'(1/2 — 2) = wsec(nwz), (7.5)

I'(1+2)(1 —2) =7zcse(nz). (7.6)
Writing —x for z and —y for z, in turn, in (7.2), we find
I'(1—2)l'(1-y) =ayl(-z)l(-y). (7.7)

More functional equations that are required for our discussion will now be derived.

A consequence of (7.3)) is

272 1 1
PEnT ) = 2 Tr0) cose —y) —cos@ + ) (78)
so that
log ("(—2)T(~y)) = log(27  (xy)) — log (T()T'(1)) 70

+ log (cos(z + y) — cos(z —y)) .

From (7.0), it follows that if x +y = 1, then,

r (% + x) r (% + y) _ (% _ x) 7 sec(nz) (7.10)

We require the following basic properties of the digamma function:

Y1) =)+ 2 (7.11)
W(z) —p(—2z) = —mwcotmz — % , (7.12)
¢(1+2)—w(1—z):é—7rcot7rz, (7.13)
W(z) — (1l —2) = —mcotz, (7.14)

1 1 B
¢(§+z> —@D(é—z) =rmtannz, (7.15)

. 1
Y(z+n) =¢(3)+;Z+J—,_1, (7.16)
m—1 .
b(mz) zlogm+%;@/} (z+%) (7.17)
As a consequence of identity (7.12) we have the following useful identity:

Y(=2) = ¥(=y) = ¥(x) — ¥(y) + m(cot(me) —cot(my)) = L. (T.18)

11



We observe from relation (7.11) that if x — y = 1, then,

1
while relation (7.14) is equivalent to saying that if x + y = 1, then,

Y(x) = P(y) = —m cot(mr)

From relation (7.13), we have

b1 +2) = Pp(l+y) =y —2) = P(l —y)
+ i - ; — 7(cot(mx) — cot(my)) .
Thus, if t +y =1, ¢ Z, then,

1
1—a

w(1+x)—¢)(1+y):—ﬂcot(ms)%—i— , x¢{0,1},

while if v +y = 2, ¢ Z, we have
1

l—-z = 22—z

v +z)—d(l+y) =—

If x +y =1, identity (7.15) also implies

P(1/24+x) —(1/2 +y) = —mtan(nz) + 2962_ 7 ® #1/2,
while if z —y = 1, we have
v(1/2+2) =9(A/2+y) = 5—F, z#1/2.
Writing z — 1 for 2z in (7.13) gives
¥(2 - 2) = $(2) + meot(n(z — 1)) - 211’
and hence, also )
(2 +2) = (=2) —meotm(z + 1)+ .

From (7.26)) we get

B 2 sin(7w(x — y))
cos(m(x — y)) — cos(m(z +y))
r—y
l—z—y+ay’

Y2 —x) = (2 —y) = d(r) —P(y)

which, writing « for —z and y for —y and makng use of (7.18), also gives

r—1Yy r—y
xy l+z4+y+ay

V2 +z) =2 +y) =d(z) —Yy) -

12

—meot(mx), x ¢ {0,1,2}.

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

(7.29)



Using m = 2 in (7.17) gives

1 1 1
P(22) =log2 + s9(2) + ¢ (z + —) ,
2 2 2
which also means that,

(¥ () = ¥(y))

N | —

b(2r) —1b(2y) =

06D (D)

If x +y = 1, then relation (7.31)), in view of (7.14) and (7.15)), gives

1 .
2 — 17

¥(2z) — ¥ (2y) = —mcot(2mx) +

while if x —y = 1, it produces

1 1

7.2 Evaluations at the relevant arguments

Lemma 1. We have
D(a)T(B) = wese(ra) = wese(nf)

D(aY)T(5) = —m esc(rf)
D(=a)[(=B) = —m csc(rB)

[(—a®)[(—3*) = —7wesc(nf),

/5

I'(a’®/2)[(3%/2) = 5

sec(m3)
L(a"/L)T(G"/L,) = mese(ma” /L) ,

[(—a"/L)T(=p"/L,) = (1) 7 L2 csc(ma” /L) .

(7.30)

(7.31)

(7.32)

(7.33)

(7.34)
(7.35)
(7.36)

(7.37)

(7.38)
(7.39)

(7.40)

Proof. Setting z = a in (7.4) gives (7.34). Use of x = —a, y = —fF in (7.7) gives (7.35).
In view of (7.7), we have (7.36) and (7.37). Identity (7.38) is proved by setting x = 3 in

identity (7.10). To prove (7.39), set z = " /L, in (7.4).

Lemma 2. We have

(@) = 9(8) = —mcot ma,

V(a?) — (3 = —mcotma + V5,

13

]

(7.41)

(7.42)



¥(20) — 1h(28) = — — meot TV, (7.43)

.
b(0®) = 0(5) = 2 r ot 5. (7.44)

v(avB) - v(av5) = — 2. (7.46)

() -o(D) () () o
(i) +(p) -5
< ) ) - (gFf) — (~1) FaB, (7.49)
() )

Proof. Setting z = « in (7.14)) proves (7.41)). Identity (7.43) comes from choosing = = «,
y = [Fin (7.32). Setting z = o, y = [ in (7.22)) proves (7.42)). Use of x = 2cv, y = 23 in (7.23)
produces (7.44). Setting (z,y) = (o, ) in (7.24) gives (7.45). Identities (7.47) and (7.48)) are
proved be setting (x,y) = (a"/L,,3"/L,) in (7.19) and (z,y) = (a"/(F\/5), 3" /(F\/5))
in (7.20). Identities (7.49) and (7.50) are obtained from (7.47) and (7.48) wth the aid
of (7.18). O

7.3 Fibonacci-Zeta infinite series

Theorem 6. Let r be an integer. Let z be a real or complex variable such that |z| < a™".

Then,

S+ DEE =~ (6(a") — 0(57)

V5

_ T (cot (rza") — cot (wz0")) .

V5

Proof. Consider [12, p. 270, identity (13)]:
Y i+ =—p(l—2) =7, |2 <1.
j=1

Use f(7) =7,9(7) =C(j4+1),¢1 =1, cg = oo and h(z) = —p(1—2) —~v in identity (F1). O

14



Example 6. If r is an integer with |r| > 1, then

- C(j—l—l)F _ T n(ﬂFﬁ/ﬁ)

(7.51)

7Y A T

L7 \/s 2 L,

Proof. Set z = +1/L, in the identity of Theorem (6 and use (7.47) and (7.49). O

i )i~ 1CU A+ >F.:Ltan <EF*/3) — (=1)" Fy, . (7.52)

J=1

Theorem 7. Letr and s be integers. Let z be a real or complex variable such that |z] < a™".

Then,

— ((2j F, —1)2n22?
Z C( FQTJ+SZ _5 ].Og ( ( ) Tz )
2j 4 cos(nzF,+/5) — cos(nzL,)

7=1 (7.53)
sinm("z
1)" 2r
4\/_ (( J'e sinwa%) ’
= ¢(27) L —1)r2m22?
A Ll Cr v e )
= J cos(mzl, CcoS(mz Ly (7‘54)

F in 3"
+ i/g log <(—1)TQ2T—S‘”5 z) .

sinTa’z

Proof. Consider [12], p. 271, identity (17)]:

> 2 Tz
> C(25)— =10g<. ) 2| < 1.
ot J sin 7z

Use f(j) =27, 9(j) = C(27)/4, c1 =1, co = 00 and h(z) = log(7z/sin(7z)) in identities (F)
and (L) . O

Theorem 8. Letr and s be integers. Let z be a real or complex variable such that |z] < a™".

Then,

iC(Qj)FQ i+ z2j—l _ F8+T (_ WSin(ﬂ-ZLT) (_1)TLT)
Trj+S -
Jj=1

+
2 cos(mzF,/5) — cos(nzL,) 2z
(7.55)
N Ly, 7 sin(rzF\/5) B (—=1)"F\/5
2v/5 \ cos(mzF,\/5) — cos(mzL,) 2z ’
S : 1 Legy msin(rzL,) (=1)"L,
2\ [, i SZZJ 1 _ + <_ 4
; (@) Lo 2 cos(mzF,\/5) — cos(nzL,) 2z
(7.56)

N Foir\/5 7 sin(r2F\/5) B (—=1)"F\/5
2 cos(mz2F\/5) — cos(mzL,) 2z '
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Proof. Consider |12} p. 271, identity (18)]:

- : 1
Zg(?j)ZQJ_l = —gcot Tz + % |z| < 1.

Use f(j) =25 —1, g(j) = C(2)), c1 =1, co = 00 and h(z) = —(7/2) cot(mz) + 1/(22) in

identities (F) and (L). O
In particular, setting s = —r in the identities of Theorem & yields
1 msin(rzF,\/5 —1)"FA5
V5 \ cos(mzF,\/5) — cos(mzL,) 2z
s b in(rzL,) (=1)"L
(27) P msin(rzL, + a5 7.58
ZC ECE cos(mzF,\/5) — cos(nzL,) 2z (7.58)

Example 7. If r is an integer, then,

— ((2)) D
Z F2] 15JF(2J 1) 2 Fr ) (759)
7j=1
— C(2)) m (W L, ) (="
[ 2i_1) = —=tan | = + b, , (7.60)
EF VR CI VY
>, ¢(2)) T (Mﬁ) (—1)"
Z [l 0j-1) = —=tan | ———— | — F. Ir| > 1 (7.61)
211 r(25-1) 27 )
= LY NG 2 L, 2
 (29) (=1
Z L2j—1LT(2j—1) ~ 9 (7.62)
FE—
Proof. Set z = 1/(F,/5) in (7.57) and in (7.58) to obtain (7.59) and (7.60). Set z = 1/L,
n (7.57) and in (7.58) to obtain (7.61) and (7.62). O

Frontczak [4, Theorem 2.1] also obtained the special case r = 1 of identities (7.59) and (7.60).

Theorem 9. Let r be an integer and z any real or complex variable such that |z| < 2a7".

Then,

= it r r o ") — cot(mz"
DG+ 1) = P2 = = 2 (0a3) = 63~ T o) — o)
F.z

Proof. Consider [12] p. 280, identity (146)]:

YU+ -DF =—p2—2)+1—7, |z <2.

j=1

Use f(j) = j, 9(j) = C(i+1) =1 aa=1 ¢ =o0and h(z) = —¢(2-2)+1-7in
identity (F1). O
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Example 8. If r is an integer, then

- (C(j+1)—1) — WFT\/B r
Z TFM = %tan <§L—r) — (=1)"Fy, .

Proof. Set z =1/L, in the identity of Theorem 9 and use (7.47). O

J=1

Frontczak |4, Theorem 2.2, identity (2.3)] obtained the r = 1 case of Example 8.

Theorem 10. Let r be an integer and z any real or complex variable such that |z| < 2a7".
Then,

Z (2 4+ 1) = 1) Fy,;2%

Jj=1

((a"2) = $(572)) — 5 7= (cot(nza’) — cot(n20))
FQTZ2 1
TUr(—) -2 2

Proof. Consider |12} p. 280, identity (149)]:

Sl

(—1)"F, .

Z (2 +1) = 1) %(¢(2+z)+¢(2—z))+1—v, 2] < 2.

7j=1

Use f(j) =27, 9(j) = ((2j+1)—=1,c1 = 1, ca = oo and h(z) = —¢(2+2)/2—-¢(2—2) /2+1—7
in identity (F1).

Note that we used
P2—2)—Y2-y) +v2+z)—v(2+y)
() — 20(y) — 27 sin(7(z — y))

cos(m(x —y)) — cos(m(z + y)) (7.63)
N 2(z* — y*) Ty
(1 +zy)? = (@ +y)?  ay
which follows from identities (7.28) and (7.29). O

Example 9. If r is an integer, then,

Z (C(Qj i 1) _ 1) F2rj = - L$F2T + (_1)TF2ra (764)

P L% 2—1)yL2+1 " 2
— (€27 +1) -1 SEF}Fy, (-
Py = — : 25 7.65
; 5 F2 S T/ Ty 2 N RS R (7.65)

Proof. Set z =1/L,, z = 1/(F,4/5) in the identity of Theorem (] and use identities (7.47)

and (7.48). We used
Ta” w3
COt(LT)—I—COt(LT)_O
cot (W—O/) — cot ( s )
F.\/5 EAG5
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Theorem 11. Let r be an integer and z any real or complex variable such that |z| < 2a~"
Then,

S N Forjys o F (—1)2m?22(1 — Lay2® + Z4)>
Z:;(C(Z]) Y J T log( cos(mF,zv/5) — cos(mL,z2)

i (7.66)
a” — ¥ 2% sin(nf2)
2\/_ ( — 332 Sm(ﬂa”z)>
= o Lovjis o Ls (—1D)r2m?2%(1 —L2r22+z4))
> (ot -y = 1og( e o

N F/5 log (o/ — a2 sin(wﬁ%)) |

2 BT — 322 sin(rarz)
Proof. Consider |12} p. 281, identity (150)]:
= , 2% mz(1 — 22
S (C2) - DE = log (M) <2,
o J sin 7z

Use f(j) = 27, g(j) = €(27) =1, ¢; = 1, ¢y = 0o and h(z) = log(mz(1 — 2%)/sin(rz)) in
identities (F) and (L) . O
Theorem 12. Let r be an integer and z any real or complex variable such that |z| < 2a7".
Then,

o0

Z (C(27) = 1) Fapjy 2™
=1
_ Fonr (_ msin(nzL,) N (-1)"L, 3i4 — szj + 1) (7.68)
2 COS(WFTZ\/E) — cos(mL,z) 2z 24— Loy 22 +1
N Lyyr 7 sin(rzF\/5) (—1)"F/5 324 —5F22% 4+ 1
2v/5 \ cos(mF,zv/5) — cos(mL,z2) 2z 2t — Ly2? +1
D (C(25) = 1) Lagyys2™ 7!
=1
_ Leyr (_ msin(rzL,) N (—1)"L, 3z4 - szj + 1) (7.69)
2 cos(mF,zv/5) — cos(mL,z) 2z 2t =Lyt +1
N ForrV/5 7 sin(rzF,\/5) (—1)"F\/5 32% —5F?22 + 1
2 cos(mF,2v/5) — cos(rL,2) 2z 24— Lo22+1 |
Proof. Consider |12} p. 281, identity (151)]:
i (C(27) — 1)z¥ 1 = ~ T otz + 3ol 2] < 2
~ 2 22(22 — 1)’ ‘
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Use f(j) =2j—1,9(j) = ((2§)—1,¢c; = 1, ¢co = coand h(z) = —mcot(mz) /2 + (322 — 1)/(22(2? — 1))
in identities (F) and (L).

Note that we used (Vajda [13, Formula (17c)|)

Loy + (—1)2 = L2 (7.70)
and (Vajda [13, Formula (23)])

Loy — (=1)2 =5F2. (7.71)

O

Theorem 13. Let r be an integer and z any real or complex variable such that |z| < a™".

Then,
S W “tog (M1~ a72)0 (1~ 572) 2L,

Proof. Consider [12, p. 270, identity (9)]:

ZC(J')ZJ—.] =logl'(1 —2)—~vz, |z]<1.

j=2
Use f(j) =7, 9(j) =C((j), c1 =2, ca = 00 and h(z) = logI'(1 — z) — vz in identity (L1). O

Corollary 14. If r is an even integer and z is a real variable such that |z| < a~", then,
. <(]) J T T
Z L,z =2log|z| 4+ log (I'(—a"2)I'(=("2)) — vzL, .
- J
j=2

Example 10. We have

Z C— . = log(—mcsc(nf)) + 7.
— J
J
Proof. Set z = —1, r = 1 in the identity of Theorem 13| and use identity (7.35). O]
Example 11. We have
. 5
Z L3J log (—% sec(wﬂ)) + 2.
j=

Proof. Set z = —1/2, r = 3 in the identity of Theorem 13| to obtain

[e%9) 3 3
Z ng 1og(r(1+%)r<1+52>)+27.

Jj=

Now, by (7.7), we have

(1 2)0(103) - $51(2)r(3) - HLoemen

by (7.3%). 0
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Example 12. If r is an even integer, then

Z Li] = log (mesc(ma” /L)) — 7, (7.72)

Z LJ L,; = —2log|L,| + log (7 csc(ma” /L,)) + . (7.73)
rJ

Jj=2
Proof. Set z = £1/L, in the identity of Corollary 14 and use identities (7.39) and (7.40). O

Theorem 15. Let r be an integer and z any real or complex variable such that |z| < a™".

Then,

o0

(27 +1 , ,
Z 27 + 1 (2j+1)% A =log (P(1 —a"2)l(1 — f"2)) — 2L,
7=1
1 < (—1)2m )
— —log _
2 cos(mzF\/5) — cos(mzL,)
Proof. Let
LG+ .
t(y) = L, J+
) == bron?
Then,
. C(Qj + 1) , _ C<2J> 4
M) =25 Lijin 2™, 42— 1) = z—jLT(ZDZQJ _

Use these in the summation formula
S i(a)) = St) - Dot - )
Jj=1 Jj=1 j=1

while taking note of Theorem [7 (identity (7.54))) and Theorem [13. O

References

[1] H. M. Edwards, Riemann’s Zeta Function, Academic Press, (1974).

2] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental
functions, vol. 1, Bateman manuscript project, (1981).

[3] R. Frontczak, Relating Fibonacci Numbers to Bernoulli numbers via balancing poly-
nomials, Journal of integer sequences 22 (2019), Article 18.5.3.

[4] R. Frontczak, Infinite series involving fibonacci numbers and the Riemann zeta func-
tion, Notes on Number Theory and Discrete Mathematics 26:2 (2020), 159-166.

[5] R. Frontczak, Problem B-1267, The Fibonacci Quarterly 58:2 (2020), to appear.
[6] R. Frontczak, Problem H-xxx, The Fibonacci Quarterly 58:2 (2020), to appear.

[7] R. Frontczak and T. Goy, More Fibonacci-Bernoulli relations with and without bal-
ancing polynomials, arXiv:2005.02685v1 [math.NT], (2020).

20



[8] R. Frontczak and T. Goy, General infinite series evaluations involving Fibonacci num-
bers and the Riemann zeta function, arXiv:2007.14618v1 [math.NT], (2020).

9] 1. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic
Press, (2007).

[10] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, (2001).

[11] L. Lewin, Polylogarithms and Associated Functions, Amsterdam: North Hol-
land, (1981).

[12] H. M. Srivastava and J. Choi, Zeta and q¢-Zeta Functions and Associated Series and
Integrals, Elsevier Inc., (2012).

[13] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Appli-
cations, Dover Press, (2008).

2010 Mathematics Subject Classification: Primary 11B39; Secondary 11B37.

Keywords: Fibonacci number, Lucas number, summation identity, series, generating func-
tion, gamma function, digamma function, trigonometric functions, inverse tangent,bernoulli
number, zeta function.

21



